ONONDAGA LAKE AMBIENT MONITORING PROGRAM

2007 Annual Report Appendices 1-13

> FINAL Revised April 2009

Prepared by: *EcoLogíc*, LLC 132 ¹⁄₂ Albany Street Atwell Mill Annex, S-2 Cazenovia NY 13035 (315) 655-8305

LIST OF APPENDICES

- APPENDIX 1: METHODS (by OCDWEP)
- APPENDIX 2: QUALITY ASSURANCE/QUALITY CONTROL REVIEW OF 2007 DATA (by EcoLogic, LLC)
- APPENDIX 3: ASSESSING COMMUNITY STRUCTURE OF LOWER TROPHIC LEVELS IN ONONDAGA LAKE, NEW YORK IN 2007 (by Edward L. Mills, Sarah H. McConnachie, and Jonathan W. Swan; Cornell Biological Field Station)
- APPENDIX 4: 2007 MACROPHYTE MONITORING RESULTS AND MACROALGAE DATA SUMMARY (by EcoLogic, LLC)
- APPENDIX 5: DATA ANALYSIS AND INTERPRETATION PLAN (by EcoLogic, LLC)
- APPENDIX 6: 2007 DREISSENID MUSSEL SURVEY (by OCDWEP)
- APPENDIX 7: BIBLIOGRAPHY OF MATERIAL PERTAINING TO ONONDAGA LAKE, NEW YORK (*by OCDWEP*)
- APPENDIX 8: 2007 FISH MONITORING (by EcoLogic, LLC)
- APPENDIX 9: 2007 SENECA RIVER CONDITIONS (by QEA, LLC)
- APPENDIX 10: SOUTH AND NORTH COMPARISON (by EcoLogic, LLC)
- APPENDIX 11: LICOR DATA ANALYSIS (by EcoLogic, LLC)
- APPENDIX 12: FLOW-WEIGHTED RESULTS (by EcoLogic, LLC)
- APPENDIX 13: 2007 ANALYTICAL DATA CDs (by OCDWEP)

APPENDIX 1: METHODS

Contents

Cover Letter – transmitting Year 2007 Ambient Monitoring Program Final (April 2007) plan to NYSDEC

OCDWEP Response to Review Comments – Proposed Year 2007 Ambient Monitoring Program plan (February 2007)

Year 2007 Onondaga Lake Ambient Monitoring Program

Nicholas J. Pirro, County Executive Randy R. Ott, P.E., Commissioner 650 Hiawatha Boulevard West Syracuse, NY 13204-1194 Phone (315) 435-2260 or (315) 435-6820 FAX (315) 435-5023 http://www.ongov.net

April 16, 2007

James E. Burke, P.E. Environmental Engineer 3 Regional Water Manager NYSDEC – Division of Water, Region 7 615 Erie Boulevard West Syracuse, New York 13204-2400

Re: Year 2007 Ambient Monitoring Program (Final - April 2007)

Mr. Burke:

Please find enclosed a copy of OCDWEP's response to the review comments received from Dr. John Ferrante (via e-mail dated March 14, 2007), and for your approval a copy of the revised 2007 Ambient Monitoring Program (final version dated April 2007), which reflects the modifications.

I want to take this opportunity to thank you for the NYSDEC's review and constructive comments. Should you have any questions, please contact me or Joseph J. Mastriano.

Sincerely, RANDY R

Commissioner

JS/ncs

cc ltr only:	Sandra Allen, NYSDEC
••• ••••••••••••••••••••••••••••••••••	Scott Crisifulli, NYSDEC
	William Brizzell, NYSEFC
	Norman Spiegel, Office of Attorney General, EPB
	Luis Mendez, Onondaga County Dept. of Law
	David Coburn, Onondaga County Office of Environment
	Richard Lippes, Lippes & Associates
	Dianne T. Gomes, USEPA, Reg. II
	James A. Albanese, Onondaga County, Administrator/Physical Services
	Susan A. Miller, Onondaga County Lake Improvement Office
cc w/enc	Dr. Raymond Canale, EnginComp Software, Inc.
	Dr. Charles T. Driscoll, Syracuse University
	Dr. James Hassett, SUNY ESF
	Dr. Edward Mills, Cornell Biological Field Station

Dr. Elizabeth Moran, EcoLogic, LLC. Dr. Lars Rudstam, Cornell Biological Field Station Dr. Kenton Stewart, SUNY Buffalo Dr. William Walker, Jr., Consultant Dr. James Rhea, QEA, LLC. John Davis, Office of Attorney General, EPB Samuel Sage, ASLF Dr. John Ferrante, NYSDEC/CNYRPB David Lemon, NYSDEC, Region 7 Cortland John Kushwara, Chief Water Compliance Branch, USEPA, Reg. II Mario Del Vicario, USEPA, Reg. II Christopher Dere, USEPA, Reg. II Joseph J. Mastriano, OCDWEP Mike Gena, OCDWEP Jeanne C. Powers, OCDWEP File - AMP Correspondence

\w:\js\ampletters\decltr\2007\040207ltr.doc

YEAR 2007 ONONDAGA LAKE AMBIENT MONITORING PROGRAM

Comment #1:	Pg. 1, paragraph 5: "reduced species" should be "reduced <u>chemical</u> species", last line should read – Class B and C waters of Onondaga Lake and its tributaries.
Response #1:	Agree. Changed.
Comment #2:	Pg. 4, footnote: AMP targets river flows of <500 cfs for low flow events, the QEA model defines 7Q10 flow as 350 cfs, yet because of paucity of data at this flow actually uses 700 cfs for calibration. Are there any implications from this disparity?
Response #2:	QEA's value of 7Q10 (350 cfs) was computed at the time the river model was being developed. The 700 cfs value refers to the model-data comparisons used to demonstrate the model's performance under low flow conditions see Figures ES-4, 8-1, and 8-2 of the Phase 2 River Model Report. There were very few sampling events at or below the calculated 7Q10 flow, which is why the criteria of flow being less than 700 cfs for 7 days prior to sampling was used for the purposes of the low-flow model-data comparison shown in the figures. However, it is important to recognize that the river model was not calibrated only to a flow of 700 cfs the model is a dynamic calculation that was calibrated to data collected over the entire growing season (May to November), for each year from 1994 through 2000. Thus, it simulates both the low and high flow periods within these years. Most of the data were collected under low flow conditions, and the model was shown to provide a good representation of those data (e.g., see Figures 8-7 through 8-30 of the Phase 2 River Model Report).
	The AMP targets low flow to capture critical conditions (e.g., lower DO's). However, since the model can simulate any flow conditions, the use of 500 cfs for the AMP target has no implications for the model. When the model is validated to data from 2001-2007, the measured river flows will be input to the model, and its predictions will be compared to the AMP data that were collected from those years, regardless of the flow conditions. For the purposes of consistency and comparability with previous years' data, we would recommend continuing the river sampling program without modification.
Comment #3:	Pg. 5, foot note 5: Cross reference Attachment 3, Table 1 for specific information on aerial photography.
Response #3:	Table 1 (Attachment 3) Summary of Year 2007 Onondaga Lake Macrophyte Assessment Program is similar to Appendix K (Onondaga Lake Macrophyte Assessment Program) which is already referenced in footnote 5. No change.
Comment #4:	Pg. 7, Appendix C, site #1: Was this site referred to as "State Fair Blvd." in past documents?

Response #4:	The site has been referred to as "Tributary 5A @ State Fair Blvd." in this and past AMP documents.
Comment #5: Response #5:	Pg. 8, Appendix C: Why is this portion of the table empty? This portion of the table primarily references the parameters for the biweekly and quarterly Quality Assurance/Quality Control blanks collected as part of the Tributary sampling program. There are no designated sampling sites associated with the QC blanks; consequently there are no checks in this portion of the table.
Comment #6:	Pg. 10, Appendix D: Zooplankton samples are vertical tows but this table indicates a discrete sample at 15 meters.
Response #6:	Table revised to reflect a 15 meter vertical net haul and UML Zooplankton sample.
Comment #7:	Pg. 11, Appendix D: How is the composite sample for Chlorophyll- <i>a</i> collected? Is it a tube sample or composited samples from discrete depths?
Response #7:	As noted in Pg.18, Quality Assurance Project Plan, Chlorophyll- <i>a</i> samples are collected as depth-integrated tube samples through the UML of the water column and photic zone (2 x Secchi depth) composites. A $\frac{3}{4}$ " tygon tubing is used as the sample collection device.
Comment #8: Response #8:	Pg. 12, Appendix E: Zooplankton (same as comment #6). Please refer to Response #6.
Comment #9:	Pg. 13, Appendix E: Footnote 1: The issue of empirical data to substantiate this statement has come up a number of times. Is there a report or set of analyses that can be used to support this? See also Pg. 16, footnote #1
Response #9:	These data will be examined in detail and results summarized in the 2006 AMP Report. Dr. Walker's presentation at the March 20, 2007, OLTAC/Water Quality Workgroup meeting included data analysis in context of comparable data at the Lake South Deep station and Onondaga Lake Outlet at 12 feet sampling locations, indicating the entire axis of the lake is well mixed.
Comment #10:	Pg. 14, Appendix F, footnote 2: What is the meaning of "but above thermocline composites."?
Response #10:	Edited text to clarify as follows: "Chlorophyll-a composite samples will be collected as Upper Mixed Layer (UML) and photic zone (2 x Secchi Disk Transparency), but above thermocline."
Comment #11:	Pg. 17, Appendix H, FIELD DATA: Units should be included for all narameters and placed in parentheses.
Response #11:	Agree. Added units for the parameters Underwater Illumination Profile and Secchi Disk Transparency.

QUALITY ASSURANCE PROGRAM PLAN FOR THE 2007 WATER QUALITY MONITORING PROGRAM (ATTACHMENT 1)

Comment #1: Pg. 3, second statement from bottom: Study results for basin similarities. Response #1: Please reference Response #9 above. Comment #2: Pg. 4, D: No mentions is made here for the July, August and September river sampling - should it be included? Page 5 references the samples will be collected for laboratory analysis in Response #2: accordance with Appendix H of the Year 2007 AMP. Comment #3: Pg. 16, v.: What does the last sentence mean? The last sentence "The sample crew incorporates as much of this procedure Response #3: as possible given the nature of the field effort", refers to the sampling challenges during adverse weather conditions of high winds, rain, etc. This will be edited to reference field conditions during the sampling event : "The sample crew incorporates as much of this procedure as possible given the field conditions during the sampling event" **Comment #4:** Pg. 22, Bullet 3: Move the first sentence into the paragraph after the description of the discrete depths. Response #4: Revised accordingly. Comment #5: Pg 23, line 1: How are these tributaries sampled if not using a depthintegrated sampling technique? Response #5: Added reference in text to Attachment A (Tributary Field Sampling Procedures). Comment #6: Pg. 23, Note: Change wording to - "A dedicated dunker with silicone end seals will be utilized for the trace metals quarterly sampling events" Response #6: Agree. Changed accordingly. Pg 24, C: Spell out C-O-C and C-O-A first time. Comment #7: Response #7: Agree. Spelled out. Comment #8: Pg. 71 #15: The description of sampling of the spring should include a Step after Step 2 that states that after reversing the pump the initial water should be discarded before a composite is collected. This would eliminate the dilution from the deionized water first drawn into the tube. Response #8: Agree. Added step.

QUALITY ASSURANCE PROGRAM PLAN FOR THE 2007 ONONDAGA LAKE FISH SAMPLING PROGRAM (ATTACHMENT 2)

Comment #1:Pg. 8: This table is confusing. Please clarify through reformatting, etc.Response #1:The table was added to aid our technician's in verifying the depth of the
sampler in order to eliminate the need to calculate the vertical depth using the
cosine of the angle and the cable length. The table is intended to provide a
range of typical angles and cable lengths encountered during this event to

achieve the desired vertical depth. However, the leading paragraph in Section 3.1.2, Step 5 has been modified to the following: "Measure the angle of the cable from vertical (the optimal angle range should be between 55-60) using the WildCo clinometer, and record the angle measurement on the field data sheet. Using the "Angle of Cable Measured" (between 55-60) and the "Length of Cable" let out (typically 10 meters as measured from the water surface), verify on the following chart that the "Proper Vertical Depth" of the sampler has been achieved (optimum depth of 5.0 to 5.5 meters):"

Comment #2: Response #2:	Pg. 9, Section 3.1.5: Spell out HCBF. Agree. Spelled out.
Comment #3:	Pg. 10: Please include the net characteristics: length, height, and mesh size somewhere in this discussion.
Response #3:	Added to Section 4.1 - (seine dimensions - 50' x 4' x 1/4").
Comment #4:	Pg. 17, Step 11: Is there a "standard" place on fish from which scales should be removed? If so it should be included in this discussion.
Response #4:	Added the following text to Section 6.1.2, Step 11, "On spiny-rayed species, including but not limited to largemouth bass, smallmouth bass, bluegill, pumpkinseed, white perch, walleye, yellow perch and black crappie, scales will be removed from left side of the body below the lateral line, near the tip of the depressed left pectoral fin. On soft-rayed species, including trout and salmon, scales will be removed from the middle region of the body above the lateral line, beneath the posterior end of the dorsal fin on the left side".
Comment #5:	Pg. 22, Section 10.0: Should the NYSDEC approval be included in this discussion?
Response #5	At the end of this section, added the following text, "The original QAPP, and subsequent revisions, have been reviewed by the NYSDEC, revised by OCDWEP as requested, and approved by the NYSDEC prior to

implementation." This statement has also been added to Section 6 of Attachment 3 - QAPP for the Macrophyte Assessment Program.

YEAR 2007 ONONDAGA LAKE AMBIENT MONITORING PROGRAM

Onondaga County Department of Water Environment Protection Syracuse, New York

April 2007

TABLE OF CONTENTS

APPE	NDIX	PAGE NUMBER
A -	2007 Non-Event Water Quality & Biological Sampling Schedule	3
	(April 2007 - March 2008)	
B -	2007 Event-Based Water Quality Sampling Schedule	6
C -	2007 Tributary Sampling Program	7
D -	2007 Onondaga Lake Sampling Program	10
E -	2007 Onondaga Lake Winter Sampling Program	12
F -	2007 Onondaga Lake Special Weekly Sampling Program	14
G -	2007 Onondaga Lake Fall Turnover Sampling Program	16
Н-	2007 River Sampling Program	17
I -	2007 Water Quality Monitoring Programs (Summary of Modification	ons) 20
J -	2007 Onondaga Lake Fish Community Sampling Plan	21
K -	2007 Onondaga Lake Macrophyte Assessment Program	22

FIGURE

Figure 1- Onondaga L	ake Near Shore Sampling Lo	ocations 15
i iguite i Oliollaugu E	une rieur shore sumpring De	10

ATTACHMENTS

ATTACHMENT 1:	Quality Assurance Program Plan (2007 Water Quality Monitoring Program)
ATTACHMENT 2:	Quality Assurance Program Plan (2007 Onondaga Lake Fish Sampling Program)
ATTACHMENT 3:	Quality Assurance Program Plan (2007 Onondaga Lake Macrophyte Assessment Program)

ΔΑΤΕ /ΔΑ Υ	PROCRAM	EVENT APP	FNDIX
April 2007	INUGRAM		
April 2007 April 3/TuesdayTribu	itary	Quarterly Extended C	
April 10/Tuesday	Onondaga Lake	Double Lake (South & North Deen)	D
April 17/Tuesday	Tributary	Biweekly	C
April 24/Tuesday	Onondaga Lake	Lake South Deen	D
May 2007	Ollohdaga Lake	Lake South Deep	D
May 1/Tuesday	Tributary	Biweekly	C
May 8/Tuesday	Onondaga Lake	Lake South Deep	D & F
Whay of Fuebday	Oliolidugu Luke	(w/Lake Special Weekly)	Dui
May 14/Monday	Onondaga Lake	Lake Special Weekly	F
May 15/Tuesday	Tributary	Biweekly	Ċ
May 22/Tuesday	Onondaga Lake	Lake South Deep	C
1111 22/ 1 uosaay	Oliolidugu Luke	(w/Lake Special Weekly)	D & F
May 29/Tuesday	Onondaga Lake	Lake Special Weekly	F
May 30/Wednesday	Tributary	Biweekly	r C
Tune 2007	modulary	Diweekiy	C
June 5/Tuesday	Onondaga Lake	Lake South Deep	D & F
Julie 37 Tuesday	Oliolidaga Lake	(w/Lake Special Weekly)	Dui
June 11/Monday	Onondaga Lake	Lake Special Weekly	F
June 12/Tuesday	Tributary	Quarterly Extended	r C
June 19/Tuesday	Onondaga Lake	Double Lake (South & North Deen)	D & F
Julie 197 Tuesday	Oliolidaga Lake	(w/I ake Special Weekly)	Dui
June 25/Monday	Onondaga Lake	Lake Special Weekly	F
June 26/Tuesday	Tributary	Biweekly	r C
July 2007	1110 atul y	Diveckly	C
July 3/Tuesday	Onondaga Lake	Lake South Deep	D & F
buly 57 Puesdug	onondugu Duko	(w/Lake Special Weekly)	Dui
July 9/Monday	Onondaga Lake	Lake Special Weekly	F
July 10/Tuesday	Tributary	Biweekly	C
July 12/Thursday	River*	Monthly	H
July 17/Tuesday	Onondaga Lake	Lake South Deep	D & F
	<i></i>	(w/Lake Special Weekly)	
July 23/MondayOnon	daga Lake	Lake Special Weekly F	
July 24/Tuesday	Tributary	Biweekly	С
July 31/Tuesday	Onondaga Lake	Lake South Deep	D & F
		(w/Lake Special Weekly)	
August 2007			
August 2/Thursday	River*	Monthly	Н
August 6/Mondav	Onondaga Lake	Lake Special Weekly	F
August 7/Tuesday	Tributary	Biweekly	С
August 14/Tuesdav	Onondaga Lake	Lake South Deep	D & F
5	C	w/Lake Special Weekly	
August 20/Monday	Onondaga Lake	Lake Special Weekly	F
August 22/Tuesday	Tributary	Biweekly	С

Lake South Deep

(w/Lake Special Weekly)

<u>APPENDIX A</u> 2007 Non-Event Water Quality & Biological Sampling Schedule (April 2007 - March 2008)

August 28/Tuesday

Onondaga Lake

D & F

<u>APPENDIX A (Continued)</u> 2007 Non-Event Water Quality & Biological Sampling Schedule (April 2007 - March 2008)

DATE /DAY	PROGRAM	EVENT API	PENDIX
September 2007			
September 4/Tuesday	Onondaga Lake	Lake Special Weekly	F
September 5/Wednesday	yTributary	Biweekly	С
September 11/Tuesday	Onondaga Lake	Lake South Deep	D & F
		(w/Lake Special Weekly)	
September 13/Thursday	River*	Monthly	Н
September 17/Monday	Onondaga Lake	Lake Special Weekly	F
September 18/Tuesday	Tributary	Quarterly Extended	С
September 25/Tuesday	Onondaga Lake	Double Lake (South & North Deep) w/Lake Special Weekly	D & F
October 2007			
October 2/Tuesday	Tributary	Biweekly	С
October 9/Tuesday	Onondaga Lake	Lake South Deep	D
October 16/Tuesday	Tributary	Biweekly	С
October 23/Tuesday	Onondaga Lake	Lake South Deep	D
October 30/Tuesday	Tributary	Biweekly	С
November 2007			
November 7/Wednesday	Onondaga Lake	Lake South Deep	E
November 13/Tuesday	Tributary	Quarterly Extended	С
November 20/Tuesday	Onondaga Lake	Double Lake (South & North Deep)	D
November 27/Tuesday	Tributary	Biweekly	С
December 2007			
December 4/Tuesday	Onondaga Lake	Lake South Deep	D
December 11/Tuesday	Tributary	Biweekly	С
December 26/Wednesda	ıyTributary	Biweekly	С
January 2008			
January 2/Wednesday	Onondaga Lake	Winter**	E
January 8/Tuesday	Tributary	Biweekly	С
January 22/Tuesday	Tributary	Biweekly	С
February 2008			
February 6/Tuesday	Tributary	Biweekly	С
February 12/Tuesday	Onondaga Lake	Winter**	E
February 20/Wednesday	/Tributary	Biweekly	С
March 2008			
March 4/Tuesday	Tributary	Biweekly	С
March 11/Tuesday	Onondaga Lake	Winter**	E
March 18/Tuesday	Tributary	Biweekly	С

* River sampling events to target low flows (at or less than 500 cfs at Baldwinsville). Sampling event dates may be altered.

** Lake Winter dates are tentative and will depend on weather conditions/extent of ice cover on lake.

DATE /DAY	PROGRAM	EVENT AI	PPENDIX
April 2007			
Week of April 23 ^{rd 1}	Fish Community	Pelagic Larval	J
May 2007			
Week of May 7 th	Fish Community	Pelagic Larval	J
Week of May 21 st	Fish Community	Pelagic Larval	J
Week of May 21 ^{st 2}	Fish Community	Electrofishing	J
Week of May 28 ^{th 3}	Fish Community	Adult Fish Profundal Zone (Gill Ne	ts) J
June 2007			
Week of June 4 th	Fish Community	Pelagic Larval	J
Week of June 4 ^{th 4}	Fish Community	Nesting Survey	J
Week of June 18 th	Fish Community	Pelagic Larval	J
Week of June 25 th	Fish Community	Juvenile Seines	J
July 2007			
Month of July ⁵	Macrophyte	Field Species Verification	Κ
Week of July 2 nd	Fish Community	Pelagic Larval	J
Week of July 16 th	Fish Community	Juvenile Seines	J
Week of July 16 th	Fish Community	Pelagic Larval	J
Week of July 30 th	Fish Community	Pelagic Larval	J
August 2007			
Week of August 6 th	Fish Community	Juvenile Seines	J
Week of August 20 th	Fish Community	Juvenile Seines	J
September 2007			
Week of September 10 th	Fish Community	Juvenile Seines	J
Week of September 17 ^{th 2}	Fish Community	Electrofishing	J
Week of September 24 ^{th 3}	Fish Community	Adult Fish-Profundal Zone (Gill Ne	ts) J
October 2007			
Week of October 8 th	Fish Community	Juvenile Seines	J

<u>APPENDIX A (Continued)</u> Non-Event Water Quality & Biological Sampling Schedule (April 2007 - March 2008)

¹Pelagic Larval sampling events will begin in April when the water temperatures are 7-8°C; all events are weather dependent.

²Electrofishing events are night events; dependent on weather conditions and water temperatures of 15-20°C; (Tentative back-up sampling set for Week of May 28th/Sept 24th)

³Gill Nets are done during the day within one week of littoral electrofishing; (Tentative back-up events week of June 4^{th} /Oct 1^{st}).

⁴Nesting Survey event occurs once in June depending on water temperatures of 15-20°C, clarity, and peak spawning of select gamefish.

⁵Field Species Verification will take place within one week of Aerial Photography; Aerial photography is dependent upon water clarity (approximately >2.5 meters Secchi disk transparency) and weather (wind and cloud cover/rain).

NOTE - Macroalgae Are Surveyed Each Time Lake Weekly Or Lake Is Scheduled (Appendix K).

<u>APPENDIX B</u> 2007 Event-Based Water Quality Sampling Schedule

Ambient Monitoring Program Onondaga County, New York

PROGRAM/EVENT(S)	FREQUENCY	PARAMETERS	LOCATIONS
I. ONONDAGA LAKE TRIBUTARIES 1. High-Flow	Minimum 5 times/year.	APPENDIX C	All Tributary Monitoring Sites.
II. ONONDAGA LAKE			
1. Winter	Once per month January, February, March (Weather Permitting).	APPENDIX E	North or South Deep (sampling station depends on extent of ice cover).
2. Fall Monitoring	Weekly sampling and field data more frequently.	APPENDIX G	Onondaga Lake
III. RIVER MONITORING			
1. Annual River Monitoring Program	Three times per year. Once per month July- September. (Target Low-flows).	APPENDIX H	1 River Monitoring Station.

<u>APPENDIX C</u> 2007 Tributary Sampling Program

Ambient Monitoring Program Onondaga County, New York

Sampling site numbers correspond to the following sites:

- 1 Nine Mile Creek at Lakeland (Route 48)
- 2a Harbor Brook at Hiawatha Blvd.
- 2b Harbor Brook at Velasko Road
- 3a Onondaga Creek at Kirkpatrick Street
- 3b Onondaga Creek at Dorwin Avenue
- 3c Onondaga Creek at Spencer Street
- 4 Ley Creek at Park Street
- 5 Tributary 5A at State Fair Boulevard¹
- 6 Metro Effluent²
- 7 Allied East Flume
- 8a Onondaga Lake Outlet at Long Branch Road 2 feet (0.61 meters)
- 8b Onondaga Lake Outlet at Long Branch Road 12 feet (3.66 meters)
- 9 Bloody Brook at Onondaga Lake Parkway⁵
- 10 Sawmill Creek at Onondaga Lake Recreational Trail⁶
- 11 Onondaga Creek Salt Spring (Spence-patrick Spring wellpoint)⁷

		SAMPLING SITES													
PARAMETER/ FREQUENCY	1	2a	2b	3a	3b	3c	4	5	6	7	8a	8b	9	10	11
Cd, Cr, Cu, Ni, Pb, Hg, Zn, As, K/ Quarterly	X	X	X	Х	Х	\mathbf{X}^4	X	X	X	Х	Х	X	Х	Х	X ⁷
CN/ Quarterly	X	X	Х	X	Х		X	X	Х	Х	Х	X	Х	Х	
Ca, Na, Mg, Mn, Fe/ Biweekly	X	X	Х	X	Х	\mathbf{X}^4	X	X	X	Х	Х	X	Х	X	X ⁷
TP, SRP, TDP/ Biweekly	Х	Х	Х	Х	X		X	X	X	Х	Х	Х	Х	Х	
BOD ₅ , TSS, TDS, Cl, SiO ₂ , SO ₄ , TOC, TOC-F, TIC, Turbidity/ Biweekly	X	X	Х	Х	Х	X^4	X	X	Х	Х	Х	Х	Х	Х	X^7
TKN, NH ₃ -N, NO ₃ , NO ₂ , Org-N/ Biweekly	X	Х	Х	Х	Х		X	X	Х	Х	Х	Х	Х	Х	
ALK-T/ Biweekly	X	X	Х	X	Х	\mathbf{X}^4	X	X	Х	Х	Х	X	Х	Х	X ⁷
Fecal Coliform/ Biweekly	X	Х	Х	X	Х		X	Х	Х	Х	3		Х	Х	

	APPENDIX C (Continued)														
2007 Tributary Sampling Program															
PARAMETER/ FREQUENCY	1	2a	2b	3 a	3b	3c	4	5	6	7	8a	8b	9	10	11
Chlorophyll-a											X	X			
In-situ: pH, Temperature, Salinity, Conductivity, Redox Potential, Dissolved Oxygen/	X	X	Х	X	Х	Х	Х	Х	Х	X	X	X	X	Х	X ⁷
Biweekly															
Equipment Blank 1 – Dunker-Churn															
(Churn A)															
BOD5, TSS, TOC, TDS, TOC-F, TIC, SO ₄ , NO ₃ , NO ₂ , TP, Cl, SiO ₂ , NH ₃ -N, TKN, Org-N, Na, Ca, Mg, Mn, Fe, SRP, TDP, ALK-T, Turbidity/															
Biweekly															
Equipment Blank 1 – Dunker-Churn															
(Churn A)															
BOD5, TSS, TOC, TDS, TOC-F, TIC, SO ₄ , NO ₃ , NO ₂ , TP, Cl, SiO ₂ , NH ₃ -N, TKN, Org-N, Na, Ca, Mg, Mn, Fe, As, Cd, Cr, Cu, Hg, K, Ni, Pb, Zn, SRP, TDP, CN, ALK-T, Turbidity/															
Quarterly															
Equipment Blank 2 – Churn															
(Churn B)															
BOD ₅ , TSS, TOC, TDS, TOC-F, TIC, SO ₄ , NO ₃ , NO ₂ , TP, Cl, SiO ₂ , NH ₃ -N, TKN, Org-N, Na, Ca, Mg, Mn, Fe, SRP, TDP, ALK-T, Turbidity/															
Biweekly															
Equipment Blank 2 – Churn															
(Churn B)															
BOD ₅ , TSS, TOC, TDS, TOC-F, TIC, SO ₄ , NO ₃ , NO ₂ , TP, Cl, SiO ₂ , NH ₃ -N, TKN, Org-N, Na, Ca, Mg, Mn, Fe, As, Cd, Cr, Cu, Hg, K, Ni, Pb, Zn, SRP, TDP, CN, ALK-T, Turbidity/															
Ouarterly	1														

<u>APPENDIX C (Continued)</u> 2007 Tributary Sampling Program

¹Tributary 5A flow will also be monitored quarterly (during the Extended Tributary sampling events, which includes the quarterly and biweekly parameters).

 2 Metro Effluent sampled biweekly for all parameters. If any flow is bypassed on tributary sampling date, this water is sampled for the same parameters as all other tributaries.

³ The Fecal Coliform sample will be collected at the surface (0m) for the Lake Outlet sampling site.

⁴ Includes only the parameters K, Ca, Na, Mg, Cl, SO₄.

⁵ Bloody Brook at Onondaga Lake Parkway will be sampled only during high flow events (four per year) for all the extended parameters.

⁶ Sawmill Creek at Onondaga Lake Recreational Trail will be sampled only during high flow events (four per year) for all the extended parameters.

⁷ Includes the parameters Cl, Ca, Na, Mg, K, SO₄, Fe, Mn, Alk-T, pH, Temperature, D.O.,

Redox, Salinity, Conductivity. Sampling to be conducted on a quarterly basis.

Note: A minimum of 5 tributary sampling events will be conducted for predetermined high flow conditions [defined as one standard deviation above the long-term monthly mean flow value based on the USGS gage height at Onondaga Creek (Spencer Street site)].

APPENDIX D 2007 Onondaga Lake Sampling Program Ambient Monitoring Program Onondaga County, New York

	METERS							
PARAMETER	0	3	6	9	12	15	18	FREQUENCY ¹
		UML ²			LV	VL^2		
Cd, Cr, Cu, Ni, Pb, Se, Zn, As, K	С	omposi	te		Co	mposite		Quarterly
Hg ³		Х					Х	April, August, October
								(post-turnover)
Ca, Na, Mg, Mn, Fe	C	omposi	te		Com	posite		Biweekly
Cl, SO ₄	С	omposi	te		Com	posite		Biweekly
TS, TSS, VSS, TVS, TDS, SiO ₂ , TOC, TOC-F, TIC	Х		Х		Х		Х	Biweekly
Turbidity	С	omposi	te					Biweekly
BOD ₅	С	omposi	te	Composite				Biweekly
TP ⁴ , SRP, TDP	Х	X	Х	X	Х	Х	X	Biweekly
NO ₃ , NO ₂	C	omposi	te	Composite				Biweekly
TKN, NH ₃ -N, Org-N, F-TKN	Х	X	Х	X	Х	Х	X	Biweekly
ALK-T	C	omposi	te	Composite				Biweekly
Fecal Coliform, E. Coli	Х							Biweekly
CHLOR-A ⁵ , PHAEO-A	С	omposi	ite					Biweekly
Sulfide ⁶					Х	Х	X	Biweekly
Temperature, pH, Salinity, Conductivity, Dissolved Oxygen, Oxidation-Reduction Potential	Meas	Measured every half-meter from 0- to 18-meter depth						Biweekly
Underwater Illumination profile, Secchi Disk Transparency			Reco	orded at e	each site			Biweekly
Phytoplankton ⁷	С	omposi	te					
Zooplankton ⁸	С	omposi	te		Х			
Equipment Blank 1 – Pump						Biweekly		
TS, TSS, VSS, TVS, TDS, SiO ₂ , TOC, TOC-F, TIC, TP, SRP, TDP, TKN, NH ₃ -N, Org-N, F-TKN								

APPENDIX D (Continued) 2007 Onondaga Lake Sampling Program								
Equipment Blank 2 – Dunker-Churn		Biweekly						
(Churn Blank)								
Ca, Na, Mg, Mn, Fe, Cl, SO ₄ , NO ₃ , BOD ₅ , NO ₂ , ALK-T, Turbidity								
Equipment Blank 2 – Dunker-Churn		Quarterly						
(Churn Blank)								
Cd, Cr, Cu, Ni, Pb, Se, Zn, As, K, Ca, Na, Mg, Mn, Fe, Cl, SO ₄ , NO ₃ , NO ₂ , ALK-T								

¹ Samples are taken at the South Deep Station, which is representative of the lake conditions.

Additional quarterly sampling is conducted at the North Deep Station (during Double Lake sampling events). ² Please note that "UML" (Upper Mixed Layer) and "LWL" (Lower Water Layer) composite samples collected during the sampling events will be made by mixing samples from each depth according to the following field protocol:

(a) Late fall, winter, and early spring (October 1 - May 31) when the lake waters are not strongly stratified.

- i. The default UML during this period of the year is 0, 3, 6m.
- ii. The default LWL during this period of the year is defined as 9, 12, 15 and 18m.

(b) Summer stratification period (June 1 – September 30)

- i. The UML composite shall always include samples collected at 0 and 3 m depths. Inclusion of water collected at 6 m in the composite shall be evaluated based on the temperature profiles measured during the sampling event.
- ii. The composite sample of the LWL will typically include water collected at depths of 12, 15 and 18 m

during this period. The inclusion of the 12 m depth in the composite of the lower waters should be reviewed during each sampling event. Because the 9m depth is consistently in the metalimnion during this period, water from this depth will not be included in either composite sample.

³ Hg - Special low-level Hg (total and methyl Hg analysis by Contract Laboratory) at the Lake South and North Deep stations. A duplicate sample will be collected at the 18m depth at the South and North Deep station during each sampling event. Also, a separate equipment rinseate blank will be collected for special low-level Hg analysis.
⁴ A "Special" TP 500 ml sample to be collected during the South Deep biweekly sampling events at 1m depth between June 1 - September 30, 2007.

⁵ Chlorophyll-*a* samples will be collected as UML and photic zone (2 x Secchi Disk Transparency, but above thermocline) composite. Duplicate Chlorophyll-*a* samples will be collected monthly at the Lake South Deep station (May – September 2007) for the photic zone samples.

⁶ Sampling of sulfides only if anoxic conditions are determined through the YSI profile (to be completed prior to sampling).

⁷Frequency of Phytoplankton samples will be:

South Deep station: biweekly from April - November and monthly January, February, March, December. ⁸Zooplankton will be collected as a net tow through the UML and as a 15 meter vertical net haul. Frequency of Zooplankton samples will be:

South Deep station: biweekly from April - November and monthly January, February, March, December. North Deep station: quarterly (during the Double lake sampling events).

APPENDIX E 2007 Onondaga Lake Winter Sampling Program Ambient Monitoring Program

	muoring	51108	şrum
Onondaga	County	New	York

	METERS							
PARAMETER	0	3	6	9	12	15	18	FREQUENCY ¹
Ca, Na, Mg, Mn, Fe, Hardness		Con	nposite ²		Com	posite ²		
Cl, SO ₄		Con	nposite		Con	posite		-
TS, TSS, VSS, TVS, TDS, SiO ₂ , TOC, TOC-F, TIC	X		X		X		X	
Turbidity		Compos	site					
BOD ₅		Compos	site		Con	posite		
TP, SRP, TDP	Х	X	X	X	X	Х	X	
TKN, NH ₃ -N, Org-N, F-TKN	X	X	X	X	X	Х	X	-
NO ₃ , NO ₂		Compos	site		Con	posite	·	-
ALK-T		Compos	site		Con		-	
CHLOR-A ³ , PHAEO-A		Compos	site					
Fecal Coliform, E. Coli	X							-
Sulfide ⁴					X	Х	X	
Temperature, pH, Salinity, Conductivity, Dissolved Oxygen, Oxidation-Reduction Potential	М	leasured	every ha	lf-meter f	from 0-to	18-meter o	depth	
Underwater Illumination profile, Secchi Disk Transparency			F	Recorded	at site			
Phytoplankton		Compos	site					
Zooplankton ⁵		Compos	site		X			
Equipment Blank 1 – Pump								
TS, TSS, VSS, TVS, TDS, SiO2, TOC, TOC-F, TIC, TP, SRP, TDP, TKN, NH3-N, F-TKN								
Equipment Blank 2 – Dunker- Churn (Churn Blank)								
Ca, Na, Mg, Mn, Fe, Cl, SO ₄ , BOD5, NO ₃ , NO ₂ , ALK-T, Turbidity								

<u>APPENDIX E (Continued)</u> 2007 Onondaga Lake Winter Sampling Program

- ¹Samples are taken at the South Deep Station, which is representative of the lake conditions. Sampling will be conducted at North Deep Station if sampling during ice cover.
- Frequency is once per month during January, February, and March (as weather allows).

²As the lake waters are not strongly stratified in the winter:

- i) The default UML during this period of the year is 0, 3, 6 m.
- ii) The default LWL during this period of the year is defined as 9, 12, 15 and 18 m.
- Composites are made by mixing samples from each depth.
- ³ Chlorophyll-*a* samples will be collected as an UML tube and photic zone (2 x Secchi Disk Transparency) composite.
- ⁴ Sampling of sulfides only if anoxic conditions are determined through the YSI profile (to be completed prior to sampling).
- ⁵ Zooplankton will be collected as a net tow through the UML and as a 15 meter vertical net haul when lake is ice free. When sampling over ice for a qualitative assessment, a special zooplankton sample will be collected using
- an 8 inch diameter net (with 80 um mesh through the UML and poured into a 1-liter container and preserved according to the Field Preservation Guide).

<u>APPENDIX F</u> 2007 Onondaga Lake Special Weekly Sampling Program

Ambient Monitoring Program Onondaga County, New York

PARAMETERS	FREQUENCY	LOCATIONS
Fecal Coliform E. Coli Turbidity Secchi Disk Transparency ² Temperature	Weekly sampling May – September.	Onondaga Lake (Near shore sites) ¹ (See Figure 1) GPS Coordinates: Site 1 – 43° 05.477' N 76° 13.650' W Site 2 – 43° 03.877' N 76° 11.043' W Site 3 – 43° 03.937' N 76° 10.931' W Site 4 – 43° 04.407' N 76° 10.768' W Site 5 – 43° 06.529' N 76° 13.598' W Site 6 – 43° 06.873' N 76° 14.156' W Site 7 – 43° 06.732' N 76° 14.713' W Site 8 – 43° 05.720' N 76° 12.225' W Site 9 – 43° 04.880' N 76° 12.620'W
Chlorophyll- <i>a</i> ² Fecal Coliforms E. Coli Turbidity Secchi Disk Transparency In-situ field data (measured every half-meter from 0- to 18-meter depth) : pH, Temperature, Salinity, Conductivity, Dissolved Oxygen, Oxidation- Reduction Potential	Weekly sampling May – September.	Onondaga Lake South Deep station –Site 10 43° 04.670' N 76° 11.880' W

¹The nearshore sampling stations are standardized to water depths of 4-5 feet of water. Samples will be collected from the water surface (<1m).

² Chlorophyll-*a* composite samples will be collected as Upper Mixed Layer (UML) and photic zone (2 x Secchi Disk Transparency), but above thermocline.

Near Shore Sampling Coordinates & Depths

Figure 1 Onondaga Lake Near Shore Sampling Locations

<u>APPENDIX G</u> 2007 Onondaga Lake Fall Turnover Sampling Program

Ambient Monitoring Program Onondaga County New York

		METERS						
PARAMETER	0	3	6	9	12	15	18	FREQUENCY
Cl, NO ₃ [*] , NO ₂ [*]	(Composi	te		Comp	oosite		
TDS, SiO ₂	Х		Х		X		Х	Weekly ¹
TP, SRP, TDP	(Composi	te		Comp	osite		(During Fall
NH ₃ -N [*] , TKN [*] , F-TKN	(Composi	te		Comp	Turnover)		
ALK-T	Х		Х		Х		Х	
CHLOR-A ²	(Composi	te					
Temperature, pH, Dissolved Oxygen, Specific Conductance, Salinity, Redox Potential	Measure	Measured every half-meter from 0- to 18-meter depth						
Secchi Disk Transparency								During each event.
Equipment Blank 1 - Pump TDS, SiO ₂ , ALK-T Equipment Blank 2 - Dunker-Churn (Churn Blank) - Cl, NO ₃ , NO ₂ , TP, SRP,								Weekly (during Fall Turnover) Weekly (during Fall Turnover)
TDP, NH3-N, TKN, F- TKN								

¹Samples are taken at the South Deep Station, which is representative of the lake conditions.

² Chlorophyll-*a* samples will be collected as both UML (upper mixed layer) and photic zone (2 x Secchi Disk Transparency) composites.

³ In addition, YSI field data will also be collected at the mouth of Onondaga Lake Tributaries (including Sawmill, Bloody Brook, East Flume, Tributary 5A, Ley Creek, Onondaga Creek, Harbor Brook, Ninemile Creek, Metro Outfall), North Deep station and Onondaga Lake Outlet once during turnover.

Samples will be collected for the parameters NO₃, NO₂, NH₃-N, TKN and F-TKN weekly during October 15 - November 15.

<u>APPENDIX H</u> 2007 River Sampling Program

Ambient Monitoring Program Onondaga County, New York

Buoy Location:Seneca River:Buoy # 316 (43° 07.249' N Latitude, 76° 14.938' W Longitude)Frequency:Monthly sampling event from July – September 2007

The following table summarizes the field data to be collected typically at 15-minute intervals over a 24-hour period at Buoy 316 by installing two (2) YSI data-loggers (one in the upper and one in the lower waters) during the monthly sampling events from July through September 2007.

FIELD DATA*	FREQUENCY/TIMING
pH, S.U.	Monthly (July – September)
Specific Conductance, mS/cm	Target low stream flows.
Temperature, Deg C	
Dissolved Oxygen, mg/l	
Salinity, ppt	
Oxidation-Reduction Potential, mV (ORP)	
Underwater Illumination Profile (μ mols ⁻¹ m ⁻²)	
Secchi Disk Transparency (m)	

<u>APPENDIX H (Continued)</u> 2007 River Sampling Program

The following table summarizes the parameters for analysis. One set of samples will be collected at 2 depths for Buoy 316 (1-meter below the water surface and 1-meter above the river sediments) during the 24-hour period, during each of the monthly sampling events from July – September 2007.

Analytical parameters							
PARAMETER	NO. OF SAMPLES PER EVENT (2 SAMPLES) ³	FREQUENCY/TIMING ⁴					
ТОС	2	Monthly (July – September)					
TDC	2	Target low stream flows.					
TKN	2						
NO ₂	2						
NH ₃	2						
F-TKN	2						
NO ₃	2						
Chlorophyll-a ¹	2						
SRP	2						
TDP	2						
ТР	2						
TSS	2						
Cl	2						
BOD ₅ ²	2						
Turbidity	2						
Equipment Blank 1 – Dunker-Churn		Monthly					
TOC, TDC, TKN, NO ₂ , NH ₃ , F-TKN, NO ₃ , SRP, TDP, TP, TSS, Cl, BOD ₅ , Turbidity							

<u>APPENDIX H (Continued)</u> 2007 River Sampling Program

¹Chlorophyll-*a* will be collected at Buoy 316 from the 2 depths (1-meter below the water surface and 1-meter above the river sediments) during each of the sampling events.

 2 BOD₅ will be field composited from the 2 depths for the buoy location (1-meter below the water surface and 1-meter above the river sediments for one composite sample for analysis) during each of the sampling events.

³ Field duplicates will be collected at Buoy 316 (1-meter below the water surface and 1-meter above the river sediments) during each of the monthly sampling events for each parameter.

⁴ In addition, special River samples will be collected one meter below the surface once per year during the River sampling event at Buoy 316 (Seneca River), Buoy 260 (Seneca River) and Buoy 182 (Oneida River) for the following parameters (using a standard analytical method with the lowest acceptable detection limits):

Metals: Ag, As, Cd, Cr, Cu, Fe, Hg, Pb, Ni, Se, Mo and Zn TKN, Phenols, T-Cyanide, Bis (2-Ethylhexyl) Phthalate, and Di-N-Octyl Phthalate

<u>APPENDIX I</u> 2007 Water Quality Monitoring Programs <u>Summary of Modifications</u>

Appendix A: Year 2007 Non-Event Sampling Schedule (April 2007 - March 2008)

As required by Appendix D of the Amended Consent Judgment, included is an annual sampling schedule for the 2007 non-event related sampling, specifying dates, locations, and parameters.

Appendix B: Year 2007 Event-Based Sampling Schedule

The monitoring program for event related sampling specifies the number of annual activities. In the event of a need to alter the schedule due to unforeseeable circumstances, NYSDEC and ASLF shall be notified *via fax only* as soon as practicable prior to the event.

Appendix C: Year 2007 Tributary Sampling Program

Modification:

No change.

Appendix D: Year 2007 Onondaga Lake Sampling Program

Modification:

• Footnote 7: Phytoplankton

Deleted North Deep station quarterly sampling (during the Double Lake sampling events), as there were no differences from the South Deep station sample (based on Dr. William Walker's statistical framework update).

Appendix E: Year 2007 Onondaga Lake Winter Sampling Program

Modification:

No change.

Appendix F: Year 2007 Onondaga Lake Special Weekly Sampling Program

Modification:

No change.

Appendix G: Year 2007 Onondaga Lake Fall Turnover Sampling Schedule

Modification:

No change.

Appendix H: Year 2007 River Monitoring Program

Modification:

No change.

<u>APPENDIX J</u> 2007 Onondaga Lake Fish Community Sampling Plan

Ambient Monitoring Program Onondaga County, New York

Component	Methodology/Gear	Sampling Objectives	Location and Number of Samples	Timing	Changes
Pelagic Larvae	Modified double oblique Miller high- speed trawl, with flow meter attached, collected during the day in the pelagic zone.	Determine species richness.	 4 double oblique tows in each basin (North and South) per event. Tows will sample water depths from the surface to 5.5 meters. Total No. of events =8 Total No. of samples =64 	-Daytime -Bi-weekly. -April (when water temps. are 7-8 °C) through end of July.	-No Change from previous year.
Juvenile Fish	50' x 4' x 1/4" bag seine swept into shore in the littoral zone.	Determine community structure and species richness.	 -5 strata with 3 sites in each strata and 1 sweep at each site. -No. of Sites = 15 -Total No. of events = 6 -Total No. of samples = 90 	-Daytime -Every 3 weeks. -July - October.	-No Change from previous year.
Nesting Fish	Lake wide nest survey.	Document spatial distribution and species composition	 -Entire perimeter of lake divided into 24 equal length sections. -Total No. of events = 1 -Total No. of samples = 24 	-Once in June when water temperature is between 15° and 20 °C.	-No Change from previous year.
Adult Fish- Littoral Zone	Boat mounted electrofisher in the littoral zone at night.	Determine community structure, species richness, CPUE, and relative abundance.	 -Entire perimeter of lake shocked in 24 contiguous transects. -Alternating all- fish/gamefish transects. -Total No. of events = 2 -Total No. of samples = 48 	-Night-time. -Twice per year; Spring and Fall. -Spring and Fall. -Water temp. between 15° and 21 °C.	-No Change from previous year.
Adult Fish- Profundal Zone	Experimental gill nets of standard NYSDEC dimensions.	Determine community structure, and species richness.	 -One net per strata. -Nets set on bottom, parallel to shore at a water depth of 4-5m for two hours. -Total No. of events = 2 -Total No. of samples = 10 	-During the day. -Twice per year, within one week of littoral electrofishing.	-No Change from previous year.
Angler Census	Angler diary program and bass tournament surveys.	Determine catch rates, species composition. Attitudes and opinions over the AMP.	 -Recruit diary participants at fish & game clubs and fishing organizations. -Tournaments will be surveyed at time of weigh- in. 	-Issued annually and collected at end of fishing season (fall). -Tournament schedule TBA	-No Change from previous year.

APPENDIX K 2007 Onondaga Lake Macrophyte Assessment Program

Onondaga County, New York

Component	Methodology/Gear	Sampling Objectives	Location and Number of Samples	Timing	Change
Onondaga Lake Aerial Photography	Program utilizes plane with belly mounted 9x9 camera. 60% forward overlap, 30% side overlap.	Determine annual percent of littoral zone with macrophytes.	-Three (3) flight lines full lake coverage.	-June or July when water clarity is approximately 3- meters on the secchi disk. -Early morning or early evening with low sun angle.	-No change from previous year.
Field Species Verification of Aerial Photography	Visual identification.	Determine species.	-Two (2) sites in each of the five (5) strata for a total of ten (10) sites.	-Within 1 week of the aerial photos.	-No change from previous year.
Macroalgae	At nine (9) near shore locations using a laser range finder to estimate distance from shore and visual percent cover estimate.	Document percent cover and annual proliferation of littoral zone macroalgae.	-Survey once per week at nine (9) near shore buoy locations.	-May through September.	- No change from previous year.
ATTACHMENT 1

QUALITY ASSURANCE PROGRAM PLAN FOR THE 2007 WATER QUALITY MONITORING PROGRAM

AMBIENT MONITORING PROGRAM

Prepared for the NYSDEC

by:

Onondaga County Department of Water Environment Protection

> July 1998 (Original) February 2003 (Revision) June 2003 (Revision) March 2004 (Revision) March 2005 (Revision) April 2006 (Revision) February 2007 (Revision)

QUALITY ASSURANCE PROGRAM PLAN

YEAR 2007 WATER QUALITY MONITORING PROGRAM (AMBIENT MONITORING PROGRAM) Onondaga County Syracuse, New York TABLE OF CONTENTS

I.	PR	OGRAM DESCRIPTION	1
II.		TECHNICAL DESIGN	3
	A.	INTRODUCTION	3
	B.	ONONDAGA LAKE	3
	C.	TRIBUTARIES	4
	D.	RIVER	4
III.		PROGRAM ORGANIZATION AND RESPONSIBILITY	6
	A.	RESPONSIBILITIES AND QUALIFICATIONS	6
		Mr. Joseph J. Mastriano, Program Manager	6
		Mr. Michael R. Gena, Laboratory Director	6
		Ms. Jeanne C. Powers, Sanitary Engineer III	7
		Ms. Janaki Suryadevara, Sanitary Engineer II	7
		Mr. David Snyder, Sanitary Engineer II	7
		Mr. Antonio D. Deskins, Sanitary Engineer I	7
		Onondaga Lake Technical Advisory Committee	7
	B.	SCHEDULE	9
	C.	DATA VALIDATION	11
	D.	DATA SUMMARIES	11
	E.	ANNUAL REPORT PREPARATION	11
IV.		FIELD SAMPLE COLLECTION & PRESERVATION	13
V.		FIELD SAMPLING PROCEDURES	16
	A.	ONONDAGA LAKE	16
	B.	ONONDAGA LAKE TRIBUTARIES	22
	C.	RIVER	23
VI.		QUALITY ASSURANCE/QUALITY CONTROL SAMPLES	
	A.	FIELD DUPLICATES	23
	B.	EQUIPMENT RINSEATE BLANKS	24
	C.	CONTAINER SAMPLES	24
VII	[.	SAMPLE CUSTODY	25
	A.	FIELD SAMPLE CUSTODY	25
	B.	LABORATORY SAMPLE CUSTODY	25

	C.	FINAL EVIDENCE FILES	26
VI	II.	FIELD EQUIPMENT CALIBRATION PROCEDURES/MAINTENANCE	27
	A.	YSI SONDES	27
	B.	SECCHI DISK	27
	C.	UNDERWATER ILLUMINATION	27
	D.	WILDCO BETA SAMPLE TUBES	28
	E.	SUBMERSIBLE PUMP	28
IX		ANALYTICAL PROCEDURES	29
111	Д	INTRODUCTION	 29
	л. п		2)
	В.	CHEMICALS AND REAGEN IS	29
		2 Respents	29
		2. Reagents 3. Standard Solutions/Titrants	30
		4 Bench or Shelf Reagents	30
	C	MICDODIOLOCV. CHEMICALS AND DEACENTS	20
	C.	I Pasteriological Modia	30
		2. Autoclaving	31
		2. Autociaving 3. Bacti Glassware	31
		4 Prenared Media Shelf Life	31
		5 Membrane Filter Sterility Blanks	32
		6 Negative and Positive Controls	32
	n	CALCULATIONS AND CHAPTS	32
	υ.	1 Reference Sample	33
		2 Determine the warning limits	35
		3 Construct a control chart	36
		4. Percent Recovery	36
		5. Surrogate Standard	37
		6. Duplicate Analysis	37
X.		LABORATORY CALIBRATION /EQUIPMENT MAINTENANCE PROCEDURES	38
	A.	LABORATORY EQUIPMENT	38
		1. Analytical Balance	38
		2. pH meter	38
		3. Conductivity meter and cell	38
		4. Dissolved Oxygen Meter	38
		5. Turbidimeters	38
		6. Thermometers	39
		7. Refrigerators	39
		8. BOD Incubators	39
		9. Bacteriological Incubators	39
		10. Ovens	39
		11. Autoclave	39
		12. Automated Ion Analyzer	40

	13. Atomic Absorption Spectrophotometer	40
	14. Inductively Coupled Plasma (ICP) Spectrophotometer	40
	15. TOC Analyzer	40
B.	LABORATORY QUALITY CONTROL DOCUMENTATION REQUIREMENTS	41
	1. Standard Curves	41
	2. Method Blank	41
	3. Instrument Blank	41
	4. Irip Blank - Special	41
	6. Sniked Recovery	42 42
	7. Duplicate Analysis	43
	8. External QA/QC	43
	9. Internal QA/QC	43
C.	LABORATORY QUALITY CONTROL REQUIRED - BY PARAMETER	44
XI.	PROGRAM ASSESSMENTS	49
XII.	DATA QUALITY ASSESSMENT	50
А.	PRECISION	50
C.	REPRESENTATIVENESS	50
D.	COMPARABILITY	51
E.	COMPLETENESS	51
F.	FIELD AUDIT	51
G.	EQUIPMENT RINSEATE BLANKS	51
XIII.	DATA REVIEW AND VALIDATION	52
XIV.	DOCUMENTATION	53
А.	FIELD AND LABORATORY DATA	53
В.	LABORATORY REPORTS	53
C.	PRELIMINARY DATA VALIDATION	53
D.	TREND ANALYSIS	53
Е.	ANNUAL TRIBUTARY LOADS	53
F.	ANNUAL REPORT	53
XV.	QAPP – SUMMARY OF REVISIONS	54
XVI.	ATTACHMENTS	55
АТ	TACHMENT A: Tributary Field Sampling Procedures - by sampling site	56
	1. Ninemile Creek Rt. 48 Bridge Sampling Procedures	57
	2. Onondaga Creek at Dorwin Ave. Sampling Procedures	58
	3. Unondaga Creek at Spencer St. Sampling Procedures	59
	4. Ononuaga Creek at Kinkpaurick St. Sampling Procedures	00 61
	6. Harbor Brook at Hiawatha Blvd. Sampling Procedure	62
	1 0	

7. Ley Creek at Park St. Sampling Procedure	63
8. Tributary 5A Sampling Procedures	64
9. East Flume Sampling Procedure	65
10. Metro Effluent Sampling Procedure	66
11. Lake Outlet Sampling Procedure	67
12. Metro Bypass Sampling Procedure	68
13. Bloody Brook at Onondaga Lake Parkway Sampling Procedure	69
14. Sawmill Creek at Onondaga Lake Recreational Path Sampling Procedure	70
15. Onondaga Creek Salt Spring (Spence-Patrick Spring Well Point) Sampling Procedure	71
ATTACHMENT B: Chain-Of-Custody Form (Example)	72
ATTACHMENT C: Analytical Methodologies	74
ATTACHMENT D: YSI 600/6600 Calibration Procedures	75
ATTACHMENT E: YSI 600/6600 Maintenance Procedures	82
ATTACHMENT F: YSI 600/6600 Operation Procedures	84

I. PROGRAM DESCRIPTION

Onondaga Lake is an urban lake located in Onondaga County, New York. The lake has several natural tributaries and receives overflow from combined sewers in the City of Syracuse, treated effluent from the Metropolitan Syracuse Wastewater Treatment Plant (Metro) as well as non-point runoff from a mix of urban, residential, and agricultural areas.

Onondaga Lake is located immediately northwest of the City of Syracuse in Onondaga County, New York, USA (43° 06' 54" N, 76° 14' 34" W). The outlet of Onondaga Lake flows into the Seneca River, which joins with the Oswego River which eventually flows into Lake Ontario. The Onondaga Lake drainage basin encompasses approximately 700 km² and with exception of 2 km² in Cortland County lies almost entirely in Onondaga County. The tributary drainage basins include six natural sub-basins: Ninemile Creek, Harbor Brook, Onondaga Creek, Ley Creek, Bloody Brook, and Sawmill Creek. Although much of the lake watershed is agricultural, the lake itself is surrounded by urban and suburban development.

Since 1968, the water quality of Onondaga Lake and its tributaries have been monitored to meet the objectives of assessing: trophic status, compliance with New York State ambient water quality standards and guidance values, external loading of pollutants to Onondaga Lake through its tributaries, and trends in water quality in response to major pollutant abatement activities at Metro and the CSOs.

The annual lake monitoring program was originally implemented to comply with a special federal grant condition for the major upgrade of the Metro facility completed in the early 1970s. The scope of the annual monitoring program has expanded over the years in response to the enhanced understanding of the complex interactions between pollutant inputs and lake response. In 1998, the monitoring program was modified to provide specific data and information needed to assess the effectiveness of another round of improvements to the wastewater collection and treatment system. The Year 2007 Onondaga Lake Ambient Monitoring Program (AMP) is designed to determine whether planned controls on point and nonpoint source pollution loading will be sufficient to bring the lake, the lake tributaries, and a segment of the Seneca River into compliance with state and federal standards.

Trophic status of the lake will be assessed by monitoring Secchi disk transparency, major nutrient concentrations, chlorophyll-*a*, phytoplankton abundance and species composition, zooplankton species composition and abundance, the fish community, hypolimnetic dissolved oxygen, and accumulation of reduced species.

Compliance of the lake and tributary waters with the New York State ambient water quality standards will be evaluated. The lake is Class B and Class C; tributaries are Classes B, C, or C (T). Numerical standards exist for dissolved oxygen, ammonia, nitrite, and nitrate nitrogen, bacteria, pH, dissolved solids, and a large number of other organic and inorganic parameters. Narrative standards are in effect for several water quality parameters of Class B and C waters (including Onondaga Lake and its tributaries)."

As detailed in Section 703.2 of the New York State Environmental Conservation Law, parameters regulated by a narrative standard include:

Taste-, color-, and toxic and other deleterious substances	AA, A, B, C, D, SA, SB, SC, I, SD, A-Special, GA, GSA, GSB	None in amounts that will adversely affect the taste, color or odor thereof, or impair the waters for their best usages.
Turbidity	AA, A, B, C, D, SA, SB, SC, I, SD	No increase that will cause a substantial visible contrast to natural conditions.
Suspended, colloidal and settleable solids	AA, A, B, C, D, SA, SB, SC, I, SD, A-Special	None from sewage, industrial wastes or other wastes that will cause deposition or impair the waters for their best usages.
Oil and floating substances	AA, A, B, C, D, SA, SB, SC, I, SD, A-Special	No residue attributable to sewage, industrial wastes or other wastes, nor visible oil film nor globules of grease.
Phosphorus and nitrogen	AA, A, B, C, D, SA, SB, SC, I, SD, A-Special	None in amounts that will result in growths of algae, weeds and slimes that will impair the waters for their best usages.
Thermal discharges	AA, A, B, C, D, SA, SB, SC, I, SD, A-Special	See Part 704 of the NYS ECL

External annual loadings (concentration and flow) to Onondaga Lake through its tributary streams of oxygen demanding materials, sediments, bacteria, metals, dissolved salts, plant nutrients are monitored. Monitoring is conducted throughout the year and the program is designed to capture high flow and storm events along with baseline conditions. These data are also used for general surveillance to evaluate compliance with the County's pretreatment program. The trends in Onondaga Lake and Tributary water quality over time and in response to major reductions in point source loadings will be assessed through statistical evaluations of the long-term data set developed for this system. An annual report summarizing the results of the current year's data acquisition program and the statistical analyses of trends in external loading and lake response is prepared each year. Data are archived in a database.

The annual Onondaga Lake Monitoring program was expanded in 1994 to include water quality sampling at key locations in the Seneca/Oneida/Oswego river system. The purpose of the County's river monitoring program is to define ambient water quality conditions in the River system, between Cross Lake and Three Rivers, determine compliance with the water quality standards, evaluate the assimilative capacity of the Seneca River, and identify the impacts of the Baldwinsville Seneca-Knolls WWTP, Wetzel Road WWTP, Oak Orchard WWTP and the Onondaga Lake Outlet on River water quality.

In January 1998, Onondaga County signed an Amended Consent Judgment (ACJ) committing to a phased 15-year program of upgrades and improvements to the County's wastewater collection and treatment system. The County's long-term monitoring program was evaluated and modified to ensure that the data collected would be adequate to evaluate the response of the lake, streams, and river to the planned improvements to the Combined Sewer Overflows (CSOs) and Metro. This process of evaluation and modification was a collaborative effort of Onondaga County, its technical advisors, New York State Department of Environmental Conservation (NYSDEC), the Environmental Protection Agency (EPA), and Atlantic States Legal Foundation (ASLF). Modifications were made to focus the monitoring program on a series of hypotheses related to the effectiveness of the County's improvements to the wastewater collection and treatment system. A revised monitoring program, known as the Ambient Monitoring Program (AMP) was initiated in August 1998.

The effectiveness of the improvements to the County's wastewater system can be measured in terms of (1) compliance with water quality standards and guidance values, and (2) restoration of a balanced ecological community of plants and animals. A significant change in the annual monitoring program was the greatly expanded focus on the biology of the aquatic system including the status of the fish community, macroinvertebrates, rooted aquatic plants, algae, and zooplankton, in addition to tracking the physical and chemical variables.

II. TECHNICAL DESIGN

The monitoring program described above discusses the full matrix of water quality issues and parameters of concern to Onondaga County.

A. INTRODUCTION

The Onondaga County Department of Water Environment Protection (OCDWEP) has monitored the water quality of Onondaga Lake and its tributaries since 1970.

Refer to Appendix A Year 2007 Water Quality Program-Ambient Monitoring Program (non-event sampling schedule).

Water samples for analysis will be collected and analyzed according to EPA requirements for Water Planning and Management (40 CFR 136, 1991 or latest version) and EPA 600/4-82-029. Sampling and analysis will be consistent with New York State's Environmental Laboratory Approval Program (ELAP). The OCDWEP Environmental Laboratory is certified by New York State (ELAP #10191) and the National Environmental Laboratory Accreditation Conference (NELAC).

B. ONONDAGA LAKE

Onondaga Lake will be sampled from April through November according to the calendar included in Appendix A Year 2007 Ambient Monitoring Program (non-event sampling schedule). The parameters to be sampled and their schedules are also detailed.

Samples will be collected from the locations identified as "South Deep" and "North Deep" stations. The exact sampling location will be at the mooring buoys deployed at the South and North Deep stations as listed below.

The coordinates of the monitoring stations are as follows:

South Deep:	43° 04.670' N	Latitude
	76° 11.880' W	Longitude
North Deep:	43° 05.930' N	Latitude
	76° 13.730' W	Longitude

Studies have shown that sampling from these basins will reflect the condition of the remainder of the lake.

In-situ data for pH, Dissolved Oxygen (DO), Temperature, Specific Conductance, and Oxidation-

Reduction Potential (ORP) will be collected at half-meter intervals throughout the water column using either a YSI 600 or a YSI 6600 in-situ monitoring sonde. Calibration and instrument calibration drift checks will be conducted before and after each sampling event.

Samples will be collected using a submersible pump and a Wildco Beta sampler, depending on the sample parameter. However, samples of bacteria will be collected in sterile containers. When pumping, sufficient time will be allowed in order to evacuate the pump lines of all previous samples. In addition, all sample containers will be rinsed with sample water, unless they are pre-preserved. Composite samples will be collected on a volumetric basis (i.e., the proportions of samples collected at the series of depths are composited equally using a Wildco Beta sampler). Compositing will be accomplished using a sample-splitting churn. Samples will be thoroughly mixed and poured-off from the churn. All sampling equipment used on Onondaga Lake is dedicated for this purpose only.

Other field data to be collected include Secchi disk transparency and light availability. Light availability data are collected at 20-cm intervals from the water surface to a depth at which light is 1% of surface illumination, as noted during the sampling event, using a LiCor datalogger.

In addition to the above, OCDWEP partially funds the gauging stations on Onondaga Lake and its tributaries in conjunction with the United States Geological Survey. Flow data are used to calculate loading rates.

C. TRIBUTARIES

Onondaga Lake tributaries are sampled throughout the year, according to the calendar included as Appendix A Year 2007 Ambient Monitoring Program (non-event sampling schedule). The parameters to be sampled and their schedules are detailed in Appendix C Year 2007 Ambient Monitoring Program (Tributary Sampling Program).

In-situ data for pH, Dissolved Oxygen, Temperature, Specific Conductance, and Oxidation-Reduction Potential will be collected using a YSI sonde. Calibration and calibration drift checks will be conducted before and after each sampling event.

Tributary samples will be collected using the depth-integrated sampling technique from each location, except for at the Allied East Flume, Sawmill Creek, Onondaga Lake Outlet, Harbor Brook at Hiawatha Boulevard, and Ley Creek monitoring sites. The Allied East Flume, Bloody Brook and Sawmill Creek samples are taken as described in Attachment A, sections 9, 13, and 14, respectively. A vertical Kemmerer Bottle sampler will be used at the Onondaga Lake Outlet, Harbor Brook at Hiawatha Boulevard, and Ley Creek monitoring sites. Samplers and sample containers are rinsed prior to dispensing sample water for analysis into the sample containers. Bacteria samples will be collected in sterile containers. All sampling equipment used on the tributaries is dedicated for this purpose. Stage gauge measurements will be taken to record the water surface elevation during each sampling event.

D. RIVER

River samples will be collected using grab techniques from Buoy 316. A Beta sampler will be utilized for sample collection. Samplers and sample containers are rinsed prior to dispensing sample water for analysis into the sample containers.

The station will be sampled for analytical parameters at 1-meter below the water surface and 1-meter above the channel bottom in order to evaluate density stratification effects on water quality.

Measurements taken during the sampling events will also include vertical profiles of the field parameters to define possible stratification. In-situ data for pH, Dissolved Oxygen, Temperature, Specific Conductance, and Oxidation-Reduction Potential will be collected at half-meter intervals throughout the water column using a YSI sonde. Calibration and calibration drift checks will be conducted before and after each sampling event. Samples will be collected for laboratory analysis in accordance with Appendix H of the Year 2007 Ambient Monitoring Program.

III. PROGRAM ORGANIZATION AND RESPONSIBILITY

The responsibilities and qualifications of the key Program Team members are discussed below. Members of this Team have the experience and capabilities to conduct all aspects of the program and to effectively interact and communicate with NYSDEC staff.

A. RESPONSIBILITIES AND QUALIFICATIONS

Mr. Joseph J. Mastriano, Program Manager

Joseph J. Mastriano will serve as Program Manager and will be responsible for the management of program activities. Mr. Mastriano will be responsible for monitoring program budgetary control, coordinating field activities and lab analysis, coordinating and overseeing the work of program sub-contractors including report preparation.

Mr. Mastriano has over 28 years experience in the field of water and wastewater resources and has been intimately involved in several projects related to Onondaga Lake. Specifically, Mr. Mastriano has:

- Conducted field monitoring of Onondaga Lake and its tributaries from May 1978 until Spring 1985.
- Served as the Department's primary contact responsible for coordinating departmental efforts associated with Dr. William Walker's compilation and validation of the 24-year database.
- Designed and administered special studies to determine the effects of atypical conditions on receiving water. Examples of these efforts include: monitoring conducted in response to failures in the collection/treatment system infrastructure, and monitoring the effect of wet weather conditions on the lake and its tributaries.

Other examples of Mr. Mastriano's work experience include:

- Administration of the County's industrial pretreatment and other source control programs including: review and approval of treatment system design, permitting, monitoring, enforcement, and cost recovery activities.
- Serves as the County's primary on-call contact for directing the response to uncontrolled discharge of
 materials to the sanitary sewer system and those sections of lake tributaries maintained by the County.
- Administration of special studies conducted by the County including projects such as tracer/dye studies of lake tributaries, the collection system, and treatment plant unit processes; and studies to evaluate the source, effect and fate of materials entering the wastewater treatment system.

Mr. Michael R. Gena, Laboratory Director

Mr. Michael Gena will be responsible for the general administration of the analytical elements of the program. He will assist other members of the team on analytical issues and ensure compliance with proper analytical protocol. He will also ensure dissemination of analytical results in a timely and efficient manner to facilitate completion of schedule work tasks. Mr. Gena's administrative and analytical experiences span a period of over 35 years. Twenty-nine years of this experience has been direct

involvement with the Onondaga Lake and Tributary Monitoring Program. Representative examples of Mr. Gena's experience include:

- Responsibility for the collection and analyses of surface and potable waters for the New York State Department Of Health Central New York Regional Laboratory.
- Responsibility for analyses of surface waters, wastewaters, and solid/hazardous wastes utilized in a variety of programs conducted by the Department of Water Environment Protection.
- Laboratory Director for Water Environment Protection responsible for administration of analytical service and compliance with mandated QA/QC. Responsibilities include operation of lab facility and general supervision of 23 analytical chemists and technical personnel.

Ms. Jeanne C. Powers, Sanitary Engineer III

Ms. Powers has worked as a Sanitary Engineer for the County since 1987. She has supervised field technician and engineering staff in several process control engineering related projects. Ms. Powers will be responsible for overall monitoring program supervision, budgetary control, coordinating and overseeing the work of program sub-contractors. In addition, she has administered day-to-day activities of the County's annual Onondaga Lake monitoring program from 1995 to the present, including contract administration.

Ms. Janaki Suryadevara, Sanitary Engineer II

Ms. Suryadevara has worked as a Sanitary Engineer for the County since 1993. Ms. Suryadevara coordinates the County's water quality programs and will be responsible for scheduling the Onondaga Lake, tributary and river sampling events and developing QA/QC procedures for sample collection.

Ms. Suryadevara will be responsible for coordinating the review and preparation of the Annual Lake Ambient Monitoring Program Report, oversight and design of the field program, coordinating field and laboratory efforts, and for supervision of the technician staff performing field sampling.

Mr. David Snyder, P.E., Sanitary Engineer II

Mr. Snyder coordinates the County's biological monitoring programs, which include monitoring of the fishery, macroinvertebrates, macrophytes, and zebra mussels on Onondaga Lake, its tributary streams and the Three Rivers system. He is also responsible for biological program design and implementation.

Mr. Antonio D. Deskins, Sanitary Engineer I

Mr. Deskins will be responsible for the initial data review, compilation and maintenance of the database. Mr. Deskins also participates in Lake/Tributary/River sampling events and performs field audits as necessary. Mr. Deskins' computer skills are utilized in evaluating and presenting AMP field/analytical data and in generation of the Annual Lake Ambient Monitoring Program Report.

Mr. Deskins will also utilize his data-processing experience in order to maintain the AMP databases and produce the tabular and graphical summaries, which are necessary to analyze trends and tributary loading computations.

Onondaga Lake Technical Advisory Committee (OLTAC):

In addition to the team referenced above, the County will utilize a Technical Advisory Group composed of experts in several disciplines to discuss results and implications of the annual program. Current members, their areas of technical expertise, affiliation, and addresses are as follows:

- Dr. Raymond Canale Water Quality Modeling EnginComp Software, Inc. 710 S.W. Monitou Trail Lake Leelanau, MI 49653
- Dr. Charles T. Driscoll Aquatic Chemistry Department of Civil and Environmental Engineering 220 Hinds Hall Syracuse University Syracuse, NY 13244
- Dr. James Hassett Engineering Hydrology; Water Pollution Engineering; Water Quality Modeling SUNY College of Environmental Science and Forestry (ESF) 122 Bray Hall Syracuse, NY 13210
- Dr. Edward L. Mills Aquatic Food Web; Zebra Mussel Dynamics Cornell University Biological Field Station 900 Shackelton Point Road Bridgeport, N.Y. 13030-9747
- Dr. Elizabeth Moran Limnology EcoLogic, LLC. Atwell Mill Annex, Suite S-2 132 ¹/₂ Albany Street Cazenovia, N.Y. 13035
- Dr. Lars Rudstam Fisheries Cornell University Biological Field Station 900 Shackelton Point Road Bridgeport, N.Y. 13030-9747
- Dr. Kenton Stewart Physical Limnology University of Buffalo 199 Crown Royal Drive Williamsville, N.Y. 14221
- Dr. William Walker, Jr. Limnological and Statistical Modeling 1127 Lowell Road Concord, MA 01742

B. SAMPLING SCHEDULE

DATE /DAY	PROGRAM	EVENT APP	ENDIX
April 2007			
April 3/TuesdayTribut	ary	Quarterly Extended	С
April 10/Tuesday	Onondaga Lake	Double Lake (South & North Deep)	D
April 17/Tuesday	Tributary	Biweekly	С
April 24/Tuesday	Onondaga Lake	Lake South Deep	D
May 2007	-	-	
May 1/Tuesday	Tributary	Biweekly	С
May 8/Tuesday	Onondaga Lake	Lake South Deep	D & F
		(w/Lake Special Weekly)	
May 14/Monday	Onondaga Lake	Lake Special Weekly	F
May 15/Tuesday	Tributary	Biweekly	С
May 22/Tuesday	Onondaga Lake	Lake South Deep	
		(w/Lake Special Weekly)	D & F
May 29/Tuesday	Onondaga Lake	Lake Special Weekly	F
May 30/Wednesday	Tributary	Biweekly	С
June 2007			
June 5/Tuesday	Onondaga Lake	Lake South Deep	D & F
		(w/Lake Special Weekly)	
June 11/Monday	Onondaga Lake	Lake Special Weekly	F
June 12/Tuesday	Tributary	Quarterly Extended	С
June 19/Tuesday	Onondaga Lake	Double Lake (South & North Deep)	D & F
	-	(w/Lake Special Weekly)	
June 25/Monday	Onondaga Lake	Lake Special Weekly	F
June 26/Tuesday	Tributary	Biweekly	С
July 2007			
July 3/Tuesday	Onondaga Lake	Lake South Deep	D & F
		(w/Lake Special Weekly)	
July 9/Monday	Onondaga Lake	Lake Special Weekly	F
July 10/Tuesday	Tributary	Biweekly	С
July 12/Thursday	River*	Monthly	Η
July 17/Tuesday	Onondaga Lake	Lake South Deep	D & F
		(w/Lake Special Weekly)	
July 23/Monday	Onondaga Lake	Lake Special Weekly	F
July 24/Tuesday	Tributary	Biweekly	С
July 31/Tuesday	Onondaga Lake	Lake South Deep	D & F
		(w/Lake Special Weekly)	
August 2007			
August 2/Thursday	River*	Monthly	Η
August 6/Monday	Onondaga Lake	Lake Special Weekly	F
August 7/Tuesday	Tributary	Biweekly	С
August 14/Tuesday	Onondaga Lake	Lake South Deep	D & F
		w/Lake Special Weekly	
August 20/Monday	Onondaga Lake	Lake Special Weekly	F
August 22/Tuesday	Tributary	Biweekly	С

2007 Non-Event Water Quality Sampling Schedule (April 2007 - March 2008)

DATE /DAY	PROGRAM	EVENT AP	PENDIX		
August 28/Tuesday	Onondaga Lake	Lake South Deep	D & F		
		(w/Lake Special Weekly)			
September 2007					
September 4/Tuesday	Onondaga Lake	Lake Special Weekly	F		
September 5/Wednesda	yTributary	Biweekly	С		
September 11/Tuesday	Onondaga Lake	Lake South Deep (w/Lake Special Weekly)	D & F		
September 13/Thursday	River*	Monthly	Н		
September 17/Monday	Onondaga Lake	Lake Special Weekly	F		
September 18/Tuesday	Tributary	Quarterly Extended	С		
September 25/Tuesday	Onondaga Lake	Double Lake (South & North Deep) w/Lake Special Weekly	D & F		
October 2007		1			
October 2/Tuesday	Tributary	Biweekly	С		
October 9/Tuesday	Onondaga Lake	Lake South Deep	D		
October 16/Tuesday	Tributary	Biweekly	С		
October 23/Tuesday	Onondaga Lake	Lake South Deep	D		
October 30/Tuesday	Tributary	Biweekly	С		
November 2007					
November 7/Wednesday	yOnondaga Lake	Lake South Deep	E		
November 13/Tuesday	Tributary	Quarterly Extended	С		
November 20/Tuesday	Onondaga Lake	Double Lake (South & North Deep)	D		
November 27/Tuesday	Tributary	Biweekly	С		
December 2007					
December 4/Tuesday	Onondaga Lake	Lake South Deep	D		
December 11/Tuesday	Tributary	Biweekly	С		
December 26/Wednesda	ayTributary	Biweekly	С		
January 2008					
January 2/Wednesday	Onondaga Lake	Winter**	E		
January 8/Tuesday	Tributary	Biweekly	С		
January 22/Tuesday	Tributary	Biweekly	С		
February 2008					
February 5/Tuesday	Tributary	Biweekly	С		
February 12/Tuesday	Onondaga Lake	Winter**	E		
February 20/Wednesday	yTributary	Biweekly	С		
March 2008					
March 4/Tuesday	Tributary	Biweekly	C		
March 11/Tuesday	Onondaga Lake	Winter**	E		
March 18/Tuesday	Tributary	Biweekly	С		

2007 Non-Event Water Quality (Continued) Sampling Schedule (April 2007 - March 2008)

* River sampling events to target low flows (at or less than 500 cfs at Baldwinsville). Sampling event dates may be altered.

** Lake Winter dates are tentative and will depend on weather conditions/extent of ice cover on lake.

C. DATA VALIDATION

- 1. Results of laboratory analyses are submitted to the program team members Janaki Suryadevara and Antonio Deskins within four weeks of collection.
- 2. Interim product: monthly data summaries (paper and diskette) will be compiled with codes flagging any limitations to data usability identified during the data validation process. Data validation will occur within four weeks of receipt of laboratory data.

D. DATA SUMMARIES

Data summaries: within three months of receipt of a complete set of validated data, a data summary will be compiled.

- 1. Calculate means, medians and averages of lake data.
- 2. Compare measured lake concentration to ambient water quality standards.
- 3. Calculate means, medians of concentrations of tributary water quality data.
- 4. Compare measured tributary concentration to compliance with ambient water quality standards.

E. ANNUAL REPORT PREPARATION

The "draft" report will be compiled within five months of receipt of complete set of validated data.

Annual Results -

- 1. Tables of Year 2007 results (concentrations and loads in lake and tributaries).
- 2. Statistical comparisons of Year 2007 results to the long-term data set.

Trend Analysis -

3. The trend analysis for the tributary and lake data, which is an important step in tracking progress towards lake restoration, using the most recent ten years of data, will be completed. The standard methodology developed by Dr. William Walker, Jr. will be used to apply the seasonal Kendall test to the lake datasets.

Compliance -

4. The report will include a section on the water quality conditions and compliance with the ambient water quality standards for the water body segment measured in the tributaries, Onondaga Lake, and the Seneca River. The report will include a summary analysis of the Metro discharge with the SPDES permit.

Loading -

5. External loading of materials to the lake will be calculated once USGS discharge records are received. In mid-2004, Dr. William Walker, Jr. refined his program used to estimate loading to Onondaga Lake. The improved estimation technique, called "Method 5", was developed in conjunction with the compilation of the OCDWEP long-term integrated water quality database and supporting software. The new technique was developed to support estimation of daily loads, to support development of monthly and seasonal lake mass balances, and to improve the accuracy and precision of the annual load estimates. Method 5 differs from AUTOFLUX Method 2 in several ways. Data are stratified by flow regime (similar to AUTOFLUX Method 2) and are also stratified by season using a multiple regression technique. Conditions during the unmonitored period are projected using a residual interpolation method that includes a flow derivative term.

Lower Trophic Levels -

- 6. Phytoplankton identification and enumeration will be completed and key findings of the lower trophic levels analysis will be evaluated and included as part of the integrated assessment of water quality conditions and ecosystem response.
- 7. Zooplankton density, species composition, size, and biomass will be determined and evaluated.

IV. FIELD SAMPLE COLLECTION & PRESERVATION

- A. Field sampling techniques are consistent with those described in the following U.S. Government publications:
 - 1. EPA 600/4-82-029 (September 1982)
 - 2. 40 CFR 136 (March 1991)
 - 3. EPA 821-R-95-034 (Method 1669: Sampling Ambient Water for Trace Metals at EPA Water Criteria Levels).
- B. Field QC consists of replicates and equipment rinsate blanks as specified in ELAP protocol.
- C. Sample preservation requirements:

Due to the variety of possible sample types, only generalizations can be made. Preservatives are added in compliance with the analytical protocols (reference Table 2, Attachment C – Analytical Methodologies). Analysis begins as soon as possible. A complete chain-of-custody record is maintained on each sample to provide a history of sample handling from collection to analysis.

Table 1 indicates the criteria for sample collection and preservation. All samples are aqueous.

TABLE 1 - SAMPLE COLLECTION AND PRESERVATION				
ANALYTE	VOLUME	CONTAINER	PRESERVATION	MAXIMUM HOLDING TIME
Biological				
Coli, Fecal	125ml	Р	Cool 4º C	6 Hrs.
E. Coli	125ml	Р	Cool 4° C	6 Hrs.
Chlorophyll a	2000ml	Р	Cool 4 ° C	
Phaeophytin a	2000ml	Р	Cool 4 ° C	
Phytoplankton	500ml	Р	Lugol's solution, Cool 4 ° C	
Zooplankton	1000ml	Р	Ethanol (70% by Volume), Cool 4 ° C	
Inorganic Tests				
Biochemical				
Oxygen Demand	1/2 Gallon	Р	Cool 4 ° C	48 Hrs.
Cyanide, Total	1000ml	Р	Cool 4 $^{\circ}$ C, NaOH to pH > 12,	14 Days
			0.6g ascorbic acid	
Kjeldahl and				
Organic Nitrogen	1000ml	Р	Cool 4 ° C, H_2SO_4 to pH < 2	28 Days
Total Phosphorus	1000ml	Р	Cool 4 ° C, H_2SO_4 to pH < 2	28 Days
Soluble Reactive Phosphorus	125ml	Р	Cool 4 ° C	24 Hrs.
Total Dissolved	125ml	Р	Cool 4 ° C. H ₂ SO ₄ to	24 Hrs.
Phosphorus			pH < 2	
All Metals				
Arsenic	1000ml	Р	HNO ₃ to pH<2	6 Months
Cadmium	1000ml	Р	HNO ₃ to pH<2	6 Months
Calcium	1000ml	Р	HNO ₃ to pH<2	6 Months
Chromium (GFA)	1000ml	Р	HNO ₃ to pH<2	6 Months
Copper	1000ml	Р	HNO ₃ to pH<2	6 Months
Iron	1000ml	Р	HNO ₃ to pH<2	6 Months
Lead (GFA)	1000ml	Р	HNO ₃ to pH<2	6 Months
Magnesium	1000ml	Р	HNO ₃ to pH<2	6 Months
Manganese	1000ml	Р	HNO ₃ to pH<2	6 Months
Nickel	1000ml	Р	HNO ₃ to pH<2	6 Months
Potassium	1000ml	Р	HNO ₃ to pH<2	6 Months
Sodium	1000ml	Р	HNO ₃ to pH<2	6 Months
Selenium	1000ml	Р	HNO ₃ to pH<2	6 Months

TABLE 1 - SAMPLE COLLECTION AND PRESERVATION				
ANALYTE	VOLUME	CONTAINER	PRESERVATION	MAXIMUM
				HOLDING TIME
Zinc	1000ml	Р	HNO ₃ to pH<2	6 Months
Mercury	1000ml	Р	HNO ₃ to pH<2	28 Days
Organic Carbon, Total	1/2 Gallon	Р	Analyze within 24 hours or Cool 4 $^{\circ}$ C H ₃ PO ₄ to pH < 2	28 Days
Organic Carbon, Filtered Total	1/2 Gallon	Р	Analyze within 24 hours or Cool 4 $^{\circ}$ C H ₃ PO ₄ to pH < 2	28 Days
Inorganic Carbon, Total	1/2 Gallon	Р	Cool 4 °C	48 Hours
Phenols	1000ml	G	Cool 4 °C, H_2SO_4 to pH < 2	28 Days
Solids, Total	1/2 Gallon	Р	Cool 4 °C	7 Days
Solids, Total Suspended	1/2 Gallon	Р	Cool 4 °C	7 Days
Solids, Total Volatile	1/2 Gallon	Р	Cool 4 °C	7 Days
Solids, Total Suspended	1/2 Gallon	Р	Cool 4 °C	7 Days
Volatile	1/2 Gallon	Р	Cool 4 °C	7 Days
Solids, Total Dissolved	1/2 Gallon	Р	Cool 4 °C	7 Days
Silica	1/2 Gallon	Р	Cool 4 °C	28 Days
Sulfate	1/2 Gallon	Р	Cool 4 °C	28 Days
Sulfide	300ml	G	Cool 4 $^{\circ}$ C, add zinc acetate plus sodium hydroxide to pH > 9	7 Days
Specials				
T-Alkalinity	500ml	Р	Cool 4 °C (no air bubbles present)	14 Days

All samples are aqueous. Containers: P = Plastic; G = Glass

V. FIELD SAMPLING PROCEDURES

A. ONONDAGA LAKE

1. Metals

- i. Samples are collected as grabs and composited volumetrically.
- ii. The Wildco Beta sampler is used for sample collection. The sampler is rinsed in lake water prior to use in order to ensure cleanliness. Samples are mixed in a churn, which has also been rinsed in lake water. The sample bottle is rinsed with the composite sample prior to pouring-off from the churn into the one-liter plastic bottle, and filled to the shoulder.
- iii. Parameters to be analyzed biweekly include:

Ca, Na, Mg, Mn, Fe

iv. Parameters to be analyzed quarterly include:

Cd, Cr, Cu, Ni, Pb, Se, Zn, As, K

- v. Quarterly metals samples will be collected using modified trace metals sampling techniques for sample collection. This sampling methodology is described in EPA Method 1669 (Sampling Ambient Water for Trace Metals at EPA Water Quality Criteria). The sample crew incorporates as much of this procedure as possible given the field conditions during the sampling event.
- vi. All samples are preserved by adding Nitric Acid to pH < 2, and cooling to 4°C.

2. Mercury

- Special samples for Total and Methyl Mercury will be collected at 3m and 18m depths in 500-ml Teflon bottles using the "clean hands-dirty hands" technique for sample collection. The Teflon[®] Dunker used shall be pre-cleaned and stored in accordance with the procedures contained in the OCDWEP SOP titled "Onondaga Lake Freshwater Sampling Preparation", document number 00077. Use of the Teflon[®] Dunker will be in accordance with the procedures contained in the OCDWEP SOP titled "Tributary Sampling Procedures", document number 00082. The dirty hands sampling technician will be responsible for handling the Teflon[®] Dunker and pouring the sample. The clean hands sampling technician shall only touch the sample container and cap.
- ii. A separate equipment rinseate blank for the Teflon Dunker will be collected for special low-level mercury analysis.
- iii. A field blank will also be collected at the sampling site, prior to sample collection. This will consist of reagent water, supplied by the contract

laboratory, processed through the sampling device.

iv. The analysis of samples for the determination of Total Mercury will be achieved by Cold Vapor Atomic Fluorescence (CVAFS) Spectrometry. The methodology is described by Fitzgerald and Gill (1979), Bloom and Crecelius (1983), Gill and Fitzgerald (1985); Bloom and Fitzgerald (1988), Method 1631 (USEPA, 1995).

3. Conventionals

- i. "Conventional" discrete samples are collected at 0m, 6m, 12m, and 18m depths using a submersible pump.
- ii. The pump is allowed to flow freely for a minimum of two minutes prior to filling sample bottles in order to evacuate the hoses of all previous samples. Sample bottles are also rinsed with lake water collected from the appropriate depth prior to filling.
- iii. One gallon plastic or gallon sample bottles are filled to the shoulder and then cooled to 4°C (no further preservation is required).
- iv. "Conventional" parameters include:

TS, TSS, TDS, VSS, TVS, SiO₂, TOC, TOC-F, TIC

- v. A second "conventional" composite sample for both the upper mixed layer (UML) and the lower water layer (LWL) is collected as grabs and composited volumetrically. (See Page 22 Composite Sample collection).
- vi. The Wildco Beta sampler is used for sample collection. The sampler is rinsed in lake water prior to use in order to ensure cleanliness. Samples are mixed in a churn, which has also been rinsed in lake water. The sample bottle is rinsed with the composite sample prior to pouring-off from the churn into the half-gallon plastic sample bottles filled to the shoulder and then cooled to 4°C (no further preservation is required).
- vii. Composite Parameters include:

BOD₅, NO₂, NO₃, Cl, SO₄, Turbidity (UML only).

4. Soluble Reactive Phosphorus (SRP)

- i. SRP samples are collected at 0m, 3m, 6m, 9m, 12m, 15m, 18m depths using a submersible pump.
- ii. The pump is allowed to flow freely for a minimum of two minutes prior to filling sample bottles in order to evacuate the hoses of all previous samples. Sample bottles are also rinsed with lake water at the appropriate depth prior to filling.
- iii. The sample will be filtered on site.
- iv. Collect sample in a new disposable container.

- v. Place a previously washed 0.45-micron filter into filter apparatus.
- vi. Filter sample into the SRP container (250-ml plastic disposable) leaving a small airspace.
- vii. Discard filter and rinse apparatus.

NOTE: When sample turbidity prevents using one filter to fill container; remove clogged filter, replace with another washed filter and continue filtration. Under extreme conditions of algal density (i.e., when filter clogs yielding less than 20 ml filtrate) sample may be pre-filtered using a washed glass-microfiber filter, and filtered into a clean container before final filtration with a 0.45 micron filter.

viii. The 250-ml plastic disposable sample bottles are then cooled to 4°C (no further preservation is required).

5. Total Dissolved Phosphorus (TDP)

- i. TDP samples are collected at 0m, 3m, 6m, 9m, 12m, 15m, 18m depths using a submersible pump.
- ii. The pump is allowed to flow freely for a minimum of two minutes prior to filling sample bottles in order to evacuate the hoses of all previous samples. Sample bottles are also rinsed with lake water at the appropriate depth prior to filling.
- iii. The sample will be filtered on site.
- iv. Collect sample in new disposable container.
- v. Place a previously washed 0.45-micron filter into filter apparatus.
- vi. Filter sample into the TDP container (250-ml plastic disposable) leaving a small airspace.
- vii. Discard filter and rinse apparatus.

NOTE: When sample turbidity prevents using one filter to fill container; remove clogged filter, replace with another washed filter and continue filtration. Under extreme conditions of algal density (i.e., when filter clogs yielding less than 20 ml filtrate), sample may be pre-filtered using a washed glass-microfiber filter, and filtered into a clean container before final filtration with a 0.45 micron filter.

viii. Preservation: Adjust pH < 2 with H_2SO_4 .

ix. The 250-ml plastic disposable sample bottles are then cooled to 4°C.

6. Chlorophyll-*a*

i. Chlorophyll-*a* samples are collected as depth-integrated tube samples through the UML of the water column and photic zone (2 x Secchi depth,) composites. A 3/4" tygon tubing is used as the sample collection device.

ii. Samples are analyzed for chlorophyll-*a* and phaeophytin-*a* content.

Equipment Requirements:	3/4" Tygon Tube compositing apparatus Chlorophyll Bottles YSI Unit Secchi disc
Bottle Requirements:	(2) 2 liter Amber Bottles

iii. Record 0.5 meter depth readings until the UML are determined (Step 1). Record a Secchi Disc Reading (Step 2). Lower the tube sampler to the determined UML depth (Step 3). Place a stopper in the end of the tube (Step 4). Rinse the sample bottle with the sample water and pour out (Step 5). Repeat Steps 3 and 4 pull the tube from the water and pour the entire tube contents into the dedicated carboy. Repeat tube composites until sufficient volume is collected. Use only a full tube composite. Thoroughly mix sample prior to pouring off into container.

Note: The UML composite depth shall be determined by the temperature profile. Should no distinct thermocline be present, 0, 3, 6 meters in depth is the UML default. Collect a composite sample down through the determined UML layer.

7. Net Haul

i. A net haul sample is obtained for zooplankton analysis.

Equipment Requirements:	0.5 Meter Wildco Beta Plankton Net with 80 um
	mesh 80 um sieve and Mechanical flowmeter
	(RIGO Type 5571-A)

Bottle Requirements:	(2) 1000-ml bottles
	(4) 500 ml containers of 95% Ethanol/Alka-Seltzer

Collect 2 separate samples:	Sample $1 = 0-15$ Meters
	Sample $2 = UML$

ii. Record the flowmeter dials, and place the net into the water to allow the sample bucket to fill with water. Allow the net to sink to a depth of 15 meters. Draw the net to the surface at a rate of 0.5 meter per second or less and record the final flowmeter dials. Carefully wash all the residual sample clinging to the net into the quick disconnect bucket. Filter as much water as possible. Pour the entire sample into the 80 um sieve and filter further until you have a slurry of sample. Pour the entire sample into the 1000-ml plastic jar and rinse any residual into the

jar with wash bottle. Place a quarter tablet of Alka-Seltzer into the jar and wait for zooplankton movement to stop. Add 70% by volume of 95% reagent grade non-denatured ethanol. (More ethanol is better.) Example: 150-ml sample requires 350-ml ethanol. Repeat the procedure for the sample to be collected at the UML depth. Record the UML depth and flowmeter reading on

the chain of custody form.

An "efficiency" reading will be recorded two times per year. This will entail performing a vertical tow with a netless ring and flowmeter at a known depth (Note: a netless ring will be kept in the boat at all times). This will also ensure that the depth being sampled is accurately being sampled by the net tow. Extreme caution should be used for samples collected during conditions of strong winds and high current, to minimize the error in the flowmeter readings and to prevent the net from floating to the surface.

Refer to the flowmeter Standard Operating Procedure (SOP) for flowmeter operation and calibration checks.

Note: The UML composite depth shall be determined by the temperature profile. Should no distinct thermocline be present, use 0, 3, and 6 meters in depth as the UML default.

8. Phytoplankton

i. Phytoplankton samples are obtained by OCDWEP for analysis.

Equipment Requirements:	(1) 500 ml BottleDedicated Carboy3/4" Tygon TubeSecchi DiskYSI Unit
Sampling Requirements:	UML Composite

- ii. Record 0.5-meter temperature readings with the YSI unit until the UML is determined. Record a Secchi Disk Reading. The UML composite sample is collected using the tube composite sampler.
- iii. Preserve the samples with enough Lugols Solution to turn the sample iodine color (maroon in Color), approximately 5 to 7 mls. per 100-mls of sample. Note: The UML composite depth shall be determined by the temperature profile. Should no distinct thermocline profile be present, use 0-6 meters in depth as the UML default.

9. Sulfide

- i. Samples for analysis of sulfide ion content are collected from 12m, 15m, 18m depths only when anoxic conditions are present at these depths. The Wildco Beta sampler is used in order to ensure minimum mixing and air entrainment into the sample.
- ii. Samples are poured from the Wildco Beta sampler into a rinsed Boston round clear glass jar (8-oz capacity) with a conical insert screw closure and low-density polyethylene poly-seal liner. Samples are poured down the side of the bottle to minimize turbulence. The bottle is filled to the top and then stopped, being careful not to enclose any air bubbles.

iii. Preservation: 2 ml of Zn acetate is added to the bottle prior to the addition of sample. After sample addition, pH is adjusted to >9 with NaOH, container is topped off with sample to exclude air from the container, then cooled to 4°C.

10. TKN, NH₃-N & TP

- i. Samples are collected in one liter disposable plastic bottles from 0m, 3m, 6m, 9m, 12m, 15m, and 18m depths. Samples are collected via the submersible pump, in a manner consistent with that described above for "conventionals."
- ii. Determine Cl₂ residual with a LaMotte Test Kit. If Cl₂ residual is measured, add 30% Sodium Thiosulfate drop-wise; 1 drop/1 ppm Cl₂, then add 1 drop excess.
- iii. Preservation: Adjust pH < 2 with H_2SO_4 , cool to 4°C.

Example: Cl_2 measures 2.5 ppm - add 4 drops Sodium Thiosulfate - then H_2SO_4 to pH 1.5 - 2.0.

- iv. Org-N results are calculated by subtracting the results of analyses of samples for Total Kjeldahl Nitrogen (TKN) and Ammonia Nitrogen (NH₃-N).
- v. This sample will also be analyzed for Total Phosphorus (TP).

11. T-Alk

- i. T-Alk samples are to be analyzed for Total Alkalinity as CaCO₃.
- ii. T-Alk samples are collected as UML and LWL composites as described above for metals samples.
- iii. T-Alk samples are poured-off from the churn into a rinsed 500-ml plastic bottle. The bottle is carefully stopped in order to exclude air and then cooled to 4°C.

12. Fecal Coliform

i. A Fecal Coliform sample is collected at 0m. Two sterile 125-ml plastic containers will be used.

The first container will be filled from the source (at 0m). The second container (disposable), pre-preserved with Sodium Thiosulfate crystals will be filled from the first container leaving a small airspace to enable the sample to be shaken, and then cooled to 4°C. This is the sample to be delivered to the laboratory for analysis. Samples will be checked for residual chlorine using a LaMotte "DPD Chlorine Test Kit."

***Sample volumes for this parameter are crucial. Fill the bottle to just above the shoulder of the bottle leaving a small (approximately 2.5 cm) airspace to enable sample to be shaken. Do no allow the water to rise above the threads of the bottle. Samples will be analyzed for E. Coli and Fecal Coliform.

Composite Sample collection:

The "UML" (Upper Mixed Layer) and "LWL" (Lower Water Layer) composite samples collected during the sampling events will be made by mixing samples from discrete depths according to the following field protocol:

- (a) Late fall, winter, and early spring (October 1 May 31) when the lake waters are not strongly stratified.
 - i. The default UML during this period of the year is 0, 3, 6-m.
 - ii. The default LWL during this period of the year is defined as 9, 12, 15, and 18-m.
- (b) Summer stratification period (June 1 September 30)
 - i. The UML composite shall always include samples collected at 0 and 3-m depths. Inclusion of water collected at 6 m in the composite shall be evaluated based on the temperature profiles measured during the sampling event.
 - ii. The composite sample of the LWL will typically include water collected at depths of 12, 15, and 18-m during this period. The inclusion of the 12-m depth in the composite of the lower waters should be reviewed during each sampling event. Because the 9-m depth is consistently in the metalimnion (or "transition zone") during this period, water from this depth will not be included in either composite sample.
- The Thermocline is the area at which the temperature gradient is steepest during the summer; usually this gradient must be at least 1°C per meter. A rule of thumb is that the Thermocline exhibits a temperature change of approximately 1°C per meter.
- Record the field YSI profile to define depths of UML, Transition zone, and LWL prior to composite sample collection.
- Once the Thermocline depth is determined, samples are collected as grabs from the discrete sample depths, 0m, 3m, 6m, 9m, 12m, 15m, and 18m depths using a Wildco Beta sampling device. The Thermocline depth should not be included with either composite sample (UML or LWL). The Wildco Beta sampler is rinsed in lake water prior to use in order to ensure cleanliness. Samples are mixed in a churn, which has also been rinsed in lake water. The sample bottle is rinsed with the composite sampler prior to pouring-off from the churn into the sample bottle.

B. ONONDAGA LAKE TRIBUTARIES

The procedures used for the collection of samples from Onondaga Lake Tributaries are as follows:

1. All tributaries are sampled using the depth-integrated sampling technique, except the

Allied East Flume, Sawmill Creek and Bloody Brook monitoring stations. For streams with low velocity and depositional conditions, the vertical kemmerer bottle

sampler is used (Ley Creek @ Park Street and Harbor Brook @ Hiawatha Boulevard sampling sites) – Refer to Attachment A - Tributary Field Sampling Procedures.

- 2. The Onondaga Lake Outlet is sampled at depths of 2 feet and 12 feet using the Kemmerer tube-sampling device from mid-channel. The sample for Fecal Coliform will be collected from mid-channel at the surface.
- 3. All sample bottles are rinsed in sample water prior to filling, and preserved according to the instructions detailed above.

Depending on the depth of water at each station, a suspended (deep water) or handheld sampler (wadeable) may be used. The depth-integrated sampling device is designed to accumulate a water-sediment sample from a stream vertical at such a rate that the velocity in the nozzle is nearly identical with the stream velocity. Judgment will be used to select the number and location of transects. The sampling procedures for this monitoring program will follow the protocol outlined in the New York State DEC Division of Water Bureau of Watershed Assessment & Research Program Plan for Rotating Intensive Basin Studies Water Quality Section (1997-1998). Procedures by sampling site are outlined in Attachment A.

NOTE: A dedicated dunker with only silicone end seals will be utilized for the trace metals quarterly sampling events.

C. RIVER

- 1. The River samples are collected using a rinsed Wildco Beta sampler at 1 meter below the water surface and 1 meter above the sediment at each of the buoy stations.
- 2. All sample bottles are rinsed in sample water prior to filling, and preserved according to the instructions detailed above.

VI. QUALITY ASSURANCE/QUALITY CONTROL SAMPLES

A. FIELD DUPLICATES

- 1. One field duplicate will be collected by using a separate sample collected for each parameter analyzed for Onondaga Lake, its tributaries, and the Seneca River. These are collected as separate samples taken from the same site at the same time. These provide a check on sampling equipment and precision techniques.
- 2. For Onondaga Lake, all field duplicates will be collected at the 6m sampling depth except for F. Coli (0m), and Sulfide (15m).
- 3. For the Onondaga Lake Tributaries, the sampling site for field duplicate sample collection is rotated for the different sampling events.
- 4. For the Seneca River, two field duplicates will be collected at Buoy 316 during each sampling event (at the 1-meter below the water surface and 1-meter above the river

sediment depths).

B. EQUIPMENT RINSEATE BLANKS

- 1. Equipment rinseate blanks will be collected for the submersible pump and churn used on Onondaga Lake. Blank samples will be collected prior to collecting water quality samples from Onondaga Lake and analyzed for all parameters. This schedule complies with the minimum frequency of one field blank per 20 samples.
- 2. Equipment rinseate blanks will be collected for the churn and dunker used for the Onondaga Lake Tributaries and analyzed for all parameters. Blank samples will be collected prior to the collection of water quality samples from any of the tributaries. This schedule also complies with the minimum frequency of one field blank per 20 samples.

C. SAMPLE CONTAINERS:

- 1. The containers currently used for metals are certified as Class 3000 bottles washed under EPA protocol "C". In addition to receiving a Certificate of Analysis for each bottle lot, all pre-cleaned sample containers will be checked by our laboratory by lot to insure that they are clean. This will be performed by delivering a minimum of (1) one, but as many as five (5), randomly selected containers from each lot received by the OCDWEP Lab. These containers will be empty with an appropriate label, Chain -Of-Custody form and copy of the sample container lot Certificate-Of-Analysis. The laboratory will fill the container with deionized water, preserve the sample with nitric acid and analyze it immediately for total cadmium, chromium, copper, nickel, lead, zinc, arsenic, mercury, manganese, and iron. All results must be less than or equal to the Minimal Reportable Limit (MRL). If the results meet this criteria, the sample containers in the lot will be released for use in AMP sampling events. If results do not meet this criteria, an additional sample container will be checked for each container that failed. If these results meet the criteria, the sample containers in the lot will be released for use in AMP sampling events. If there is a second failure, the sample containers in the lot will not be used for AMP sampling events.
- 2. Each sampling event (Lake or Tributary), will use containers from one specific lot (i.e., sample containers from different lots will not be mixed during each sampling event). The sample lot # will be recorded on the C-O-C forms for the respective samples), to insure this.

VII. SAMPLE CUSTODY

A. FIELD SAMPLE CUSTODY

When samples are delivered to the OCDWEP Laboratory for analysis following sample collection, the original C-O-C forms are submitted to the Laboratory.

For samples sent to a contract laboratory for analysis, three copies of an Engineering and Laboratory Services (ELS) Contract Laboratory C-O-C form will be used. The original C-O-C form will be maintained by the OCDWEP Laboratory, two copies will be shipped to the contract laboratory with the samples, for analysis. The contract laboratory will retain one copy and return a signed copy to the OCDWEP laboratory.

Attachment B is a typical example of a C-OC form. The "Remarks" area is used to record specific considerations associated with sample acquisition such as sample type, container type, sample preservation methods, and analyses to be performed. The original copy of this record follows the samples to the laboratory. The laboratory maintains the completed original and also scans the record into a computer.

B. LABORATORY SAMPLE CUSTODY

The field team leader notifies the laboratory of upcoming field sampling activities and the subsequent transfer of samples to the laboratory. This notification will include information concerning the number and type of samples to be delivered as well as the anticipated date and time of arrival.

The laboratory sample program meets the following criteria:

- 1. The laboratory has designated a sample custodian who is responsible for maintaining custody of the samples and for maintaining all associated records documenting that custody.
- 2. Upon receipt of the samples, the custodian will check the original chain-of-custody documents and compare them with the labeled contents of each sample container for correctness and traceability. The pH of preserved samples is checked at the time of sample receipt. The sample custodian signs the chain-of-custody record and records the date and time received.
- 3. Care is exercised to annotate any labeling or descriptive errors. In the event of discrepant documentation, the laboratory will immediately contact the field team leader as part of the corrective action process. A qualitative assessment of each sample container is performed to note any anomalies, such as broken or leaking bottles. This assessment is recorded as part of the incoming chain-of-custody procedure.
- 4. The samples are stored in a secured area at a temperature of approximately 4°C until analyses are to commence.
- 5. A laboratory chain-of-custody record accompanies the sample or sample fraction through

final analysis for control. These forms are scanned by the lab into the computer (Adobe PDF format) and placed in a centrally located directory.

6. A copy of the chain-of-custody form will accompany the laboratory report and will become a permanent part of the program records.

C. FINAL EVIDENCE FILES

Final evidence files include all originals of laboratory reports and are maintained under documented control in a secure area.

A sample or an evidence file is under custody if:

- it is in your possession;
- it is in your view, after being in your possession;
- it was in your possession and you placed it in a secure area; and
- It is in a designated secure area.

VIII. FIELD EQUIPMENT CALIBRATION PROCEDURES/MAINTENANCE

A. YSI SONDES

- 1. Calibration procedures for the YSI 600 & 6600, which are used to monitor water quality parameters in Onondaga Lake, are included as Attachments D through F. Calibration data including the date of calibration, the results of calibration, the technician's initials, and the results of the post-use instrument calibration for drift checks are maintained in a bound notebook.
- 2. The YSI units (sondes) are calibrated no more than 24-hours prior to each day of use. The units and all calibration solutions are allowed to stabilize overnight. Calibration is typically performed in the morning before use. A calibration check is performed after use to ensure that calibration drift is acceptable.
- 3. Temperature calibration is set by the factory and, reportedly, does not require frequent recalibration.
- 4. Depth is calibrated in air, just above the water surface, as 0 meters. Depth calibration is verified by taped markings on the sonde data cables.
- 5. Preventative Maintenance:
 - i. Dissolved oxygen membranes are checked and replaced as needed after each use.
 - ii. The pH reference probe and the temperature probes are cleaned with alcohol and a cotton swab after each use.
 - iii. The pH probe reference solution is replaced once per month. The Teflon septum for the pH probe is replaced when it is needed.
 - iv. The sondes are stored clean and dry in a case in order to prevent physical damage.
 - v. Watertight connectors are lubricated when necessary in order to ensure a waterproof connection, which will prevent faulty readings.

B. SECCHI DISK

1. Taped depth markings for the Secchi disk are calibrated annually.

C. UNDERWATER ILLUMINATION

1. Data on Light attenuation are collected at 20-cm intervals from water surface to the depth at which light is 1% of surface illumination, as noted during the sampling event, using a LiCor datalogger, to provide sufficient detail.

D. WILDCO BETA SAMPLE TUBES

- 1. The Wildco Beta sample tubes are cleaned in tap water after each use. Prior to use, the tubes are rinsed in Onondaga Lake water.
- 2. Depth markings are calibrated annually.

E. SUBMERSIBLE PUMP

- 1. The submersible pump is cleaned using tap water after each use. Prior to use, the pump and hoses are rinsed in Onondaga Lake water.
- 2. Hoses for the submersible pumps are replaced annually or as needed.
- 3. Depth markings are calibrated annually.

IX. ANALYTICAL PROCEDURES

A. INTRODUCTION

Appropriate use of analytical data generated under the great range of analytical conditions encountered in environmental analyses requires reliance on the quality control practices incorporated in the methods and procedures used by the Onondaga County Department of Water Environment Protection Environmental Laboratory (OCDWEP). Attachment C lists the methodologies utilized for the analysis of water quality samples from the Onondaga Lake Monitoring Program. As a participating member of the New York State Department of Health Environmental Laboratory Approval Program (ELAP), this laboratory uses only those methods and equipment certified by NYS to generate data. Inaccuracies can result from many causes, including unanticipated matrix effects, equipment malfunctions, and operator error. Therefore, the QA/QC aspects of this laboratory are indispensable. The data acquired from QA/QC procedures is used to estimate and evaluate the information content of analytical data and to determine the necessity of corrective action procedures. The means used to estimate information content are also an important part of the ELAP program to which we adhere.

This section defines the QA/QC procedures and components that are mandatory in the performance of analysis performed by the OCDWEP laboratory, and indicates the QA/QC information which must be generated with the analytical data.

B. CHEMICALS AND REAGENTS

1. Reagent grade water

- 1. Reagent grade water in the OCDWEP environmental laboratory consists of DI water purified by means of mixed bed deionization. The processed water is required to attain a minimum resistivity of 10 mSiemen. A final pass through another mixed bed deionization filter at point of use maintains the highest quality possible (18 mS output). Actual Conductivity is determined daily. The date, conductivity @ 25°C, and analyst's initials are recorded in a tabular format in a bound notebook.
- 2. To monitor the quality of reagent grade water for bacteriological use, the following tests are performed:

Parameter	Frequency	Acceptable
Free Residual Chlorine	Monthly	None acceptable
Standard Plate Count	Monthly	<500 colonies/ml
Heavy Metals (Pb,Cd,Cu,Cr,Ni,Zn)	Yearly	<0.05 mg/l per metal <0.1 mg/l total
Suitability Test	Yearly	Ratio between 0.8-3.0

TABLE III - REAGENT GRADE WATER TESTS

2. Reagents

Only American Chemical Society (ACS) grade or better chemicals are used. Chemicals are discarded within manufacturer's expiration date or 3 years, whichever comes first. Date of receipt is recorded on each container.

3. Standard Solutions/Titrants

Anhydrous reagent chemicals are oven dried @ 100-105°C for at least 2 hours. Standard solutions or titrants not prepared from a primary standard are standardized against a primary standard at the frequency specified by the method or every 6 months if no frequency is specified. Standard solutions or titrants are not kept longer than 1 year. The date prepared and the expiration date appear on the container, along with title of standard or titrant, concentration, and preparer's initials. In a bound notebook, the preparation date, title of solution, concentration, manufacturer and lot number of reagent grade chemical(s) used, quantity prepared, expiration date, preparer's signature and, if appropriate, drying times & temperatures, tare and net weight, citation of preparation of primary standard, standardization titers and calculations are recorded.

4. Bench or Shelf Reagents

These are non-standardized solutions prepared by laboratory personnel. All of the pertinent information listed for standard solutions is recorded on both bottle label and in a bound notebook.

C. MICROBIOLOGY: CHEMICALS AND REAGENTS

<u>1. Bacteriological Media</u>

Dehydrated media is discarded within six months when opened and stored in a dessicator, or within manufacturer's expiration date, if unopened. If opened, each new lot is compared to an existing lot that has been found acceptable. The date, name of media, lot #'s of control and test media, results of comparison, and analyst's initials are recorded in a tabular format in a bound notebook. On each bottle of media, dates of receipt and opening and discard date are recorded. Media is prepared according to method instructions. Sterilized glassware is used in the

preparation of media. Date, name of medium, gross, tare, and net weights, volumes used, quantity prepared, pH of finished medium, and preparer's initials are recorded.

2. Autoclaving

The appropriate sterilization times @ 121°C and a pressure of 15-pounds per square inch for various materials are determined as follows:

Membrane filters and pads	10 min.
Carbohydrate containing media (Lauryl tryptose, BGB broth, etc.)	15 min.
Contaminated material, discarded cultures	45 min.
Membrane filter assemblies (wrapped to include all glass/plastic ware used to filter samples)	45 min.
Dilution water in screw-cap bottles	30 min.
Rinse water (200-1000-ml)	\geq 30 min.

3. Bacti Glassware

Every batch of glassware is checked after washing for detergent with 4-5 drops of bromthymol blue indicator, added to 4-ml of final rinse water from randomly chosen items of glassware; a neutral indication allows glassware use. The date, description of glassware, indicator reaction and analyst's initials are recorded in a tabular format in a bound notebook.

Each batch of sterilized bacti sample bottles is checked for sterility by aseptically adding 25-ml of tryptic soy broth into a randomly chosen sample bottle. After 24 hrs. of incubation @ $35^{\circ}C$ +/-. $.5^{\circ}C$, the sample is checked for growth. The date, batch identifier, turbidity check, disposition of the batch, and analyst's initials are recorded in tabular form in a bound notebook.

4. Prepared Media Shelf Life

The following table indicates the holding times for bacteriological media prepared in advance:

TABLE IV - HOLDING TIMES BACTERIOLOGICAL MEDIA

Medium	Holding Time
MF Agar in screw-caps flasks	@ 4°C 96 Hrs.
Broth in capped tubes	@ Room Temperature for 3- months
Poured agar plates with tight-fitting Covers in sealed plastic bags	2 Weeks @ 4°C
5. Membrane Filter Sterility Blanks

- a. The sterility of each lot number of membranes is verified by checking for growth after 1 membrane is placed in 50-ml of tryptic soy broth for 24 hrs. @ 35°C+/- 0.5°C incubation. The date, lot number, check for turbidity, and analysts initials are recorded.
- b. At the beginning and end of each membrane filter series, a sterility check is performed. The date, # of samples analyzed during run, counts for blanks and analyst's initials are recorded in a tabular format in a bound notebook.

6. Negative and Positive Controls

a. Prior to the first use of a medium, each prepared, ready-to-use lot of medium and each batch of medium prepared in the laboratory shall be tested. Tests will consist of using at least one pure culture of a known positive reaction and at least one negative culture control, as appropriate to the method.

D. CALCULATIONS AND CHARTS

<u>1. Reference Sample</u>

A chart is constructed as follows:

- a. The measured values and dates of analysis of the reference sample are tabulated;
- b. When at least 20 reference samples have been tabulated, compute the mean: x;
- c. Using the mean, compute the standard deviation (SD), as in the following example using the formula:

$$SD = \sqrt{\frac{\sum (x - \overline{x})^2}{N-1}}$$

Where: x = the measured value of an individual reference sample

 $\overline{\mathbf{x}}$ = the mean of the measured values

N = the number of data points

 $(x - \overline{x})^2$ = the sum of the squares of all the differences of the mean and measured values.

Example

	Date	Х	$(X - \overline{X})$		$(X - \overline{X})^2$	
1.	4-25-96	207	(207 - 207 = 0)	0	$(0 \ge 0 = 0)$	0
2.	5-03-96	214	(214 - 207 = +7)	+7	$(7 \times 7 = 49)$	49
3.	5-10-96	200	(200 - 207 = -7)	-7	$(7 \times 7 = 49)$	49
4.	5-17-96	210	(210 - 207 = +3)	+3	$(3 \times 3 = 9)$	9
5.	6-10-96	219	(219 - 207 = +12)	+12	$(12 \times 12 = 144)$ 144	
6.	6-10-96	190	(190 - 207 = -17)	-17	(17 x 17 = 289) 289	
7.	6-18-96	203	etc.	-4	etc.	16
8.	6-27-96	210	"	+3	"	9
9.	7-03-96	204	"	-3	"	9
10.	7-11-96	207	"	0	"	0
11.	7-19-96	207	"	0	"	0
12.	8-01-96	201	"	-6	"	36
13.	8-10-96	204	"	-3	"	9
14.	8-17-96	200	"	-7	"	49
15.	8-27-96	221	"	+14	"	196
16.	9-03-96	205	"	-2	"	4
17.	9-11-96	210	"	+3	"	9
18.	9-20-96	201	"	-6	"	36
19.	9-30-96	217	"	+10	"	100
20.	10-10-96	210	"	+3	"	9

N=20

Total X = 4140

= 1022

Example

$$N = 20$$

$$\Sigma (X - \overline{X})^{2} = 1022$$

$$SD = \sqrt{(X - \overline{X})^{2} / N - 1}$$

$$SD = \sqrt{1022 / 19}$$

$$SD = 7.33$$

2. Determine the warning limits

Determine the warning limits (WL), and the control limits (CL) as in the following example using the formulas:

$$WL = \overline{X} \pm 2SD$$
$$CL = \overline{X} \pm 3SD$$

Where \overline{X} = the previously computed mean

SD = the standard deviation

 $WL = 207 \pm (2 \times 7.33)$

The warning limits (WL) in the example, are 221.66 for the upper warning limit and 192.34 for the lower warning limit.

 $CL = 207 \pm (3 \times 7.33)$

The control limits (CL) in the example are 228.99 for the upper control limit and 185.01 for the lower control limit.

3. Construct a control chart

Construct a control chart as done below for the example. The measured values of the reference samples are then plotted in the chart.

4. Percent Recovery

The percent recovery, P is calculated as follows:

P = 100 (M - B)/T

Where: T = the target value, i.e. the known concentration of analyte spiked into the sample aliquot.

- M = the measured concentration of analyte in the spiked sample aliquot.
- B = the background concentration of the unspiked sample aliquot.

The percent recovery data are used to construct a control chart with control limits with acceptance limits as follows:

- a. The percent recoveries and analysis dates of the spiked samples are tabulated.
- b. When a minimum of five percent recoveries have been tabulated, compute P (the mean percent recovery).
- c. Compute SD, the standard deviation (see section on reference standard for example).

5. Surrogate Standard

The percent recovery, P, is calculated as follows:

$$P = 100 (M/T)$$

Where: M = the measured value

T = the target value, (i.e. the known value of surrogate spiked into the sample)

A tabulation of percent recoveries is maintained for each surrogate. The tabulation includes the analysis date, the percent recovery and the control limits for P. Control limits, using a minimum of 5 data points for each surrogate standard are calculated as follows:

$$CL = X \pm 3SD$$

Where: CL = the control limits

X = the mean percent recovery

SD = the standard deviation (see section on reference standard for example)

Compute WL, the warning limits, and CL, the control limits as follows:

$$WL = X \pm 2SD$$
$$CL = X \pm 3SD$$

The computed limits are recorded on the tabulation or control chart.

6. Duplicate Analysis

The difference (i.e. range) between duplicate analyses is determined as follows:

R = the difference (or range)

 X_1 = the greater of the measured values

 X_2 = the lower of the measured values

A tabulation of duplicates is maintained for each analyte listing dates of analysis, X_1 , X_2 , R, and the acceptance limit for R. The acceptance limit is established using the following equation:

UCL = 3.27 R

Where: UCL = the acceptance limit

R = the average range for a minimum of 5 sets of duplicates in a specified concentration range.

X. LABORATORY CALIBRATION/EQUIPMENT MAINTENANCE PROCEDURES

A. LABORATORY EQUIPMENT

1. Analytical Balance

- a. Analytical balances are serviced and calibrated internally by a qualified service organization 1/year and a dated certification sticker is provided.
- b. Analytical balances are checked daily in two ranges with Class S weights. The ranges selected reflect the routine use of the balance. For example, the analytical balance used principally for evaporating dishes and aluminum dishes would need Class S weights having target values of bracketing the expected weights of the dishes. The date, target reading, actual reading, and analyst's initials are recorded in a bound notebook.

2. pH meter

pH meters are calibrated daily using standard buffers and a two point calibration. This consists of creating a slope using standard pH buffers of pH 4.0 and 10.0. The slope is then checked using a standard buffer of pH 7.0, with an acceptable reading of + /- 0.05 pH units. The date, pH buffer target values, set points, actual readings, and analyst's initials are recorded in a tabular format in a bound notebook.

3. Conductivity meter and cell

- a. The conductivity cell constant is determined annually using a 0.01-M potassium chloride solution. The date, resistance readings, average resistance, temperature, calculations, and analyst's initials are recorded in a bound notebook.
- b. The conductivity meter and cell is calibrated daily with a 0.001 M potassium chloride solution. An acceptable reading is +/- 20% of target value. The date, target value, actual reading, temperature, and analyst's initials are recorded in a tabular format in a bound notebook.

4. Dissolved Oxygen Meter

The dissolved oxygen meter and probe is calibrated daily using air calibration. The calibration is checked against the Winkler method. This consists of filling two bottles with aerated distilled water; checking the DO value of each bottle using the calibrated DO meter, and then determining the DO value of each bottle using the Winkler method. The DO values of the two methods are then compared. The dates, titers, DO values, average DO, and analyst's initials are recorded in a tabular format in a bound notebook.

5. Turbidimeters

The turbidimeter is calibrated per manufacturer's recommendation using a certified secondary gelex standard with each use. The date, target and observed values, and the analyst's initials are

recorded in a tabular format in a bound notebook.

6. Thermometers

- a. The OCDWEP environmental laboratory possesses an NIST (National Institute of Standardized Temperature) traceable, factory-certified thermometer, which is checked at the various temperatures required by a variety of analytical requirements. Correction factors and adjustments to correction factors, new correction factors and analysts initials are recorded in a tabular format in a bound notebook.
- b. Each working thermometer has a dedicated use, and is calibrated annually at the temperature of interest using the NBS thermometer. The date, thermometer designation, calibration temperature, correction factor, and the analyst's initials are recorded in a bound notebook.

7. Refrigerators

Laboratory refrigerators maintain a temperature of 1° to 5°C. These temperatures are checked once daily. An NIST certified thermometer with 1°C graduations is used. The date, times, temperature readings and analyst's initials are recorded in tabular format in a bound notebook.

8. BOD Incubator

The BOD Incubator maintains a temperature of 20° , +/- 1°C. Temperature readings are taken twice a day. This thermometer has graduations of 0.2°C. The same data is recorded as for refrigerators.

9. Bacteriological Incubators

- a. The air bath incubators maintain a temperature of $35^{\circ}+/-0.5^{\circ}$ C. A thermometer with graduations of 0.1°C is used. Temperatures are taken twice a day and the same data is recorded.
- b. The water bath incubator maintains a temperature of $44.5^{\circ}+/-0.2^{\circ}C$. A thermometer with graduations of $0.1^{\circ}C$ is used. The same temperature reading schedule and data recording is used as for the air bath incubator.

10. Ovens

Ovens are maintained at the target temperature of interest during use. Temperatures are checked at the beginning and end of each use. A dedicated thermometer with graduations of 1°C is used. The date, target temperature, time and temperature at the start and end of each cycle, oven use, and analysts initials are recorded in a tabular format in a bound format.

<u>11. Autoclave</u>

Autoclave maintains sterilization temperature and pressure during the sterilization cycle and completes the entire cycle within 45 minutes when a 10-12 min. sterilization period is used. A separate calibrated thermometer is used in combination with a sterilization indicator. The date,

time material is placed in autoclave, time of sterilization period, time material was removed, description of sterilized material and analyst's initials are recorded.

12. Automated Ion Analyzer

For instruments at this level of sophistication, the procedures for ensuring correct analytical results are too lengthy for this manual, and the USEPA/ELAP instructions should be followed for specific information. Good general laboratory procedures (GLP) are followed in the daily operation of this instrument; including, but not limited to:

- a. Daily calibration for each analyte of interest.
- b. Instrument blank for each analyte.
- c. Method blank, duplicates, spikes, reference, and check standards are utilized daily for each analyte.

13. Atomic Absorption Spectrophotometer

For instruments at this level of sophistication, the procedures for ensuring correct analytical results are too lengthy for this manual, and the USEPA/ELAP instructions should be followed for specific information. Good general laboratory procedures (GLP) are followed in the daily operation of this instrument; including, but not limited to:

- a. Daily calibration for each analyte of interest.
- b. Instrument blank for each analyte.
- c. Method blank, duplicates, spikes, reference, and check standards are utilized daily for each analyte.

14. Inductively Coupled Plasma (ICP) Spectrophotometer

For instruments at this level of sophistication, the procedures for ensuring correct analytical results are too lengthy for this manual, and the USEPA/ELAP instructions should be followed for specific information. Good general laboratory procedures (GLP) are followed in the daily operation of this instrument; including, but not limited to:

- a. Daily calibration for each analyte of interest.
- b. Instrument blank for each analyte.
- c. Method blank, duplicates, spikes, reference, and check standards are utilized daily for each analyte.

15. TOC Analyzer

For instruments at this level of sophistication, the procedures for ensuring correct analytical results are too lengthy for this manual, and the USEPA/ELAP instructions should be followed for specific information. Good general laboratory procedures (GLP) are followed in the daily

operation of this instrument; including, but not limited to:

- a. Daily calibration for each analyte of interest.
- b. Instrument blank for each analyte.
- c. Method blank, duplicates, spikes, reference, and check standards are utilized daily for each analyte.

B. LABORATORY QUALITY CONTROL DOCUMENTATION REQUIREMENTS

1. Standard Curves

Standard curves are prepared as specified in QA/QC manuals. All standard curves are dated and labeled with method, analyte, standard concentrations, and instrument responses.

A best-fit, straight line is drawn on graphed curves: the axis is labeled. The correlation coefficient is calculated. An acceptable correlation coefficient is 0.995 or greater.

Instrument response for samples is less than the highest standard. The lowest standard is near the detection limit.

If a specific method does not provide guidance in the preparation of a standard curve, the following guidelines are followed. For manual colorimetric methods, a blank and five standards that lie on the linear portion of the curve are used. A new curve is prepared each time an analysis is run. At each use, the curve is checked with a blank and a high standard. The high standard selected is greater than the expected sample concentrations. For automated colorimetric methods, a blank and a minimum of five standards are used. A new curve is prepared for each run. Instrument response is checked with a QC reference sample after each 10 samples. Low level standards are freshly prepared for each run.

2. Method Blank

A method blank consists of laboratory-pure water, which is processed and analyzed as if it were a sample. A method blank is run daily or with each batch of samples. Samples are related to the method blank by means of a date or batch identifier. Where applicable, the blank is calculated as a sample and a tabulation of blank results for each analyte with the date run and its appropriate acceptance criteria is maintained. Acceptance criteria for a method blank is a result less than the MRL only.

3. Instrument Blank

An instrument blank consists of laboratory water, which is analyzed without adding reagents, filtering, etc. It is used for instrument set-up and no readings are recorded.

<u> 4. Trip Blank - Special</u>

Trip blanks are required when analyzing volatile compounds in water. A trip blank is a sample of laboratory-pure water contained in a sample bottle appropriate to the analyte to be determined.

Trip blanks are present but unopened at the sampling site and shipped to the laboratory with the environmental samples taken. A trip blank is included with samples collected at each sampling site. The trip blank is analyzed only when samples from a specific sampling site are positive for the analyte of interest. If reportable levels of the analyses of interest are demonstrated to have contaminated the field blank, resampling is required.

5. Reference Sample

A reference sample is prepared by spiking a known amount of analyte into an appropriate solvent. The concentrate or quality control sample is preferably obtained from an external source. When necessary, a sample prepared in-house is prepared independently of the calibration standard. A reference sample is analyzed with every tenth sample or monthly samples if fewer than ten samples per month are analyzed. Environmental samples are tied to the reference standard by means of a date or batch identifier.

Data generated by the analysis of reference standard are used to construct a control chart and control limits established. Instructions for constructing a control chart and computing limits are to be found later in this section.

Should a result fall outside the control limits, the analysis is out of control and immediate action is taken to determine the cause of the outlying result. Data generated on the same day as the outlying result are regarded as unreliable and the analyses repeated after corrective action has been taken and the procedure is back in control.

A new control chart with freshly computed control limits is generated annually. The last 20 reference standard data points for the previous year are used to compute the new control limits.

<u>6. Spiked Recovery</u>

Spiked recovery for an environmental sample is determined by dividing the sample into two aliquots. The first aliquot is analyzed as usual. The second aliquot is spiked with a known concentration of the analyte of interest. The spike should be approximately 10 times the method's standard deviation (at the level of interest). A spiked environmental sample is analyzed when appropriate at a frequency of 1 spiked sample for every 20 samples or 1 spiked sample per month if fewer than 20 samples per month are analyzed. Samples are related to the spiked recovery date by means of a date or batch identifier.

Data generated by the analysis of spiked samples are used to calculate the percent recovery. The percent recovery data is used to construct a control chart and tabulation and limits established. Instructions for constructing a chart or tabulation and computing limits are to be found later in this section.

A new control chart of tabulation, the analysis is regarded as out of control and immediate action is taken to determine the cause of the outlying result. Data generated on the same day as the outlying result are regarded as unreliable and the analysis repeated after corrective action has been taken and the procedure is back in control. A new control chart or tabulation with freshly computed limits is generated annually. The last 20 data points for the previous year are used to compute the new limits.

7. Duplicate Analysis

A duplicate analysis is required only when a sample yields a positive result. A minimum of 10 percent of all positive samples for a given analyte is analyzed in duplicate. The range between the duplicates is tabulated and acceptance limits established. Instructions for the tabulation and the computation of limits are to be found later in this section.

A new tabulation with a freshly computed acceptance limit is generated annually. The last 20 data points for the previous year are used to compute the acceptable control limits.

8. External QA/QC

In as much as the OCDWEP laboratory is a NYSDOH-ELAP certified laboratory, it is also National Environmental Laboratory Accreditation Conference (NELAC) certified, and is obligated to follow all of the criteria for maintaining this certification under the auspices of the ELAP program. Part of this program consists of a biannual inspection by a NYS Laboratory Inspector, who spends one or more days at each facility checking all aspects of the operation. In addition, performance evaluations are conducted twice per year. This consists of unknown samples sent to the laboratory to be analyzed and the results reported back to ELAP. The laboratory is required to submit results for each parameter that we are certified for, including bacteriology, metals, nutrients, etc.

The USEPA also uses the results from this program to satisfy the requirements of the SPDES permit program that regulates the various wastewater treatment plants in the OCDWEP system.

9. Internal QA/QC

In addition to the above, the OCDWEP laboratory conducts an internal QA/QC program consisting of unknowns that are generated periodically by the OCDWEP staff and given to technicians as "typical" samples, occurring without the analysts' knowledge. The object of this is to ensure that "typical" samples are analyzed using the same care as the "official" samples.

C. LABORATORY QUALITY CONTROL REQUIRED - BY PARAMETER

Inorganic Analytes		
Sub-Category or Analytical Group	QC Measure Record Acquired	Frequency
Demand/Residue		
BOD	Reference Sample Chart*	Every 10th sample or monthly if less than 10 samples per month are analyzed.
COD and TOC	Reference Sample Chart*	Every 10th sample or monthly if less than 10 samples per month are analyzed.
	Spiked Sample Chart*	Every 20th sample or monthly if less than 20 samples per month are analyzed.
	Duplicates Tabulation* Of all positive samples	On positive samples only, a minimum of 10% of all samples.
Mineral		
Alkalinity and Hardness	Reference Sample Chart*	Every 10th sample or monthly if less than 10 samples per month are analyzed.
All other analyses except pH	Reference Sample Chart*	Every 10 th sample or monthly if less than 10 samples per month are analyzed.
	Spiked Sample Chart*	Every 20 th sample or monthly if less than 20 samples per month are analyzed.
	Duplicates Tabulation*	On positive samples only, a minimum of 10% of all samples.

Sub-Category or Analytical Group	QC Measure Record Acquired	Frequency
Nutrient		
All nutrient analyses	Reference Sample Chart*	Every 10 th sample or monthly if less than 10 samples per month are analyzed.
	Spiked Sample Chart*	Every 20 th sample or monthly if less than 20 samples per month are analyzed.
	Duplicates Tabulation*	On positive samples only, a minimum of 10% of all samples.
Wastewater Metals		
ICP (same as Flame)	Reference Sample Chart*	Every 10 th sample or monthly if less than 10 samples per month are analyzed.
	Spiked Sample Chart*	Every 10 th sample or monthly if less than 10 samples per month are analyzed.
	Duplicates Tabulation*	On positive samples only, a minimum of 10% of all samples.
Flame or Colorimetric Method	Reference Sample Chart*	Every 10 th sample or monthly if less than 10 samples per month are analyzed.
	Spiked Sample Chart*	Every 10 th sample or monthly if less than 10 samples per month are analyzed.
	Duplicates Tabulation*	On positive samples only, a minimum of 10% of all samples.
Furnace Method	Reference Sample Chart*	Every 10 th sample or monthly if less than 10 samples per month are analyzed.
	Spiked Sample Chart*	Post only if Dupes are $\pm 15\%$.
	Duplicates Tabulation*	Double matrix spiked every 10 th sample.
Mercury (FIMS)	Reference Sample Chart*	Every 10 th sample or monthly if less than 10 samples per month are analyzed.
	Spiked Sample Chart*	Post only if Dupes are $\pm 15\%$.
	Duplicates Tabulation*	Double matrix spiked every 10 th sample.

Sub-Category or Analytical Group	QC Measure Record Acquired	Frequency
Miscellaneous Analytes		
Oil & Grease	Reference Sample Chart*	Every 10th sample or monthly if less than 10 samples per month are analyzed.
Cyanide, Phenols, and Silica	Reference Sample Chart*	Every 10th sample or monthly if less than 10 samples per month are analyzed.
	Spiked Sample Chart*	Every 20th sample or monthly if less than 20 samples per month are analyzed.
	Duplicates Tabulation*	On positive samples only, a minimum of 10% of all samples.
Organic Analytes		
Organic Purgeables		
Priority Pollutants by GC	Laboratory Blank Tabulation*	Daily or with each batch run.
	Reference Sample Chart*	Every 10th sample or monthly if less than 10 samples per month are analyzed.
	Spiked Sample Chart*	Every 10th sample or monthly if less than 10 samples per month are analyzed.
	Surrogate Standard	All samples.
Organic Extractables		
Priority Pollutants and Pesticides by GC	Laboratory Blank Tabulation*	Daily or with each batch run.
	Reference Sample Chart*	Every 10th sample or monthly if less than 10 samples per month are analyzed.

Sub-Category or Analytical Group	QC Measure Record Acquired	Frequency
	Spiked Sample Chart*	Every 10th sample or monthly if less than 10 samples per month are analyzed.
	Surrogate Standard Tabulation*	All samples.
Solid Waste Metals		
All Methods	Reference Sample Chart*	Every 10th sample or monthly if less than 10 samples per month are analyzed.
	Spiked Sample Chart*	Every 10th sample or monthly if less than 10 samples per month are analyzed.
	Duplicates Tabulation*	On positive samples only, a minimum of 10% of all samples.
All Other Analytes		
Inorganic	Reference Sample Chart*	Every 10th sample or monthly if less than 10 samples per month are analyzed.
	Spiked Sample Chart*	Every 20th sample or monthly if less than 20 samples per month are analyzed.
	Duplicates Tabulation*	On positive samples only, a minimum of 10% of all samples.

Sub-Category or Analytical Group	QC Measure Record Acquired	Frequency
All Other Analytes		
Organic	Laboratory Blank Tabulation*	Daily or with each batch run.
	Duplicates Chart*	Every 10th sample or monthly if less than 10 samples per month are analyzed.
	Reference Sample Chart*	Every 10th sample or monthly if less than 10 samples per month are analyzed.
	Matrix Check	Daily or with each batch run.

XI. PROGRAM ASSESSMENTS

OCDWEP has designed several means of assessing whether the goals of the data acquisition program are being met. Both the field and laboratory components of the Ambient Monitoring Program will be assessed on an ongoing basis, with formal checkpoints each month.

The program team reviews the workplan with key field and laboratory personnel. An annual calendar is put together, noting field sampling days. Weekly coordination meetings are held with field and laboratory personnel in attendance. Any significant activities or problems identified in either the field or laboratory component of the program are discussed. A formal list of action items is kept from these weekly meetings.

Data are received from the laboratory on a monthly basis and are reviewed. Charge balances (summing the milliequivalent of the major anions and cations) of the inorganic data are performed to screen for data quality. Relative percent difference between field replicates is calculated.

A field audit will be conducted during the Year 2007 monitoring season. Members of the project team will accompany the field sampling team and observe sample collection and field data acquisition. A formal report of the field assessment will be maintained in the OCDWEP lake files. A laboratory audit will also be scheduled. The procedures for sample handling and analysis will be evaluated whether the criteria defined in the workplan are being consistently implemented.

XII. DATA QUALITY ASSESSMENT

Choices made in design of the sampling program (spatial and temporal), field sampling procedures, laboratory procedures, and data evaluation and interpretation can greatly influence the ability to draw conclusions. In this section, we describe the quantitative and qualitative decisions made to ensure that the data quality is adequate to meet the needs of this program. Data quality will be assessed using EPA's 40 CFR 30.503 standard criteria; precision, accuracy, representativeness, completeness, and comparability. In addition, a field audit will be performed to assess field procedures and sample handling. QA/QC methods for field and analytical procedures are those mandated by the New York State Department of Health Environmental Laboratory Approval Program (ELAP).

A. PRECISION

The plan to monitor and control the precision and accuracy of analytical measurements is described in the section on analytical procedures. Precision of field samples will be assessed through a program of field replicate analyses: one replicate per sample delivery group, or twenty samples. For routine lake and tributary monitoring, one sampling depth (lake) and station (tributary) will be sampled in duplicate for the complete suite of parameters.

B. ACCURACY

Accuracy, or how close the reported concentrations of concern are to "true" values, can be difficult to assess. The laboratory analytical program describes how this data quality indicator is monitored through a program of audit samples. A second approach Onondaga County has implemented is a validation program, using an outside expert in limnology and statistics to audit the results. The data validation program cannot be a final arbiter of what values in a data set are true, but it can help test for outliers and systematic differences between researchers that warrant further investigation. In addition, ELAP Laboratories require proficiency samples.

C. REPRESENTATIVENESS

Representativeness refers to the degree to which the samples acquired reflect the nature of the underlying population. Any monitoring program relies on the results of a limited number of samples drawn from a much larger underlying population to provide information regarding the nature of that larger population. The sampling program described in this document has been designed to accommodate the known temporal and spatial variability of the lake and its tributaries. Onondaga Lakes undergoes thermal stratification.

This requires both temporal and spatial adjustments to the annual monitoring program. Water quality analyses and data manipulation reflects the nature of the lake's stratification. Samples are taken at 3m intervals that span the thermal regime. Upper Mixed Layer (UML) results are separated from the Lower Water Layer (LWL) results in the calculations of annual and growing season (5/15 - 9/15) means and medians. Trends in concentrations during both the mixed and stratified periods are calculated. The primary sampling station in the Year 2007 Monitoring Program is a point in the southern lake basin (South deep). This station has been sampled throughout the 36 years of lake monitoring. Four times each year, Onondaga County monitors a second station (designated North Deep) to determine whether water quality results differ. Tributary monitoring is on a bi-weekly basis. Judgment will be used to select the number and location of transects to collect water samples in the

tributaries. Samples of the Lake Outlet are obtained at 2-feet and 12-feet depths to accommodate the density stratification that has been documented to occur in the Seneca River under low-flow conditions.

D. COMPARABILITY

Documentation of procedures and results of the monitoring program have been maintained by OCDWEP since 1968. Our goal is for data generated during the Year 2007 program to be comparable to the historical data. To meet this goal, we are committed to fully documenting the sampling and analytical procedures used, including any special modifications necessary to maximize precision, accuracy, or sensitivity in the lake water matrix.

E. COMPLETENESS

We are fortunate to have an extensive database of Onondaga Lake water quality to provide guidance regarding optimal sampling design with respect to variability of the measured parameters. An analysis of the reduction on the coefficient of variation achieved by different sampling strategies for the lake indicates that a monthly sampling program is adequate for most parameters (Walker 1992). Other parameters associated with short-term fluctuations in algal populations such as Chlorophyll-*a* require more frequent (weekly) monitoring from May through September.

Non-parametric statistics has been selected to indicate trends in water quality over time. The seasonal Kendall test allows us to differentiate seasonal variations within years from changes between years. The non-parametric statistics will maintain their power even with occasional missing values. Our goal for Year 2007 is to complete and validate 100% of the planned samples.

F. FIELD AUDIT

A technical advisor, to assess the field procedures and sample handling will perform an annual field audit. The audit findings and recommendations will be forwarded to the NYSDEC and also included in the annual monitoring report.

G. EQUIPMENT RINSATE BLANKS

Wildco Beta Dunker, Churn, and Pump QA/QC equipment rinsate blanks will be collected for each of the AMP sampling events, as appropriate.

XIII. DATA REVIEW AND VALIDATION

Data will be screened for both technical defensibility (were procedures followed, were the laboratory control limits for precision and accuracy observed and usability, are the sample results sufficient to allow inferences regarding the nature of the underlying population?). Both of these criteria are important to meet the objectives of the lake-monitoring program.

Technical defensibility includes evaluation of the following:

- a. Internal laboratory quality control: blanks, spikes, replicates, and standard curves;
- b. Chain-of-custody complete; and
- c. Holding times for all parameters met in accordance with analytical method.

Data usability includes evaluation of the following:

- a. Charge balance of major anions and cations;
- b. Results of field replicates; and
- c. Statistical evaluation of outliers.

XIV. DOCUMENTATION

A. FIELD AND LABORATORY DATA

Field and laboratory data are stored both on the Laboratory Information Management System (LIMS) and on paper copy to be filed at OCDWEP. Data may be retrieved at any time from either of these sources.

B. LABORATORY REPORTS

Samples are delivered to the laboratory along with chain of custody forms on the date of sampling. YSI sondes' field data are delivered to the laboratory by the next day. Laboratory reports are finalized and delivered to the program manager and field supervisor within 30 days of the sample date.

C. PRELIMINARY DATA VALIDATION

Preliminary data validation is performed within 30 days of receipt of final laboratory data.

D. TREND ANALYSIS

Statistical trend analysis of the data will be performed. The non-parametric seasonal Kendall test will be performed on the lake and tributary data to test for long-term trends and changes in lake water quality in response to the major reductions in external loading.

E. ANNUAL TRIBUTARY LOADS

The flow-weighted concentrations of the constituents will be summarized. Dr. Walker's refined program used to estimate loading to Onondaga Lake will be used. The improved estimation technique, called "Method 5", was developed in conjunction with the compilation of the OCDWEP long-term integrated water quality data base and supporting software. The new technique was developed to support estimation of daily loads, to support development of monthly and seasonal lake mass balances, and to improve the accuracy and precision of the annual load estimates. Method 5 differs from AUTOFLUX Method 2 in several ways. Data are stratified by flow regime (similar to AUTOFLUX Method 2) and are also stratified by season using a multiple regression technique. Conditions during the unmonitored period are projected using a residual interpolation method that includes a flow derivative term.

F. ANNUAL REPORT

At the end of the monitoring year, data are compiled and manipulated into a report of analyses computation and evaluation of the ambient monitoring program.

XV. QAPP – SUMMARY OF REVISIONS

- 1. Page 9 & 10: Update of Appendix A (Year April 2007-March 2008 Non-Event Based Water Quality Sampling Schedule).
- 2. Page 11: Data Summaries Deleted calculations of the lake volume averaged data summary.
- 3. Page 14: Table 1 (Sample Collection and Preservation) Deleted parameter Enterococci.
- 4. Page 23: No storm-event program in 2007.
- 5. Page 24: Deleted reference to equipment rinseate blanks for the storm event monitoring program.
- 6. Page 50: Section XI (Program Assessments) Changed monthly coordination meetings to weekly.
- 7. Page 75: Attachment C (Analytical Methodologies List) Updated to reflect 2006 Minimal Reporting Limit (MRL), accuracy, and precision values.

Attachments

Attachment A: Tributary Field Sampling Procedures – by sampling site

- Attachment B: Chain-Of-Custody Form (Example)
- Attachment C: Analytical Methodologies
- Attachment D: YSI 600/6600 Calibration Procedures
- Attachment E: YSI 600/6600 Maintenance Procedures
- Attachment F: YSI 600/6600 Operation Procedures

ATTACHMENT A:

Tributary Field Sampling Procedures

1. Ninemile Creek Rt. 48 Bridge Sampling Procedures

Equipment Requirements:	Bridge Crane and Bomb Sampler
	Sample Compositing Churn
	Coli Sampler
	In-situ parameters - See YSI Standard Operating Procedure (SOP).
Bottle Requirements:	(1) 1-L plastic pre-cleaned (metals)
-	(1) ¹ / ₂ -gallon plastic (t-Cn)
	(1) 1-L white plastic pre-cleaned (TKN, NH ₃ -N, TP)
	(1) ¹ / ₂ -gallon plastic (conv)
	(1) 500-ml boston round plastic (t-alk)
	(2) 125-ml sterile plastic (coli)
	(2) 250-ml round plastic (srp/tdp)

- Step 1: Divide the stream into 5 equal transects.
- Step 2: Locate the area in the stream with the highest velocity.
- Step 3: Lower the sampler to the water surface and allow the sampler to orient to the stream flow direction. Lower and raise the sampler at a rate of 1 foot per second. Record the number of repetitions (Dips) to fill 75% of the sample bottle. Be careful not to disturb the stream bottom.
- Step 4: Pour the water sample into the churn and rinse out the churn thoroughly.
- Step 5: Perform the same number of trips and dips at all 5 transect locations. Record the number of trips that will be needed to collect sufficient sample volume and the amount of water needed to keep the churn wet.
- Step 6: Fill the required bottles from the Churn. The Field Sheet will specify what bottles need to be filled for that event.
- Step 7: Collect a Coliform sample as per the Coliform Sampling Procedure.
- Step 8: Preserve samples as per Section IV (Table 1-Sample Collection and Preservation) and check samples for the appropriate pH.
- Step 9: Place samples on ice.
- Step 10: Collect field data with the YSI. Place sonde at mid-channel and mid-depth.
- Step 11: Record sample information and USGS stage gage reading on the Chain-of-Custody and record all field observations on the field sheets. Should the gage house not be accessible, provisional readings may be taken from the USGS Internet site.

2. Onondaga Creek at Dorwin Avenue Sampling Procedures

Equipment Requirements:	Bridge Crane and Bomb Sampler Sample Compositing Churn Coli Sampler In-situ parameters - See YSI SOP
Bottle Requirements:	 (1) 1-L plastic pre-cleaned (metals) (1) ½-gallon plastic (t-Cn) (1) 1-L white plastic pre-cleaned (TKN, NH₃-N, TP) (1) ½-gallon plastic (conv)
	 (1) 500-ml boston round plastic (t-alk) (2) 125-ml sterile plastic (coli) (2) 250-ml round plastic (srp/tdp)

- Step 1: Divide the stream into 5 equal transects.
- Step 2: Locate the area in the stream with the highest velocity.
- Step 3: Lower the sampler to the water surface and allow the sampler to orient to the stream flow direction. Lower and raise the sampler at a rate of 1 foot per second. Record the number of repetitions (Dips) to fill 75% of the sample bottle. Be careful not to disturb the stream bottom.
- Step 4: Pour the water sample into the churn and rinse out the churn thoroughly.
- Step 5: Perform the same number of trips and dips at all 5 transect locations. Record the number of trips that will be needed to collect sufficient sample volume and the amount of water needed to keep the churn wet.
- Step 6: Fill the required bottles from the Churn. The Field Sheet will specify what bottles need to be filled for that event.
- Step 7: Collect a Coliform sample as per the Coliform Sampling Procedure.
- Step 8: Preserve samples as per Section IV (Table 1-Sample Collection and Preservation) and check samples for the appropriate pH.
- Step 9: Place samples on ice.
- Step 10: Collect field data with the YSI. Place sonde at mid-channel and mid-depth.
- Step 11: Record sample information and USGS stage gage readings on the Chain-of-Custody and record field observations on the field sheets. Should the gage house not be accessible, provisional readings may be taken from the USGS Internet site.

3. Onondaga Creek at Spencer Street Sampling Procedures

Equipment Requirements:	Bridge Crane and Bomb Sampler
	Sample Compositing Churn
	Coli Sampler
	In-situ parameters - See YSI SOP
Bottle Requirements:	(1) 1-L plastic pre-cleaned (metals)
	(1) ¹ / ₂ -gallon plastic (conv)
	(1) 500-ml boston round plastic (t-alk)

- Step 1: Divide the stream into 5 equal transects.
- Step 2: Locate the area in the stream with the highest velocity.
- Step 3: Lower the sampler to the water surface and allow the sampler to orient to the stream flow direction. Lower and raise the sampler at a rate of 1 foot per second. Record the number of repetitions (Dips) to fill 75% of the sample bottle. Be careful not to disturb the stream bottom.
- Step 4: Pour the water sample into the churn and rinse out the churn thoroughly.
- Step 5: Perform the same number of trips and dips at all 5 transect locations. Record the number of trips that will be needed to collect sufficient sample volume and the amount of water needed to keep the churn wet.
- Step 6: Fill the required bottles from the Churn. The Field Sheet will specify what bottles need to be filled for that event.
- Step 7: Collect a Coliform sample as per the Coliform Sampling Procedure.
- Step 8: Preserve samples as per Section IV (Table 1-Sample Collection and Preservation) and check samples for the appropriate pH.
- Step 9: Place samples on ice.
- Step 10: Collect field data with the YSI. Place sonde at mid-channel and mid-depth.
- Step 11: Record sample information and USGS stage gage reading on the Chain-of-Custody and record field observations on the field sheets. Should the gage house not be accessible, provisional readings may be taken from the USGS Internet site.

4. Onondaga Creek at Kirkpatrick Street Sampling Procedures

Equipment Requirements:	Bridge Crane and Bomb Sampler Sample Compositing Churn Coli Sampler In-situ parameters - See YSI SOP
Bottle Requirements:	 (1) 1-L plastic pre-cleaned (metals) (1) ¹/₂-gallon plastic (t-Cn) (1) 1-L white plastic pre-cleaned (TKN, NH₃-N, TP) (1) ¹/₂-gallon plastic (conv) (1) 500-ml boston round plastic (t-alk) (2) 125-ml sterile plastic (coli) (2) 250 ml round plastic (srn/tdp)

- Step 1: Divide the stream into 5 equal transects.
- Step 2: Locate the area in the stream with the highest velocity.
- Step 3: Lower the sampler to the water surface and allow the sampler to orient to the stream flow direction. Lower and raise the sampler at a rate of 1 foot per second. Record the number of repetitions (Dips) to fill 75% of the sample bottle. Be careful not to disturb the stream bottom.
- Step 4: Pour the water sample into the churn and rinse out the churn thoroughly.
- Step 5: Perform the same number of trips and dips at all 5 transect locations. Record the number of trips that will be needed to collect sufficient sample volume and the amount of water needed to keep the churn wet.
- Step 6: Fill the required bottles from the Churn. The Field Sheet will specify what bottles need to be filled for that event.
- Step 7: Collect a Coliform sample as per the Coliform Sampling Procedure.
- Step 8: Preserve samples as per Section IV (Table 1-Sample Collection and Preservation) and check samples for the appropriate pH.
- Step 9: Place samples on ice.
- Step 10: Collect field data with the YSI. Place sonde at mid-channel and mid-depth.
- Step 11: Record sample information and USGS stage gage readings on the Chain-of-Custody and record field observations on the field sheets.

5. Harbor Brook at Velasko Road Sampling Procedures

Equipment Requirements:	Hand Held Depth Integrated Sampler Sample Compositing Churn Coli Sampler In-situ parameters - See YSI SOP
Bottle Requirements:	 (1) 1-L plastic pre-cleaned (metals) (1) ¹/₂-gallon plastic (t-Cn) (1) 1-L white plastic pre-cleaned (TKN, NH₃-N, TP) (1) ¹/₂-gallon plastic (conv) (1) 500-ml boston round plastic (t-alk) (2) 125-ml sterile plastic (coli)
	(2) 250-ml round plastic (srp/tdp)

- Step 1: Divide the stream into 3 equal transects.
- Step 2: Locate the area in the stream with the highest velocity.
- Step 3: Lower the sampler to the water surface and orient the nozzle to the stream flow direction. Lower and raise the sampler at a rate of 1 foot per second. Record the number of repetitions (Dips) to fill 75% of the sample bottle. Be careful not to disturb the stream bottom.
- Step 4: Pour the water sample into the churn and rinse out the churn thoroughly.
- Step 5: Perform the same number of trips and dips at all 3 transect locations. Record the number of trips that will be needed to collect sufficient sample volume and the amount of water needed to keep the churn wet.
- Step 6: Fill the required bottles from the Churn. The Field Sheet will specify what bottles need to be filled for that event.
- Step 7: Collect a Coliform sample as per the Coliform Sampling Procedure.
- Step 8: Preserve samples as per Section IV (Table 1-Sample Collection and Preservation) and check samples for the appropriate pH.
- Step 9: Place samples on ice.
- Step 10: Collect field data with the YSI. Place sonde at mid-channel and mid-depth.
- Step 11: Record sample information and USGS stage gage reading on the Chain-of-Custody and record field observations on the field sheets.

6. Harbor Brook at Hiawatha Boulevard Sampling Procedure

Equipment Requirements:	Vertical Kemmerer Bottle Sampler Sample Compositing Churn Coli Sampler In-situ parameters - See YSI SOP
Bottle Requirements:	 (1) 1-L plastic pre-cleaned (metals) (1) ½-gallon plastic (t-Cn) (1) 1-L white plastic pre-cleaned (TKN, NH₃-N, TP) (1) ½-gallon plastic (conv) (1) 500-ml boston round plastic (t-alk) (2) 125-ml sterile plastic (coli) (2) 250-ml round plastic (srp/tdp)

- Step 1: Divide the stream into 3 equal transects.
- Step 2: Set the sampler and lower the sampler into the water until fully submerged.
- Step 3: Pour the water sample into the churn and rinse out the churn thoroughly. Fill the churn with water samples.
- Step 4: Fill the required bottles from the Churn. The Field Sheet will specify what bottles need to be filled for that event.
- Step 5: Collect a Coliform sample as per the Coliform Sampling Procedure.
- Step 6: Preserve samples as per Section IV (Table 1-Sample Collection and Preservation) and check samples for the appropriate pH.
- Step 7: Place samples on ice.
- Step 8: Collect field data with the YSI. Place sonde at mid-channel and mid-depth.
- Step 9: Record sample information and USGS stage gage reading on the Chain-of-Custody and record field observations on the field sheets. Should the gage house not be accessible, provisional readings may be taken from the USGS Internet site.

7. Ley Creek at Park Street Sampling Procedure

Equipment Requirements:	Vertical Kemmerer Bottle Sampler Sample Compositing Churn Coli Sampler In-situ parameters - See YSI SOP
Bottle Requirements:	 (1) 1-L plastic pre-cleaned (metals) (1) ½-gallon plastic (t-Cn) (1) ½-gallon plastic pre-cleaned (TKN, NH₃-N, TP) (1) ½-gallon plastic (conv) (1) 500-ml boston round plastic (t-alk) (2) 125-ml sterile plastic (coli) (2) 250-ml round plastic (srp/tdp)

- Step 1: Divide the stream into 3 equal transects.
- Step 2: Set the sampler and lower the sampler into the water until fully submerged.
- Step 3: Pour the water sample into the churn and rinse out the churn thoroughly. Fill the churn with water samples.
- Step 4: Fill the required bottles from the Churn. The Field Sheet will specify what bottles need to be filled for that event.
- Step 5: Collect a Coliform sample as per the Coliform Sampling Procedure.
- Step 6: Preserve samples as per Section IV (Table 1-Sample Collection and Preservation) and check samples for the appropriate pH.
- Step 7: Place samples on ice.
- Step 8: Collect field data with the YSI. Place sonde at mid-channel and mid-depth.
- Step 9: Record sample information and USGS stage gage reading on the Chain-of-Custody and record field observations on the field sheets. Should the gage house not be accessible, provisional readings may be taken from the USGS Internet site.

8. Tributary 5A Sampling Procedures

Equipment Requirements:	Hand Held Depth Integrated Sampler Sample Compositing Churn
	Coli Sampler
	In-situ parameters - See YSI SOP
Bottle Requirements:	(1) 1-L plastic pre-cleaned (metals)
	(1) ¹ / ₂ -gallon plastic (t-Cn)
	(1) 1-L white plastic pre-cleaned (TKN, NH ₃ -N, TP)
	(1) ¹ / ₂ -gallon plastic (conv)
	(1) 500-ml boston round plastic (t-alk)
	(2) 125-ml sterile plastic (coli)
	(2) 250-ml round plastic (srp/tdp)

- Step 1: Divide the stream into 3 equal transects.
- Step 2: Locate the area in the stream with the highest velocity.
- Step 3: Lower the sampler to the water surface and allow the sampler to orient to the stream flow direction. Lower and raise the sampler at a rate of 1 foot per second. Record the number of repetitions (Dips) to fill 75% of the sample bottle. Be careful not to disturb the stream bottom.
- Step 4: Pour the water sample into the churn and rinse out the churn thoroughly.
- Step 5: Perform the same number of trips and dips at all 3 transect locations. Record the number of trips that will be needed to collect sufficient sample volume and the amount of water needed to keep the churn wet.
- Step 6: Fill the required bottles from the Churn. The Field Sheet will specify what bottles need to be filled for that event.
- Step 7: Collect a Coliform sample as per the Coliform Sampling Procedure.
- Step 8: Preserve samples as per Section IV (Table 1-Sample Collection and Preservation) and check samples for the appropriate pH.
- Step 9: Place samples on ice.
- Step 10: Collect field data with the YSI. Place sonde at mid-channel and mid-depth.
- Step 11: Record sample information on the Chain-of-Custody and record field observations on the field sheets.

9. East Flume Sampling Procedure

1-Quart glass jar
Sample Compositing Churn
Coli Sampler
In-situ parameters - See YSI SOP
(1) 1-L plastic pre-cleaned (metals)
(1) ¹ / ₂ -gallon plastic (t-Cn)
(1) 1-L white plastic pre-cleaned (TKN, NH ₃ -N, TP)
(1) ¹ / ₂ -gallon plastic (conv)
(1) 500-ml boston round plastic (t-alk)
(2) 125-ml sterile plastic (coli)
(2) 250-ml round plastic (srp/tdp)

- Step 1: Use a 1-Qt. glass jar at the V-notch weir, collect samples off the downside of the weir.
- Step 2: Pour the water sample into the churn and rinse out the churn thoroughly. Fill the churn with 12 (1-qt) grab samples.
- Step 3: Fill the required bottles from the Churn. The Field Sheet will specify what bottles need to be filled for that event.
- Step 4: Collect a Coliform sample as per the Coliform Sampling Procedure.
- Step 5: Preserve samples as per Section IV (Table 1-Sample Collection and Preservation) and check samples for the appropriate pH.
- Step 6: Place samples on ice.
- Step 7: Collect field data with the YSI. Place sonde just behind v-notch weir.
- Step 8: Record sample information on the Chain-of-Custody and record field observations on the field sheets.

<u>10. Metro Effluent Sampling Procedure</u>

Equipment Requirements:	1-Quart glass grab jar
	Sample Compositing Churn
	Coli Sampler
	Bucket (for sonde use)
Bottle Requirements:	(1) 1-L plastic pre-cleaned (metals)
	(1) ¹ / ₂ -gallon plastic (t-Cn)
	(1) 1-L white plastic pre-cleaned (TKN, NH ₃ -N, TP)
	(1) ¹ / ₂ -gallon plastic (conv)
	(1) 500-ml boston round plastic (t-alk)
	(2) 125-ml sterile plastic (coli)
	(2) 250-ml round plastic (srp/tdp)

- Step 1: Use a 1-Qt. glass jar in a grab polyethylene sampling apparatus on a rope. Collect sample from the Final Effluent (IC#789) Grab location.
- Step 2: Pour the water sample into the churn and rinse out the churn thoroughly. Fill the churn with 12 (1-qt.) grab samples.
- Step 3: Fill the required bottles from the Churn. The Field Sheet will specify what bottles need to be filled for that event.
- Step 4: Collect a Coliform sample as per the Coliform Sampling Procedure.
- Step 5: Preserve samples as per Section IV (Table 1-Sample Collection and Preservation) and check samples for the appropriate pH.
- Step 6: Place samples on ice.
- Step 7: Collect field data with the YSI. Place sonde in a sample bucket/sample compositing churn.
- Step 8: Record sample information on the Chain-of-Custody and record field observations on the field sheets.

<u>11. Lake Outlet Sampling Procedure</u>

Equipment Requirements:	Vertical Kemmerer Bottle Sampler (Dunker) Coli Sampler
	Sample Compositing Churn
	In-situ parameters - See - YSI SOP

Bottle Requirements:

Lake Outlet 2-ft.

Lake Outlet 12-ft.

(1) 1-L plastic pre-cleaned (metals)	(1) 1-L plastic pre-cleaned (metals)
(1) 500-ml boston round plastic (t-alk)	(1) 500-ml boston rnd. plastic (t-alk)
(1) 125-ml plastic (coli)	(1) ¹ / ₂ -gallon plastic (t-Cn)
(2) 250-ml round plastic (srp/tdp)	(2) 250-ml round plastic (srp/tdp)
(1) ¹ / ₂ -gallon plastic (t-Cn)	(1) 1-L white plastic pre-cleaned (TKN, NH ₃ -N, TP)
(1) 1-L white plastic pre-cleaned (TKN, NH ₃ -N,	TP)
(1) 2 liter amber bottle (Chlorophyll- <i>a</i>)	(1) 2 liter amber bottle (Chlorophyll- <i>a</i>)

Step 1: Locate the sampling location at mid-channel.

Step 2: Collect one sample from the required sampling depth to rinse the churn.

Step 3: Collect three samples at a depth of 2 feet and deposit the samples in the Churn.

Step 4: Fill the required bottles from the Churn.

- Step 5: Repeat steps 2, 3 and 4 for the 12-foot sample. If a field duplicate is required at either location, collect that sample using the same protocol. Rinse the Churn with water from the corresponding depth prior to sampling.
- Step 6: Preserve the samples as per Section IV (Table 1-Sample Collection and Preservation).
- Step 7: Place the samples on ice.
- Step 8: Collect field data with the YSI. The sonde should be placed at mid-channel. In-situ data will be recorded at .5 meter increments and at .6 m and 3.7 m.
- Step 9: Record sample information on Section IV (Table 1-Sample Collection and Preservation) and record all field observations on the field sheets.
- NOTE: The sampling site has been moved to the downstream site of the one-lane pedestrian bridge.
<u>12. Metro Bypass Sampling Procedure</u>

Equipment Requirements:	1-Quart glass grab jar Sample Compositing Churn Coli Sampler
Bottle Requirements:	 (1) 1-L plastic pre-cleaned (metals) (1) ¹/₂-gallon plastic (t-Cn) (1) 1-L white plastic pre-cleaned (TKN, NH₃-N, TP) (1) ¹/₂-gallon plastic (conv) (1) 500-ml boston round plastic (t-alk) (2) 125-ml sterile plastic (coli) (2) 250-ml round plastic (srp/tdp)

- Step 1: Use a 1-Qt. glass jar in a grab can on a rope. Collect samples from the Metro Bypass sampling location and pour into a dedicated carboy.
- Step 2: Ensure sample is completely mixed prior to pouring sample from the carboy into the sample containers.
- Step 3: The Field Sheet will specify what bottles need to be filled for that event.
- Step 4: Collect a Coliform sample as per the Coliform Sampling Procedure.
- Step 5: Preserve samples as per Section IV (Table 1-Sample Collection and Preservation) and check samples for the appropriate pH.
- Step 6: Place samples on ice.
- Step 7: Collect field data with the YSI. Place sonde in a sample bucket.
- Step 8: Record sample information on the Chain-of-Custody and record field observations on the field sheets.

13. Bloody Brook at Onondaga Lake Parkway Sampling Procedure

Equipment Requirements:	1-Quart glass jar
	Sample Compositing Churn
	Coli Sampler
	In-situ parameters - See YSI SOP
Bottle Requirements:	(1) 1-L plastic pre-cleaned (metals)
	(1) ¹ / ₂ -gallon plastic (t-Cn)
	(1) 1-L white plastic pre-cleaned (TKN, NH ₃ -N, TP)
	(1) ¹ / ₂ -gallon plastic (conv)
	(1) 500-ml boston round plastic (t-alk)
	(2) 125-ml sterile plastic (coli)
	(2) 250-ml round plastic (srp/tdp)

- Step 1: Use a 1 Qt. glass jar in a grab can on a rope. Collect sample from the Blood Brook Creek bridge grab location.
- Step 2: Pour the water sample into the churn and rinse out the churn thoroughly. Fill the churn with 12-15 (1qt.) grab samples.
- Step 3: Fill the required bottles from the churn. The Chain-of-Custody form will specify what bottles need to be filled for that event.
- Step 4: Collect a Coliform sample as per the Coliform Sampling Procedure.
- Step 5: Preserve samples as per Chain-of-Custody and check samples for the appropriate pH.
- Step 6: Place samples on ice.
- Step 7: Collect field data with the YSI.
- Step 8: Record sample information on the Chain-of-Custody and record field observations on the field sheet. Record the USGS Staff Gage Reading.

14. Sawmill Creek at Onondaga Lake Recreational Path Sampling Procedure

Equipment Requirements:	1-Quart glass jar
	Sample Compositing Churn
	Coli Sampler
	In-situ parameters - See YSI SOP
Bottle Requirements:	(1) 1-L plastic pre-cleaned (metals)
	(1) ¹ / ₂ -gallon plastic (t-Cn)
	(1) 1-L white plastic pre-cleaned (TKN, NH ₃ -N, TP)
	(1) ¹ / ₂ -gallon plastic (conv)
	(1) 500-ml boston round plastic (t-alk)
	(2) 125-ml sterile plastic (coli)
	(2) 250-ml round plastic (srp/tdp)

- Step 1: Use a 1-Qt. glass jar at the downstream side of the Path, dip jar into stream flow as near to center of stream as possible, to collect samples.
- Step 2: Pour the water sample into the churn and rinse out the churn thoroughly. Fill the churn with 12 (1-qt) grab samples.
- Step 3: Fill the required bottles from the Churn. The Field Sheet will specify what bottles need to be filled for that event.
- Step 4: Collect a Coliform sample as per the Coliform Sampling Procedure.
- Step 5: Preserve samples as per Section IV (Table 1-Sample Collection and Preservation) and check samples for the appropriate pH.
- Step 6: Place samples on ice.
- Step 7: Collect field data with the YSI. Place sonde at mid-channel and mid-depth.
- Step 8: Record sample information and USGS stage gage reading on the Chain-of-Custody and record field observations on the field sheets.

15. Onondaga Creek Salt Spring (Spence-Patrick Spring Well Point) Sampling Procedure

Location:	East Side of Onondaga Creek between Spencer and Kirkpatrick Streets					
Equipment Requirements:		Gallon jug deionized water Sample Compositing Carboy Portable Pump with NiCd Battery In-situ parameters - See YSI 600 SOP				
Bottle Requirements:		 (1) 1 L plastic pre-cleaned (metals) (1) gallon plastic (conv) (1) 500ml boston round plastic (t-alk) 				
Step 1:	Unhook the sar site is along the Onondaga Cree the one gallon j	npling tube attached to the tree located at the sampling site. The sampling e bank between Spencer St. and Kirkpatrick St. (that is, the right bank of k if facing in the direction of Onondaga Lake). Place the sampling tube in ug of deionized water.				
Step 2:	Turn the pump to reverse. Pump the deionized water into the sampling line and discard the rinse water.					
Step 3:	Turn the dial to pump "forward". Pump the sample water into a carboy to composite.					
Step 4:	Be sure to pump up enough volume to fill the sample containers and to get an in-situ YS reading. The YSI probes need to be covered completely to get an accurate reading.					
Step 5:	Swirl the carboy and pour off the sample containers.					
Step 6:	Preserve samples as per Section IV (Table 2 – Sample Collection and Preservation and check the samples for the appropriate pH.					
Step 7:	Place samples on ice.					
Step 8:	Collect field d provided all the	ata with the YSI 600. The YSI can be placed in the sampling carboy sample containers have been filled.				
Step 9:	Record sample field sheet.	information on the Chain of Custody and record field observations on the				

ATTACHMENT B:

Chain-Of-Custody Form (Example)

	CHAIN	OF CI	USTO	DY REC	ORD		SAMPL	E#				
	ONON	DAGA COL	JNTY DEP	ARTMENT	OF WATER	ENVIRONMEN	T PROTECTI	ON		Project	Name	
		Eng	ineering	and Labor	ratory Ser	rvices Divisi	on			IC/F	C #	
		(Revis	sion: JUN	E 2006– COC	C_62006Dba	seportraitmod	DOC)			Sewer#/	WCode	
	Origin o	f Sample	ə (i.ə., N	ame of Inc	lustry, Tre	eatment Pla	nt, Hauler, e	etc.)		Invoi	ce #	
j						,				DEC P	Permit	
						~				Req	by:	
CATEGO	ORY:				AM	IP IN	D T	ſP	WHC	; {	SPECIAL	QAVQC
CONTR	ACT LAB	ORATOR	/ List Na	me:				-5- 2-				
Start Date	End Date	P'UP Date	Start Time	End Time	SAMP TYPE	BOTTLE #	Container TYPE	Ini tial	Pres Yes	No	SAMP Rece	LE NOTES (Lab) bipt Temp
]				Field pH		Meter #			Chl	orine Re	sidual	
Bottles/	Comp	Ovidiat	Alique	st/Bottle	izor Pomo	Sample Int	erval	EL OW	Re	frigerated	/ Iced	Yes / No
Cheo	cklist	Yes	Nc	Ye:	s h	No Initia	s	2 nd Re	(Date/time) ading) > 1.	2	•
NH	3-N							1 st Re	ading			
Color li	KN nterfer?			If v	/es. addec	d[*]]	la Thio		TAL ITS			
MATRIX	X: Solid	WasW	/ater	SurWater	PotWa	ter Rema	rks (sample	e/collectio	on deta	ails)		
							·····					
SPLIT WI	TH (Name/T	itle/Date):							4			
	TH (Name/T IETERS /	itle/Date):			HEDULE?	YES NO	→ If NO I	ist Samr	le Par	ameters t		
SPLIT WI	TH (Name/T IETERS /	itle/Date): AS LISTE	:D IN AN	INUAL SCH	HEDULE?	YES NO	→ If NO, L	ist Samp	ble Para	ameters t	pelow:	
SPLIT WI	TH (Name/T IETERS /	itle/Date): AS LISTE	ED IN AN	INUAL SCH	HEDULE? DY (Print	YES NO Name, Signat	→ If NO, L ure, Title, Da	ist Samp	ole Para	ameters t	Delow:	
SPLIT WI PARAM 1.	TH (Name/T IETERS /	itle/Date): AS LISTE	ED IN AN	INUAL SCH	HEDULE?	YES NO Name, Signat	→ If NO, L ure, Title, Da	ist Samp ite of Pos	ole Para	ameters t n)	Delow:	
SPLIT WI PARAM 1. 2. 3.	TH (Name/T IETERS /	itle/Date): AS LISTE	ED IN AN	INUAL SCH	HEDULE? DY (Print	YES NO Name, Signat	→ If NO, L ure, Title, Da	ist Samp ate of Pos	ole Para	ameters t n)	Delow:	
SPLIT WI PARAM 1. 2. 3. 4.	TH (Name/T IETERS /	itle/Date): AS LISTE	ED IN AN	INUAL SCH	HEDULE?	YES NO Name, Signat	→ If NO, L ure, Title, Da	ist Samp ite of Pos	ole Para	ameters t n)	pelow:	
SPLIT WI PARAM 1. 2. 3. 4. 5.	TH (Name/T IETERS /	itle/Date): AS LISTE	ED IN AN	INUAL SCH	HEDULE?	YES NO Name, Signat	→ If NO, L ure, Title, Da	ist Samp ite of Pos	ole Para	ameters t	pelow:	

ATTACHMENT C:

Analytical Methodologies

ANALYTICAL PROCEDURES FOR WATER QUALITY ANALYSES 2006 AMBIENT MONITORING PROGRAM

			Minimum		
			Reportable		
Parameter	Code	Methods *	Limit	Accuracy	Precision
			(mg/L)	(%)	(%)
Bio Oxy Demand 5-day	BOD5	2:(5210)	2.0	97.5	15.0
Carbon. Bio Oxy Demand 5-day	CBOD5	2:(5210 B)	2.0	96.0	11.0
Total Alk as CaCO3	ALK-T	1:(310.1)	1.0	98.0	1.6
Total Organic Carbon	TOC	1:(415.1)	0.5	93.5	4.1
Total Organic Carbon - Filtered	TOC-F	1:(415.1)	0.5		
Total Inorganic Carbon	TIC	1:(415.1)	0.5	98.3	3.2
Total Kjeldahl Nitrogen as N	TKN	3:(10-107-06-2-D)	0.15	93.6	4.2
Ammonia Nitrogen as N	NH3-N	3:(10-107-06-1-B)	0.05	99.3	4.8
Organic Nitrogen as N	ORG-N	3:(10-107-06-2-D)	0.05		
Nitrate as N	NO3	3:(10-107-04-1-B)	0.01	102.2	4.4
Nitrite as N	NO2	3:(10-107-04-1-B)	0.01	97.2	1.3
Total Phosphorus (Manual)**	ТР	1:(365.2)	0.003	96.9	5.1
Total Phosphorus	ТР	3:(10-115-01-1-E)	0.01	91.9	2.8
Total Dissolved Phosphorus	TDP	1:(365.2)	0.003	96.9	5.1
Soluble Reactive Phosphorus	SRP (OP)	1:(365.2)	0.003	99.3	2.1
· · · · · · · · · · · · · · · · · · ·					
Silica	SiO2	1:(370.1)	0.2	98.6	5.3
Sulfates	SO4	1:(375.4)	10.0	103.8	7.5
Total Sulfides	S=	1:(376.1)	0.2		
Total Solids	TS	1:(160.3)	1.0		
Total Volatile Solids	TVS	1:(160.4)	1.0		
Total Suspended Solids	TSS	1:(160.2)	1.0		
Total Volatile Suspended Solids	VSS	1:(160.4)	1.0		
Total Dissolved Solids	TDS	1:(160.1)	1.0	100.4	19.0
Arsenic - furnace	As - GFA	4:(200.9)	0.002	96.3	5.3
Total Cadmium	Cd - GFA	4:(200.9)	0.0008	104.2	3.7
Total Calcium	Ca	1:(215.1)	1.0	103.6	1.8
Total Chromium	Cr	4:(200.7)	0.010(0.0025)*	96.0	3.0
Chloride	Cl	3:(10-117-07-1-B)	2.0	99.9	1.5
Residual Chlorine	CL2 RES	1:(330.4)	0.1		
Total Copper	Cu	4:(200.7)	0.0125(0.0031)*	98.2	2.8

ANALYTICAL PROCEDURES FOR WATER QUALITY ANALYSES 2006 AMBIENT MONITORING PROGRAM (CONTINUED)

			Minimum		
D	C 1		Reportable		.
Parameter	Code	Methods *	Limit	Accuracy	Precision
	CNL CL 2	2 (10 204 00 1 4)	(mg/L)	(70)	(70)
Chlorinated Cyanide	CN-CL2	3:(10-204-00-1-A)	0.005	05.6	11.0
Total Cyanide	CN-T	3:(10-201-00-1-A)	0.005	95.6	11.2
Total Iron	Fe	4:(200.7)	0.05	100.7	5.9
Total Lead - furnace	Pb - GFA	4:(200.9)	0.002	100.6	4.4
Total Magnesium	Mg	1:(242.1)	0.1	103.2	2.1
Total Manganese	Mn	4:(200.7)	0.025	100.3	5.6
Total Mercury (Cold Vapor)	Hg	1:(245.2)	0.00002	103.3	4.2
Selenium - furnace	Se - GFA	4:(200.9)	0.002	101.8	5.3
Total Sodium	Na	1:(273.1)	3.0	103.6	3.6
Total Nickel	Ni	4:(200.7)	0.015(0.00375)*	95.8	2.8
Potassium	K	1:(258.1)	0.020	101.4	2.8
Total Silver	Ag	4:(200.7)	0.0125	97.0	3.1
Total Zinc	Zn	4:(200.7)	0.025(0.00625)*	94.5	3.2
Conductivity	COND	2:(2510B)	-		
Dissolved Oxygen - Field	DO - Field	1:(360.1)	0.1		
Dissolved Oxygen - Lab	DO - Lab	1:(360.1)	-		
Dissolved Oxygen - Winkler	DO -	1:(360.2)	-		
	Winkler				
pН	pН	1:(150.1)	-		
Temperature	TEMP	1:(170.1)	-		
· · ·					
Phenol	PHENOL	3:(10-210-00-1-B)	0.015	102.8	14.1
Phaeophytin a	PHEO-A	2:(10200 H.2)	0.0002		
Chlorophyll <i>a</i>	CHLOR-A	2:(10200 H.2)	0.0002		
		, , , , , , , , , , , , , , , , , , ,			
Enterococci	ECOCCI-	5:(1600)	2.0		
	MF		(cells/100 ml)		
E. Coliform	ECOLI-	2:(9213 D)	2.0		
	MF		(cells/100 ml)		
Fecal Coliform	FCOLI-	2:(9222 D)	2.0		
	MF		(cells/100 ml)		

Methods listed are applicable for all matrices of water, wastewater, and surface waters.

* Indicates method has a lower level of detection due to sample concentration

**Started in August 2000 for all AMP samples.

- 1: Indicates USEPA Methods for Chemical Analysis of Water and Waste 1979
- 2: Indicates Standard Methods (18th Edition)
- 3: Indicates Lachat Instruments QuickChem Methods: Approved for use by USEPA NYSDOH ELAP

4: Indicates USEPA "Methods for the Determination of Metals in Environmental Samples" Supplement 1, May 1994

5: USEPA Microbiological Methods Manual 1996

ATTACHMENT D:

YSI 600/6600 Calibration Procedures

YSI 600 & 6600 Calibration

The YSI 600 & 6600 sonde units are calibrated in the OCDWEP Laboratory located at the Henry Clay Boulevard Facility (HCBF). All calibration solutions e.g. $(20^{\circ}C \text{ DI water}; \text{ pH buffers 7,10}; \text{ Conductivity KCl}$ buffers 0.01N & 0.02N) are purchased and supplied with a certificate of analysis and stored in the laboratory. The YSI 600 & 6600 are calibrated no more than 24 hours prior to use on the day that it is used in the field. Post-calibration checks are conducted after use, on the same day, on all calibrated parameters. All calibration records are maintained in a bound book.

Dissolved Oxygen (DO) Calibration

1. Transport the YSI 600 or 6600 along with the 650 MDS to OCDWEP Lab. Place the sonde unit (with attached weighted probe guard) into the 20° C DI water bucket, which can be found in the 20° C walk-in incubator room. Allow the unit to stabilize in the bucket for 10 minutes. During this time, the pH buffers and conductivity buffers can be obtained in the cabinet located in the ELS Field Staging Room. Also, obtain a large wash bottle of DI water for rinses.

2. Record the current barometric pressure (from the MDS 650). Record the mm of Hg value in the bound calibration notebook.

3. The DI water in the bucket should be well stirred, and the YSI 600 or 6600 should be temperature stabilized before proceeding with DO calibration.

4. Once stable, record in the calibration log book the DO and temperature value on the display unit. Collect two Winkler bottle DO samples from the DI water bucket, and turn these samples over to the laboratory technician responsible for DO analysis.

5. The DO concentration is determined in each of the two bottles using the Winkler method. Record each result and the average value of the two DO concentrations in the calibration logbook.

6. If the concentration results of the two bottles, using the Winkler method, are greater than 0.2 ppm different, the DO concentrations should be determined again.

7. If the "average Winkler DO" value is not within five-hundredths (0.05) of the value on the display unit, then it is necessary to calibrate the YSI 600 or 6600, using the "average Winkler DO" value.

8. Select **"Sonde Menu,"** then **"Calibrate,"** then **"DO %"** on the display unit. Enter the calculated barometric pressure **"mm/Hg."** The display will then return to the data display screen, with the option **"calibrate"** highlighted. Record the displayed DO value as the initial reading. Then select "enter"; the calibration will stabilize and be completed. Record the new displayed value in the logbook as the calibrated value. Select the highlighted option **"continue"** by pressing "enter". For calibration to a DO Winkler value, select **"DO mg/L"**, enter the average Winkler DO value. The display will then return to the data display screen, with the option **"calibrate"** highlighted. Record the displayed DO value as the initial reading. Then select "enter"; the calibrate" highlighted. Record the displayed DO value as the initial reading. Then select "enter"; the calibrate will stabilize and be completed. Record the new displayed value in the logbook as the calibrate. Select the highlighted option **"continue"** by pressing "enter". The DO is now calibrated.

9. <u>After use in the field</u>, conduct the post-calibration procedure repeating steps 1 through 5 as listed above. The difference between the displayed DO value recorded in the log book and the "average Winkler DO" is the drift, which should be recorded in the log book.

pH Calibration

1. Remove the weighted probe guard from the sonde unit and screw on the calibration cup. Rinse the cup with DI water. Thoroughly mix the container of pH 6 buffer, making sure the solution is dated, and fresh. Rinse the probes in the calibration cup with pH 6 buffer, then fill the cup with the buffer until all probes are submerged. Allow the readings to stabilize for approximately 90 seconds.

2. Select **"Sonde Menu,"** then **"Calibrate,"** then **"pH,"** then **"2 point cal"** on the display unit. Enter the first pH buffer for calibration (pH 6.00). The display will then return to the data display screen, with the option **"calibrate"** highlighted. Record the displayed pH value as the initial reading. Then select "enter", the calibration will stabilize and be completed. Record the new displayed value in the logbook as the calibrated value. Select the highlighted option "continue" by pressing "enter".

3. Rinse the cup with DI water. Thoroughly mix the container of pH 10 buffer, making sure the solution is dated, and fresh. Rinse the probes in the calibration cup with pH 10 buffer, then fill the cup with the buffer until all probes are submerged. Allow the readings to stabilize for approximately 90 seconds.

4. Next, enter the second pH buffer for calibration (pH 10.00). The display will then return to the data display screen, with the option "**calibrate**" highlighted. Record the displayed pH value as the initial reading. Then select "enter", the calibration will stabilize and be completed. Record the new displayed value as the calibrated pH in the logbook. The display will show "**continue**" highlighted, select "enter" to continue with options.

5. Next, put the display unit in run mode. Rinse the cup with DI water. Thoroughly mix the container of pH 7.00 buffer, making sure the solution is dated, and fresh. Rinse the probes in the calibration cup with pH 7.00 buffer, then fill the cup with the buffer. All probes should be submerged. Allow the readings to stabilize for approximately 90 seconds. Record the value on the display unit. This value should be recorded in the logbook as the check value. (Target value +/- 0.05 Standard Units)

6. <u>After use in the field</u>, conduct the post-calibration procedure by repeating steps 1 and 3. The displayed value should be recorded as the "after use" value. The difference between the "after use" value and the "calibrated" value is the drift. Record this value in the logbook.

Conductivity Calibration

1. Rinse the calibration cup twice with DI water, then once with the 0.02N KCl solution. Fill the calibration cup with the 0.02N KCl solution such that the conductivity block is fully submerged. Tap the sonde unit to dislodge any possible air bubbles.

2. Select **"Sonde Menu,"** then **"Calibrate,"** then **"conductivity,"** then **"sp. cond."** Enter the value 2.76 mS/cm for calibration of (0.02N KCl). The display will then return to the data display screen, with the option **"calibrate"** highlighted. Record the displayed sp.cond. value as the initial reading. Then select "enter", the calibration will stabilize and be completed. Record the new displayed value in the logbook as the calibrated value. Select the highlighted option **"continue"** by pressing "enter". The display will then continue with options. Advance to **"sonde run."**

3. Rinse the calibration cup twice with DI water, then once with the 0.01N KCl solution. Fill the calibration cup with the 0.01N KCl solution such that the entire conductivity block is fully submerged. Tap the sonde unit to dislodge any possible air bubbles.

4. Record the displayed conductivity value in the logbook as the "initial reading".

5. After use in the field, conduct the post-calibration procedure by repeating steps 1 and 3. The displayed value for each solution should be recorded as the "after use" value. The difference between the "after use" value and the "calibrated value" (for 0.02N KCl) and "initial value" (for 0.01N KCl) should be recorded as the drift.

Depth Calibration

1. Calibration of depth should occur in the field, immediately prior to use. Suspend the sonde unit by holding the cable, such that the probes are just above the water surface. Select **"Sonde Menu,"** then **"Calibrate"**, then **"Pressure-ABS"** on the display unit. Enter the calibrated value (0.0 meters). The display will then return to the data display screen, with the option **"calibrate"** highlighted. Select "enter", the calibration will stabilize and be completed. Select the highlighted option **"continue"** by pressing "enter". The display will then continue with options. Advance to **"sonde run."**

Battery Voltage Evaluation

1. Internal battery voltage is shown on the display unit. Batteries are replaced when the battery voltage indicator is down to 1/4 charge. Replace with four C cell batteries.

Temperature Calibration

- 1. The temperature sensor is factory calibrated.
- 2. Quarterly calibration checks are performed by the OCDWEP Lab.

ORP Calibration

The ORP sensor is factory calibrated. However, it is possible to calibrate or check the sensor using a standard Zobel's solution. This calibration will be done quarterly.

2. Rinse the calibration cup twice with DI water, then once with the Zobel's solution. Fill the calibration cup with the Zobel's solution such that the ORP probe is fully submerged.

3. Select **"Sonde Menu,"** then **"Calibrate,"** then **"ORP"**. Record the temperature of the unit and enter the correct value for Zobel's solution which corresponds to the temperature value (See instrument manual for table). The display will then return to the data display screen, with the option **"calibrate"** highlighted. Record the displayed ORP value as the initial reading. Then select "enter", the calibration will stabilize and be completed. Record the new displayed value in the logbook as the calibrated value. Select the highlighted option **"continue"** by pressing "enter". The display will then continue with options. Advance to **"sonde run."**

Turbidity Calibration (6600 Sondes Only)

1. The Turbidity sensor is calibrated as needed for each use. A three- point calibration is performed at the office or in the field.

2. Rinse the calibration cup twice with DI water. (Note: Presence of air can cause erroneous readings. DI water should be allowed to stand prior to calibration.)

3. Carefully fill the calibration cup with DI water by pouring the DI water gently onto the side of the

calibration chamber to reduce air bubbles. Place the calibration cup/chamber with a black cover on the countertop. Approximately two to three inches of water will be sufficient.

4. Carefully place the sonde on top of the calibration cup. Loosely screw the cap on. Be sure that the sonde is stable and not going to fall over.

5. Select **"Sonde Menu"**, then **"Calibrate"**. Scroll down to select **"Optic T-Turbidity"**. Press Enter. Scroll to" **3- point calibration**". Press the "enter" key.

6. At this point, press the ESC and Enter key simultaneously. The screen will then ask if you want to **Uncal**. Select yes. The display will return to the calibration value screen.

7. The display will then ask for a calibration value, enter 0.0. Press the "enter" key. The unit will stabilize and display "Calibrate" and "Clean Optics". Scroll to "**clean optics**". When complete, scroll to "**calibrate**". When the display is stable, press the enter key. Unit will display "**Continue**" and press the enter key.

8. Rinse the calibration cup with 10 NTU standard. Check the expiration date on the standard prior to use. (**NOTE:** If you are limited on standard volume, the probes must be clean and dry prior to immersing in the standard.) Fill calibration cup with 10 NTU standard. Pour the standard gently onto the side of the calibration cup to prevent air bubbles. Be sure to use the black chamber cover. The standard should not be shaken or agitated. Again the sonde is placed on top of the chamber loosely. Follow the keypad instructions. The black turbidity probes are 6136 probes. The 10 NTU standard is adjusted to a value of 11.2 NTU. If the turbidity probe is gray in color the NTU standard value would be 10.0. Enter the second point **11.2** value. Press the "enter "key.

9. Rinse the calibration cup with 100 NTU standard. Check the expiration date on the standard prior to use.

10. Fill calibration cup with 100 NTU standard. Follow the keypad instructions. Again if the turbidity probe is black, it is a 6136 probe and the 100 NTU standard value is adjusted to 123 NTU. Enter third point **123** value. Press the "Enter" key.

10. Calibration is complete. Press ESC to go back to main screen.

Chlorophyll (Total) Calibration (6600 Sondes Only)

1. The Chlorophyll sensor is calibrated as needed for each use. A single point calibration is done at the office or in the field. Allow distilled water to stand to due air bubbles prior to calibration.

3. Rinse the calibration cup twice with DI water. Fill the calibration cup by pouring slowly onto the side of the calibration cup to reduce air bubbles. Be sure to use the black colored cap. Set the cup on the bench top and the sonde on top of the chamber loosely. Be careful that the sonde is secure enough not to fall over.

4. Select **"Sonde Menu"**, then scroll to **"Calibrate"**. Select **"Optic-C Chlorophyll"** and press the enter key. Select **"Fluor zero"** and press the "enter" key.

5. The display will then prompt you to enter a calibration value, type in **0.0** and press the "enter" key.

5. Unit will stabilize. Display will highlight "**Calibrate**" or "Clean Optics". Select "**Calibrate**". When stable, press the "enter "key on the keypad. The calibration is complete. Press "**Esc**" key to go back to the main menu.

ATTACHMENT E:

YSI 600/6600 Maintenance Procedures

YSI 600 & 6600 Maintenance

General Maintenance

1. After use, the YSI 600 / YSI 6600 units are stored clean and dry in the Field Support Staging room at the HCBF. Batteries are replaced on the 650 MDS when the battery voltage indicator is down to 1/4 charge. Replace with four C cell batteries.

2. The cable is cleaned and recoiled, clean and lubricate the rubber connectors. Store the sonde unit with ~ 1 inch of tap water in storage cup.

3. Check the Dissolved Oxygen (DO) membrane after each use and replace as needed. Avoid over stretching the membrane, invert sonde unit several times, check for trapped air bubbles under the membrane.

4. Rinse pH bulb with tap water to remove any film or debris. If good readings are not established, soak the probe in a dishwashing liquid solution for 10-15 minutes. A cotton swab can be used gently to clean the bulb, if needed.

Quarterly Maintenance

1. If the sonde does not have a good response time, soak the pH electrode in a 1:1 HCl solution for 30 - 60 minutes. Remove and rinse the electrode with water. If biological contamination is present soak the probe in a 1 to 1 dilution of chlorine bleach. Then rinse the probe in clean tap water for one hour, swirl occasionally.

2. Clean the Conductivity block and electrodes with a dishwashing liquid solution.

3. Maintain the ORP sensor in the same manner as the pH probe.

4. The depth sensor port should be inspected for blockages or build-ups of mineral or biological matter. A syringe can be used to flush out the ports with tap water.

5. The temperature sensor is factory set and requires no calibration, however, it should be checked against a certified laboratory thermometer quarterly. Wipe down the temperature sensor with a clean cloth.

6. The function of the Redox (ORP) sensor can be checked quarterly against a standard Zobel's solution.

Special Maintenance on the 6600 Sonde Units

1. The Chlorophyll optical sensor should be cleaned, as needed, using the attached wiper mechanism. The wiper should be changed as needed.

2. The Turbidity optical sensor should be cleaned, as needed, using the attached wiper mechanism. The wiper should be changed as needed.

ATTACHMENT F:

YSI 600/6600 Operation Procedures

YSI 600 & 6600 Operation

Tributary Field Sampling

1. Transport the YSI 600 or 6600 sonde unit along with the 650 MDS in the carry case, with the storage cap secured. Be sure to keep the cable coiled neatly and secure the unit such that it does not slide in the cab of the vehicle. When using the unit in the field, set the case on a plastic crate, keeping it off the ground and clean.

2. Before lowering the sonde unit, attach the weighted probe guard. Throughout the day, and in between sampling sites, the probe guard may be removed and the storage cup is replaced.

3. Lower the sonde unit into the stream at mid-stream & mid-depth. This method should be used at all sampling locations except for the following sites. At the Lake Outlet sampling site collect a mid-channel profile along the bridge, obtain readings at half-meter increments and at 0.6 meters and 3.7 meters (corresponding to the sample depths of 2' and 12'). At East Flume sampling site, lay the sonde unit in front of the v-notch weir.

4. When securing the sonde unit cable to a railing be sure not to overly bend it, as that could damage the coaxial **cable**.

5. Log the data after approximately 2 minutes or when the readings appear stable. Record data by: selecting "sonde run" from the 650 Main Menu, then select "log one sample" from the 650 column, selecting "enter". Choose a file name and select "ok." The display will tell you that the sample is logged. Note that the sonde unit will take longer to stabilize in cold weather.

Lake Sampling

1. Transport the YSI 600 or 6600 sonde unit along with the 650 MDS in the carry case, with the storage cap secured to the sonde unit. Be sure to keep the cable coiled neatly and secure the unit such that it does not slide in the cab of the vehicle.

2. Before lowering the sonde unit, attach the weighted probe guard. Throughout the day, and in between sampling sites, the probe guard may be removed and the storage cup is replaced.

3. Record data at every 0.5 meter increment, starting at the surface to the bottom. Log the data after approximately 2 minutes or when **the** readings appear stable. To record data for the event select "**sonde run**" from the 650 Main Menu, then **select "log one sample"** from the 650 column, selecting "**enter**". Choose a file name and select "**ok**." The display will tell you that the sample is logged. Note that the sonde unit will take longer to stabilize in cold weather.

River Sampling

1. Transport the YSI 600/6600 sonde unit along with the 650 MDS in the carry case, with the storage cap secured to the sonde unit. Be sure to keep the cable coiled neatly and secure the unit such that it does not slide in the cab of the vehicle. When using the unit in the field, set the case on a plastic crate if possible, keeping it off the deck of the boat.

2. Before lowering the sonde unit, attach the weighted probe guard. Throughout the day it is advisable to keep the sonde unit in a tub of river water. This allows for quicker usage and reduces the need for frequent removal of the probe guard.

3. Record data at every 0.5 meter increment, starting at the surface to the bottom. Be sure to log a data reading at 1 meter below the surface and 1 meter above the bottom, to correspond to water sample collection depths. Record the data after approximately 2 minutes or when the readings appear stable. Record data as described above.

Data Download

1. Connect the YSI 650 display unit to the interface cable on the designated computer. Turn the YSI 650display unit on.

2. On the computer; access **EcoWatch** from the Windows menu, by selecting the icon.

3. On the YSI 650 select "file" from the main menu, then select "upload to PC," then choose the file you wish to transfer.

4. On the computer select the **"sonde icon on the tool bar,"** the file transfer status will be displayed on the computer. After the file has been transferred select **"file"**, then **"open"** from the main tool bar and choose the file you wish to open. The new file will be opened in the EcoWatch software and can now be exported as a text file. In the file menu system on the computer, select **"export"**, then **"CDF/WMF."** Now give the file to be exported a text file name, such as: 05-22-02, in the Q:\AMP\2007\Tribs\Biweekly\ directory. Select **"export"** on the computer. The transfer will be completed.

5. Open *Excel* from the Windows menu, open Q:\AMP\2007\Tribs\Biweekly\ then choose the file type as "All Files," then selected text file e.g. 05-22-02. In order to import this file into *Excel* two options must be selected. The first drop down box selection should be "delimited", then choose "Next", the second drop down box selection should be "comma", be sure to click off "tab", then choose "finish".

6. Save the file in *Excel*. Select **"Save as"**. For a lake file save as: Q:\AMP\2007\Lake\Biweekly\05-22-02SD. Be sure to select the **"File Type"** as **"Microsoft Excel Workbook."** Open *Excel* from the Windows menu and open the desired file. Manipulate the data to fit the data format.

ATTACHMENT 2

QUALITY ASSURANCE PROGRAM PLAN

FOR THE 2007 ONONDAGA LAKE FISH SAMPLING PROGRAM

AMBIENT MONITORING PROGRAM

Prepared for the NYSDEC

Prepared by:

Ichthyological Associates, Inc (Original Document)

Ecologic, LLC (Original Document and Revisions)

Onondaga County Department Of Water Environment Protection (Revisions)

April 2007

TABLE OF CONTENTS

1.0	INTF	RODUCTION/PURPOSE	3
2.0	STA	FF TRAINING	6
3.0	PELA	AGIC LARVAE – Miller High Speed/Modified Double Oblique Tow	7
3.1	Pro	ocedures	7
3	.1.1	Pre-field:	7
3	.1.2	Field:	7
3.	.1.3	End of Sample Day	9
3.	.1.4	End of Sample Event	9
3.	.1.5	Field Data Sheet Packet	9
4.0	LITT	ORAL YOUNG-OF-YEAR (YOY)/JUVENILE FISH – Bag Seine	10
4.1	Pro	ocedures	10
4	.1.1	Pre-field:	10
4	.1.2	Field:	10
4	.1.3	End of Sample Day	11
4	.1.4	End of Sample Event	11
4	.1.5	Field Data Sheet Packet	12
5.0	NES	ГING SURVEY	13
5.1	Pro	ocedures	13
5.	.1.1	Pre-field:	13
5	.1.2	Field:	13
5	.1.3	End of Sample Day	14
5	.1.4	End of Sample Event	14
5	.1.5	Field Data Sheet Packet	14
6.0	ADU	LT FISH – Boat Electrofishing	15
6.1	Pro	ocedures	15
6	.1.1	Pre-field:	15
6	.1.2	Field:	15
6	.1.3	End of Sample Day	18
6	.1.4	End of Sample Event	18
6	.1.5	Field Data Sheet Packet	18
7.0	ADU	LT FISH – Littoral-Profundal (fixed deep water) Gill Net Sampling	19
7.1	Pro	ocedures	19
7	.1.1	Pre-field:	19
7	.1.2	Field (Gill Net Setting):	19
7.	.1.3	Field (Gill Net Retrieval):	20
7	.1.4	End of Sample Day	20
7	.1.5	End of Sample Event	20
7	.1.6	Field Data Sheet Packet	21
8.0	DEF	ORMITIES, EROSIONS, LESIONS, TUMORS, FUNGAL INFECTIONS,	
	AND	MALIGNANCIES (DELTFM) MONITORING	22
9.0	REC	REATIONAL FISHERY – Angler Diary	22
10.0	CHR	ONOLOGY OF QAPP	22
11.0	LITE	ERATURE CITED	23

1.0 INTRODUCTION/PURPOSE

As part of the Onondaga Lake Ambient Monitoring Program the Onondaga County Department of Water Environment Protection has prepared a Quality Assurance Program Plan (QAPP) for the Onondaga Lake Fish Sampling Program for 2007. This document provides written documentation of the QAPP associated with a baseline fisheries investigation that was initiated in 2000, and subsequent revision or modifications to the program.

The County's long-term monitoring program includes assessment of physical, chemical, and biological attributes of the aquatic resource. The baseline Onondaga Lake Fisheries Monitoring Program and on going studies are expected to address the goal of the *Ambient Monitoring Program* to assess progress towards "swimmable and fishable" conditions in Onondaga Lake by monitoring fish reproductive success and changes in the structure of the fish community.

Background

The Onondaga Lake Fish Program was developed in consultation with expert technical advisors in limnology, engineering, statistics, and fisheries. The 2007 lake fisheries program is summarized in Table 1.

Development of the QAPP

OCDDS, Ichthyological Associates, Inc. (IA), and EcoLogic, LLC (EcoLogic) staff met on August 15, 2000 to review the schedule and services to be provided for the AMP. Following those discussions, IA/EcoLogic began a series of meetings with OCDDS technical staff to document procedures used for the Onondaga Lake 2000 Fisheries AMP. The meetings included interviews of OCDDS staff involved in each aspect of the program. Following initial interviews IA/EcoLogic staff observed field collections of ongoing program and reviewed data entry requirements for each program. Following the initial interviews and review of the *Onondaga County Ambient Monitoring Program: Year 2000 Onondaga Lake Fish Sampling Program* (EcoLogic 2000), IA/EcoLogic prepared the initial draft of the QAPP for review and comment by the OCDDS. In 2002, OCDDS name was changed to the Onondaga County Department of Water Environment Protection (OCDWEP). The April 2007 revision of the QAPP was completed by OCDWEP.

The purpose of the QAPP is to mesh field collection procedures and data requirements into a comprehensive document that provides a template for field, laboratory, and data management methods. The QAPP is meant to supplement in-house training of OCDWEP technicians and provide a framework from which trained staff can conduct consistent field surveys. The QAPP is considered to be a living document. That is, as changes are made in the Onondaga Lake Fisheries AMP, revisions will be made to the QAPP to reflect those changes.

Changes or revisions to the QAPP may include:

- intensity of the sampling program;
- incorporation of new elements to the program, or deletion of specific;
- revisions and improvements to methodologies; and
- incorporation of new methodologies into the program.

Thus the QAPP will serve multiple purposes. It will provide annual documentation of Standard Operating Procedures (SOPs), although more formal and detailed SOPs have developed for inhouse training and documentation purposes. It will provide a framework of data forms designed to ensure collection and entry of data, and provide a framework for training of OCDWEP's staff via consistent mentoring by more senior, experienced staff through the structure of the QAPP.

The QAPP has been divided into chapters, with each chapter represents a major field component of the AMP. Each chapter provides a purpose and description of the component, the procedures for sampling that component, appropriate data sheets, maps, and descriptions of stations and station codes. Only minor clarifications were made to the QAPP, and no major program modifications were incorporated in to the 2007 monitoring season.

Component	Methodology/Gear	Sampling Objectives	Location and Number	Timing	Changes
Pelagic Larvae	Modified double oblique Miller high-	Determine species	- 4 double oblique tows in each basin (North and	-Daytime	-No Change
	speed trawl, with flow meter attached, collected during the	richness.	South) per event. -Tows will sample water	-Bi-weekly. -April (when	from previous year.
	day in the pelagic zone.		depths from the surface to 5.5 meters.	water temps. are 7-8 °C) through end of July	5
			-Total No. of events =8 -Total No. of samples =64	chu or sury.	
Juvenile Fish	50' x 4' x 1/4" bag seine swept into	Determine community	-5 strata with 3 sites in each strata and 1 sweep at	-Daytime	-No Change
1 1511	shore in the littoral	structure and	each site.	-Every 3 weeks.	from
	zone.	richness.	-No. of Sites = 15 -Total No. of events = 6 -Total No. of samples = 90	-July - October.	year.
Nesting	Lake wide nest	Document spatial	-Entire perimeter of lake	-Once in June	-No Change
Г 1511	survey.	distribution	length sections.	temperature is	from
		and species composition	-Total No. of events = 1 -Total No. of samples = 24	between 15° and 20 °C.	previous year.
Adult	Boat mounted	Determine	-Entire perimeter of lake	-Night-time.	-No Change
Fish- Littoral Zone	littoral zone at night.	structure, species	-Alternating all-	-Twice per year; Spring and Fall.	from previous
		CPUE, and	fish/gamefish transects.	-Spring and Fall.	year.
		relative abundance.	-Total No. of events = 2 -Total No. of samples = 48	-Water temp. between 15° and 21 °C.	
Adult	Experimental gill	Determine	-One net per strata.	-During the day.	-No Change
Profundal Zone	NYSDEC dimensions.	structure, and species richness.	-Nets set on bottom, parallel to shore at a water depth of 4-5m for two hours.	-Twice per year, within one week of littoral electrofishing.	from previous year.
			-Total No. of events = 2 -Total No. of samples = 10		
Angler Census	Angler diary program and bass tournament surveys.	Determine catch rates, species composition. Attitudes and	 -Recruit diary participants at fish & game clubs and fishing organizations. -Tournaments will be 	-Issued annually and collected at end of fishing season (fall).	-No Change from previous year.
		opinions over the AMP.	surveyed at time of weigh- in.	- Fournament schedule TBA	

Table 1.	Summary of Yea	r 2007 Onondaga	Lake Fish Cor	mmunity AMP	Sampling Plan.
	•	U		e e e e e e e e e e e e e e e e e e e	1 U

2.0 STAFF TRAINING

The OCDWEP has approached the AMP under the self-monitoring element that is central to the Federal Clean Water Act. OCDWEP has acquired a staff with a wide range of academic education supplemented by experience gained by working for state fisheries agencies, universities, and environmental consulting and research firms. This staff of scientists and technicians are supported by maintenance and operation personnel that provide the skills to build, construct, maintain, and modify gear needed to conduct the fisheries surveys. This expertise allows the OCDWEP to successfully train and mentor qualified individuals to provide a high level of quality to the data of the fisheries program. As with any long-term monitoring program, individuals will advance in their careers, retire, or move to new locations. This matriculation will require periodic in-house training of new individuals. The QAPP is integral to this training. Its use and understanding will provide each individual with an easy to understand document to ensure day-to-day and year-to-year consistency of the Onondaga Lake Fish Sampling Program.

In addition to the QAPP and SOPs, the County's Consultant, Ecologic LLC, conducts annual audits for each biological monitoring component. The audits are intended to ensure that the field technicians conducted their work in a professional manner and comply with the procedures outlined in the QAPP and SOPs. In addition, the audits determine if any observation would jeopardize the quality of the data (technique, field logs, training, etc.). The biological monitoring components to be audited annually includes the pelagic larvae, juvenile seining, adult electrofishing, and adult gill nets.

Thus the use of the QAPP in conjunction with the formal Standard Operating Procedures (SOPs) and external audits for the biological monitoring program activities, the *Onondaga County Ambient Monitoring Program: Year 2007 Onondaga Lake Fish Sampling Program*, and subsequent programs will provide OCDWEP with a successful fisheries assessment program.

3.0 PELAGIC LARVAE – Miller High Speed/Modified Double Oblique Tow

3.1 Procedures

Pelagic larvae will be collected using the Miller High Speed/Modified Double Oblique Tow during eight (8) sampling events occurring biweekly from April (water temp. between 7 and 8°C) through the end of July. One (1) sample will be collected from each of eight (8) transects (four (4) in the north basin and four (4) in the south basin) in Onondaga Lake during each sampling event.

3.1.1 Pre-field:

- Step 1. Review QAPP to determine overall needs of programs.
- Step 2. Assemble: field data sheet packet, and equipment.
- Step 3. Examine equipment for needed repairs.
- Step 4. Print labels and pre-label sample jars.
- Step 5. Check calibration of water quality (WQ) meter.
- Step 6. Review weather reports for sampling feasibility.

3.1.2 Field:

- Step 1. Proceed to (north basin or south basin) predetermined locations using the Global Positioning System (GPS). These locations were determined and set at the beginning of the 2002 sampling season. Collect water quality data from 0 to 6 meters, in 0.5 meter intervals, using a pre-calibrated water quality meter. Log the depth and water quality data on the meter (all data will be downloaded at the end of the day). Standard water quality parameters include temperature, Dissolved Oxygen (percent saturation and concentration), salinity, conductivity, pH, and ORP.
- Step 2. Proceed to the first transect (refer to Appendix A1) and record transect number, date, time, and actual GPS coordinates on the field data sheets.
- Step 3. Attach one (1) sampling rig to the crane and record starting flow meter reading. Thoroughly inspect the net, collection chamber mesh, cable, connections and all hardware prior to deployment at each location. Any repairs or replacements must be completed prior to deployment.
- Step 4. Place the boat in forward gear and accelerate to 3 miles per hour. Pay out sufficient cable to achieve the correct depth of 5.5 meters (this is the last meter mark on cable). The direction of the travel shall be in a straight line heading in a northwest to southeasterly direction (or southeast to northeasterly direction depending on the transect or influence of the sun glare on visual contact with the cable marks).

Step 5. When the correct depth is achieved, accelerate the boat to approximately 5 or 6 miles per hour. Pay out additional cable to maintain a proper depth of 5-5.5 meters. Confirm the actual depth via the following method:

Measure the angle of the cable from vertical (the optimal angle range should be between 55° - 60°) using the WildCo clinometer, and record the angle measurement on the field data sheet. Using the "Angle of Cable Measured" (between 55° - 60°) and the "Length of Cable" let out (typically 10 meters as measured from the water surface), verify on the following chart that the "Proper Vertical Depth" of the sampler has been achieved (optimum depth of 5.0 to 5.5 meters):

Angle of C from the V	Angle of Cable Measuredcom the Vertical (Degree)		gle of Cable Measured m the Vertical (Degree)Proper Vertical Depth (Meters)		
		5.0	5.5		
	53	8.3	9.1		
	54	8.5	9.4]	
	55	8.7	9.6]	
	56	8.9	9.8	Length of cable measured	
Optimal	57	9.1	10.1	from the water surface to	
Range	58	9.4	10.4	the sampler (meters)	
	59	9.7	10.7		
	60	10.0	11		
	61	10.3	11.3]	
	62	10.7	11.7		

- Step 6. Once a depth of 5-5.5 meters is obtained tow the sampler at a consistent speed (approximately 5 or 6 miles per hour) for 25 seconds heading northeast to southwest or vice versa.
- Step 7. After 25 seconds has elapsed, begin retrieving the sampler until the next meter mark is visible and continue towing at that depth for 25 seconds. Repeat this procedure at each individual meter depth on the cable until the 1 meter mark is visible, at which time reduce boat speed to idle and retrieve the sampler. After retrieval, thoroughly inspect the net and collection chamber mesh for any tears that may have compromised the sample. If the sample has been compromised, the location will need to be resampled/repeated.
- Step 8. Record ending flow meter reading on the field data sheet, and rinse the inside of the sampler and the net into the sampling bucket with the wash down pump or pump sprayer. Decant as much water as possible. Remove the sampling bucket and pour the contents into the pre-labeled sample jar. Rinse the remaining sample into the jar using tap water from a squirt bottle. Preserve the sample with 10% buffered formalin, filling the jar below the shoulder (wear Nitrile gloves and goggles during this operation).
- Step 9. Fill out chain of custody form, and place the sample and Chain of Custody in a clip board box (or equivalent) for safekeeping.

Step 10. Repeat the above process four (4) times in each basin.

3.1.3 End of Sample Day

- Step 1. Review field notes for completeness and QAPP sign offs.
- Step 2. Submit original data sheets and field notes for duplication.
- Step 3. Write down needed equipment repairs and report to supervisor.
- Step 4. Download water quality data.

3.1.4 End of Sample Event

Step 1. Log original data sheets/notes into OCDWEP Hardcopy File System.

Step 2. Submit duplicate copy of data sheets/notes for data entry.

3.1.5 Field Data Sheet Packet

The following items should be included in the field data sheet packet for this sampling activity.

- Station data sheet.
- Facility code/station description.
- List of fish species codes/names (identification will be completed in the HCBF Biology laboratory location).
- Sample labels.
- Chain-of-custody forms (as appropriate).

Appendix A1 contains examples of the station data sheet, map of sampling stations, list of facility codes/station description, and list of species codes/names appropriate for use in pelagic larvae sampling.

4.0 LITTORAL YOUNG-OF-YEAR (YOY)/JUVENILE FISH – BAG SEINE

4.1 **Procedures**

Littoral YOY/juvenile fish will be collected using a bag seine (seine dimension - 50' x 4' x 1/4") approximately every three (3) weeks from July to October, resulting in a total of six (6) sampling events. Three (3) randomly selected sites within each of five (5) strata encompassing the littoral zone of the lake were selected in 2000 and are revisited for each sampling event. These sites are physically marked on the shoreline and their coordinates documented with a GPS unit. One (1) sample will be collected at each sampling site for a total of fifteen (15) samples collected from Onondaga Lake during each sampling event.

4.1.1 Pre-field:

- Step 1. Review QAPP to determine overall needs of programs.
- Step 2. Assemble: field data sheet packet and equipment.
- Step 3. Examine equipment for needed repairs.
- Step 4. Check calibration of water quality (WQ) meter.
- Step 5. Review weather reports for sampling feasibility.

4.1.2 Field:

- Step 1. Proceed to appropriate station and record WQ meter number, facility code/location, date, time, and WQ data at the near surface. Standard water quality parameters include temperature, Dissolved Oxygen (percent saturation and concentration), salinity, conductivity, pH, and ORP.
- Step 2. Stretch the seine out on shore and remove any material lodged in the mesh. Check for holes and repair if necessary.
- Step 3. Bring net to the marked site location. (Note: Sites have been previously selected and marked by OCDWEP staff).
- Step 4. Walk one end of the seine off shore until full length of net is deployed perpendicular to the shoreline.
- Step 5. Check the bag section of the seine to make sure it is fully deployed and not tangled.
- Step 6. With one person holding the in-shore brail stationary, a second person sweeps the offshore brail to shore. A third person walks behind the bag end of the seine to dislodge the seine if it becomes stuck. A sample will be rejected if the leadline of the seine must be lifted or the seine must be fully stopped in order to dislodge the snag.

In this case, the site will be returned to later during the sampling event to collect the sample.

- Step 7. As the offshore brail approaches shore, the two brails will be worked together, and the seine will be beached while being careful to maintain the integrity of the bag section of the seine and keeping the leadline on bottom.
- Step 8. Immediately upon retrieval of the seine all fish will be picked and placed in holding tanks. Care shall be taken to sort through captured debris (algae mats and macrophytes) in order to retrieve all fish. In the event adult fish are captured, they should be identified to species, counted, released back into the lake, and noted as such on the data forms. Representative adult bass and other selected game fish should be tagged with a numbered floy tag, measured and sampled for scales (scales are only collected in the fall) prior to release. The tag number, scale envelope number, and other related information should be recorded on the appropriate data form.
- Step 9. Stretch the seine out on shore and remove any material lodged in the mesh. Check for holes and repair if necessary.
- Step 10. Stretch out seine to dry while processing samples.
- Step 11. A minimum of 30 random individuals in each life stage (YOY and juvenile) and species should be measured (total length in mm). Remaining fish should be mass-counted based on life stage (YOY, juvenile, adult). YOY sunfish should be grouped as "*Lepomis* sp." All other individuals should be identified to species. All fish should be returned to the lake after completing measurements.

Unknown species should be noted as such on the data forms by number (for example *Unknown Species No.1* and *Unknown Species No.2*) and placed in a formalin-filled, labeled jar and identified later in the laboratory.

Step 12. Review data sheets for completeness before proceeding to next station.

4.1.3 End of Sample Day

- Step 1. Review field notes for completeness and QAPP sign offs.
- Step 2. Submit original data sheets and field notes for duplication.
- Step 3. Write down needed equipment repairs and report to supervisor.

4.1.4 End of Sample Event

- Step 1. Log original data sheets/notes into OCDWEP Hardcopy File System.
- Step 2. Submit duplicate copy of data sheets/notes for data entry.

4.1.5 Field Data Sheet Packet

The following items should be included in the field data sheet packet for this sampling activity.

- Station data sheet.
- Bulk fish data sheet.
- Individual fish data sheet.
- Map showing location of sampling stations.
- Facility code/station description.
- List of fish species codes/names.
- Sample labels.
- Scale envelopes.

Appendix A2 contains examples of the station data sheet, individual fish data sheet, bulk fish data sheet, map of sampling stations, list of facility codes/station description, and list of species codes/names appropriate for use in sampling littoral YOY and juvenile fish.

5.0 NESTING SURVEY

5.1 Procedures

Nesting survey transects were determined in 2000 by dividing the lake's littoral zone into twenty-four (24) approximately equal length transects that encompass the entire perimeter of the lake. These transects are utilized for each annual event, and these are the same transects used for the adult fish boat electrofishing events. The beginning and ends of each transect are designated by GPS coordinates. Fish nests will be identified when possible and counted along these transects that are parallel to the shoreline. Date of the survey will be determined based on the time of year (June), water temperature (between 15 and 20°C), water clarity (ability to see bottom in 2 m of water), weather conditions (sunny and calm), and observations of peak spawning activities of select gamefish.

5.1.1 Pre-field:

- Step 1. Review QAPP to determine overall needs of program.
- Step 2. Determine if bluegill, pumpkinseed and largemouth bass appear to be near peak spawn (typically observed during other lake sampling events).
- Step 3. Determine if water visibility is at least 2 m (based on secchi disc readings).
- Step 4. Assemble: field data sheet packet and equipment.
- Step 5. Examine equipment for needed repairs.
- Step 6. Check calibration of water quality (WQ) meter.
- Step 7. Review weather reports for sampling feasibility.

5.1.2 Field:

- Step 1. Proceed to appropriate transect and position boat at its start in 1 m of water. Record WQ meter number, facility code/location, date, time, and WQ data at the near surface. Standard water quality parameters include temperature, Dissolved Oxygen (percent saturation and concentration), salinity, conductivity, pH, and ORP.
- Step 2. Post one technician on the bow of the boat with polarized glasses. This technician will serve as nest spotter. Position a second technician in the center of the boat. This technician will serve as the data recorder. A third technician serves as the boat driver.
- Step 3. Start boat and proceed parallel to shore keeping the boat in 1 m of water at all times. Speed of travel will be dependent on the nest spotters and nest density.

- Step 4. The technician on the bow will count and report to the data recorder all nests observed, and when possible identify species on the nest. The observer shall report nest counts to the recorder every five (5) to ten (10) fish nest observed. An alternative method is to utilize a mechanical handheld counter.
- Step 5. The driver will stop the boat at the end of the transect.
- Step 6. Review data sheets for completeness before proceeding to next transect.
- Step 7. Bring the boat to the beginning of the next transect and repeat steps 1 through 6.

5.1.3 End of Sample Day

- Step 1. Review field notes for completeness and QAPP sign offs.
- Step 2. Submit original data sheets and field notes for duplication.
- Step 3. Write down needed equipment repairs and report to supervisor.

5.1.4 End of Sample Event

Step 1. Log original data sheets/notes into OCDWEP Hardcopy File System.

Step 2. Submit duplicate copy of data sheets/notes for data entry.

5.1.5 Field Data Sheet Packet

The following items should be included in the field data sheet packet for this sampling activity.

- Station data sheet.
- Map showing location of sampling stations.
- Facility code/station description.
- List of fish species codes/names.

Appendix A3 contains examples of the station data sheet, map of sampling stations, list of facility codes/station description, and list of species codes/names (located on station data sheet) appropriate for use in conducting a nest survey.

6.0 ADULT FISH – BOAT ELECTROFISHING

6.1 **Procedures**

Boat electrofishing stations were determined in 2000 by dividing the lake's littoral zone into twenty-four (24) approximately equal length transects that encompass the entire perimeter of the lake. These transects are utilized for each sampling event. The beginning and ends of each transect are designated by GPS coordinates. Transects are divided into alternating all-fish/gamefish samples (odd number transects are always all fish and even numbered transects are always game fish only). In "all-fish" transects all species are netted, while in "gamefish only" transects only those species designated as gamefish by the County are netted (see attached list). Time spent electrofishing at each transect will be recorded during each sampling event to allow for standardization of catch per unit effort.

Boat electrofishing is conducted for two (2) sampling events, in the Spring and in the Fall based on surface water temperatures between 15 and 21° C. During each sampling event, fish will be collected during the night along the twenty-four (24) transects distributed around the perimeter of the lake, resulting in collection of a total of forty-eight (48) boat electrofishing samples/transects for the year (24 all-fish and 24 gamefish).

6.1.1 Pre-field:

- Step 1. Review QAPP to determine overall needs of programs.
- Step 2. Assemble: field data sheet packet and equipment.
- Step 3. Examine equipment for needed repairs.
- Step 4. Check calibration of water quality (WQ) meter.
- Step 5. Review weather reports for sampling feasibility.
- Step 6. Notify Onondaga County Sheriff's Office and the OCDWEP Metro Board operator of proposed night sampling event.

6.1.2 Field:

Step 1. Proceed to predetermined transect location and record facility code/location, date, time, and WQ data taken at near surface depth. Standard water quality parameters include temperature, Dissolved Oxygen (percent saturation and concentration), salinity, conductivity, pH, and ORP.

This event will require four technicians, two (2) will collect fish with nets at the front of the electrofishing boat, one (1) will be the data recorder, and one (1) will drive and operate the generator/pulsator.

- Step 2. Determine if transect is for all fish or game fish (odd number transects are all fish and even numbered transects are game fish).
- Step 3. Record start of sample data: time of day, starting seconds on pulsator, and actual GPS coordinates.
- Step 4. Place boat into forward gear at idle speed. Start the generator, activate electrofisher and begin collection of fish. The two netting technicians will maintain the foot pedal, that activates the electrofisher, in the "on" position for the entire transect. For gamefish transects any fish that resembles one of the gamefish species should be boated. If the fish is identified as being a non-gamefish species while still in the net it may be immediately released.

For all-fish transects, an attempt should be made to collect all fish encountered, with the exception of common carp, or gizzard shad and alewives occurring in large schools or quantities incapable of boarding. The quantity of common carp within netting distance shall be counted (or estimated if in large numbers) and noted as a count (or estimate) in the bulk fish section of the field sheet.

Gizzard shad and alewives occurring in large schools or un-boardable quantities may be estimated without actually collecting each fish (this will minimize catch mortality and will prevent under estimating significant quantities of "missed/non-boarded" fish. However, these "missed/non-boarded" fish shall be noted in the bulk fish section of the field sheet as an "estimate". Gizzard shad and alewives that are boarded, but are in excess of the 30 individuals initially counted and measured, shall be individually counted (not measured) and noted in the bulk fish section of the field sheets as a "count". Because of the difficulty in differentiating small shad and alewives from one another, if a school of small clupeids (shad/alewives) is encountered, a sample of the school should be netted, brought on board and identified. After positive identification the number of fish in the school can be estimated.

For all other species, missed fish shall be estimated, and recorded in the bulk fish section of the field sheets as an "estimate". Since the two netting technicians will be maintaining a mental tally of "missed/non-boarded" fish, this data should be recorded immediate following the completion of each transect to minimize loss of semiquantifiable data.

- Step 5. Record electrofisher data: voltage, amps, and pulse width. Monitor settings and displays throughout the transect.
- Step 6. Maintain the boat electrofisher on course approximately parallel with the shore in one meter of water at approximately idle speed (the motor tilt will need to be adjusted to maintain appropriate speed). The boat may be slowed down in order to try and capture a rare fish that is initially missed by the netters. However, all attempt should be made to keep the boat moving slowly forward in approximately one meter of water for the majority of the transect.

- **Note:** All attempts are made to maintain the monitoring depth of one (1) meter. However, the natural variation of the depth contours or abrupt drop offs (natural or man-made) may result in short periods of shallower or deeper monitoring.
- Step 7. When the end of the transect is reached, turn off electrofisher unit, and return boat to neutral.
- Step 8. Record time, GPS coordinates, and miscellaneous collection notes (missed/nonboarded fish, estimates, counts, etc.)
- Step 9. Proceed to approximately the mid-transect location to work up collected fish.
- Step 10. Fish whose numbers were estimated should be entered in the bulk fish section of the field form first to prevent omissions.

Then, collected fish should be identified to species, measured for length (nearest mm), and, for the fall samples only, measured for weight (nearest gram).

Note: Individual fish weighing less than 100 grams will be weighed on the small scale.

If the small scale will not stabilize, multiple fish of the same species and size range may be bulk weighed and divided by the total number of fish to establish a relative weight (e.g. weigh all alewife between 140 mm and 160 mm – divide total weight of all alewife weighed by total number of alewife to establish a relative weight for each of the individual alewife). These weights shall be noted in the comment section of the individual fish data sheet as a "bulk weight".

For samples in which small to moderate numbers of fish are collected (less than 30), all fish should be measured. In samples in which high numbers (greater than 30) of one or more species are collected, random sub-samples of the abundant species will be measured, and the remaining individuals of those species need only be counted and listed in the bulk fish data sheet. This will result in some samples having both individual fish data and bulk fish data. Fish not measured individually should be mass-counted based on life stage (YOY, juvenile, adult). Unknown species should be noted as such on the data forms by number (for example unknown species 1 and unknown species 2) and placed in a formalin-filled, labeled jar and identified later.

Step 11. Representative adult bass and other selected game fish should be tagged with a numbered floy tag and sampled for scales (fall only) prior to release. In addition, during the fall, select species (bluegill, pumkinseed, white perch, yellow perch, and gizzard shad) shall also be randomly sampled for scales prior to release.

On spiny-rayed species, including but not limited to largemouth bass, smallmouth bass, bluegill, pumpkinseed, white perch, walleye, yellow perch and black crappie,
scales will be removed from left side of the body below the lateral line, near the tip of the depressed left pectoral fin. On soft-rayed species, including trout and salmon, scales will be removed from the middle region of the body above the lateral line, beneath the posterior end of the dorsal fin on the left side.

Fish that are tagged should appear to be in good health and not overly stressed from the capture experience. The tag number, scale envelope number, and other related information should be recorded on the appropriate data form. Any recaptured fish shall be recorded on the individual field sheet data form, and evaluated to determine the need for a replacement tag.

Step 12. Review data sheets for completeness before proceeding to next station.

6.1.3 End of Sample Day

- Step 1. Notify Metro Board of safe return from field.
- Step 2. Review field notes for completeness and QAPP sign offs.
- Step 3. Submit original data sheets and field notes for duplication.
- Step 4. Write down needed equipment repairs and report to supervisor.

6.1.4 End of Sample Event

- Step 1. Log original data sheets/notes into OCDWEP Hardcopy File System.
- Step 2. Submit duplicate copy of data sheets/notes for data entry.

6.1.5 Field Data Sheet Packet

The following items should be included in the field data sheet packet for this sampling activity.

- Station data sheet.
- Bulk fish data sheet.
- Individual fish data sheet.
- Map showing location of sampling stations.
- Facility code/station description.
- List of fish species codes/names.
- Sample labels.
- Scale envelopes.

Appendix A4 contains examples of the station data sheet, individual fish data sheet, bulk fish data sheet, map of sampling stations, list of facility codes/station description, and list of species codes/names appropriate for use in sampling littoral adult fish.

7.0 ADULT FISH – Littoral-Profundal (Fixed Deep Water) Gill Net Sampling

7.1 **Procedures**

Gill net sampling will be conducted during two (2) sampling events, in Spring and Fall within one (1) week of the electrofishing events. During day-time hours, one (1) net will be randomly set in each of the five (5) strata (refer to Appendix A5). The nets will be set for two (2) hours on the lake bottom in 4 to 5 meters of water, resulting in collection of a total of ten (10) samples/sets during the year.

7.1.1 Pre-field:

- Step 1. Review QAPP to determine overall needs of programs.
- Step 2. Assemble: field data sheet packet and equipment.
- Step 3. Examine equipment for needed repairs.
- Step 4. Check calibration of water quality (WQ) meter.
- Step 5. Review weather reports for sampling feasibility.

7.1.2 Field (Gill Net Setting):

- Step 1. Proceed to a random monitoring location within one (1) of the five (5) stratums.
- Step 2. Upon arrival locate 5 meters depth of water with depth finder and collect water quality data from 0 to 5 meters in 0.5 meter intervals. Log the depth and water quality data on the meter (all data will be downloaded at the end of the day). Standard water quality parameters include temperature, Dissolved Oxygen (percent saturation and concentration), salinity, conductivity, pH, and ORP. Record the GPS coordinates on the field data sheet.
- Step 3. Rig gill net with appropriate anchors and buoys.
- Step 4. Bring the boat parallel to shore in 5 meters of water (turn the boat into the prevailing wind if possible).
- Step 5. With one technician on the bow of the boat lower the leading anchor to the bottom and pay out the net as the boat is slowly reversed. Pay out the net by handling the float-line and shaking out or spreading the mesh as the boat reverses to assure net deploys.
- Step 6. After the full length if the gill net is set out, stretch the net as taut as possible, and drop the trailing anchor.
- Step 7. Allow for two hours to elapse before retrieval.

7.1.3 Field (Gill Net Retrieval):

- Step 1. Pull in the downwind buoy and anchor, and remove them from the net. Grasping the lead and floatlines together, slowly bring in the net.
- Step 2. As fish are encountered remove them as fast as possible and place in a live well. Under ideal conditions and a light catch, the fish may be removed from the net as it is being retrieved. When large catches are encountered, remove only gamefish, all other fish can be removed after net is retrieved at a location secluded from public viewing.
- Step 3. Record data on catch using the appropriate field forms, recording the following information:
 - Species identification.
 - Length (mm) total length.
 - Weight (gram fall sample only).
 - Scale samples (only in fall samples on all bass).
 - Condition of fish (dead or alive).
 - Tag all game fish if healthy and record tag number.
- Step 4. Repeat all steps (7.1.2 and 7.1.3) for the other four (4) locations.

7.1.4 End of Sample Day

- Step 1. Review field notes for completeness and QAPP sign offs.
- Step 2 Submit original data sheets and field notes for duplication.
- Step 3. Write down needed equipment repairs and report to supervisor.
- Step 4. Download water quality data.

7.1.5 End of Sample Event

- Step 1. Log original data sheets/notes into OCDWEP Hardcopy File System.
- Step 2. Submit duplicate copy of data sheets/notes for data entry.

7.1.6 Field Data Sheet Packet

The following items should be included in the field data sheet packet for this sampling activity.

- Station data sheet
- Bulk fish
- Individual fish
- Map showing location of sampling stations
- Facility code/station description
- List of fish species codes/names
- Sample labels
- Scale envelopes

Appendix A5 contains examples of the station data sheet, individual fish data sheet, bulk fish data sheet, map of sampling stations, list of facility codes/station description, and list of species codes/names appropriate for use in sampling pelagic adult fish.

8.0 DEFORMITIES, EROSIONS, LESIONS, TUMORS, FUNGAL INFECTIONS, AND MALIGNANCIES (DELTFM) MONITORING

Tracking of DELTFM parameters will be conducted in conjunction with all fisheries sampling activities with the exception of larval fish sampling and the adult fish nesting survey. DELTFM parameters will be recorded for only individual juvenile fish (not the bulk counts). All captured fish will be screened for any visible abnormalities. The abnormalities will be recorded on the corresponding data sheet. The technicians will be required to record the following abnormalities on the data sheets:

Deformities – Any distorted form of the fishes anatomy.
Erosions – Wear marks, scares, or scrapes.
Lesions – Visible sores, or wounds.
Tumors – A localized swelling of tissue on or in the body that has no physical function.
Fungal Infections – Any visible fungal growth on the fish.
Malignancies – A growth that could be cancerous. (use field judgement).

9.0 RECREATIONAL FISHERY – ANGLER DIARY

Angler diaries will continue to be used to assess the recreational fishery of Onondaga Lake. Angler catch rate and species composition of the catch, as well as angler attitude and opinions will be assessed. Potential anglers for participation in the angler diary program will be solicited at various fishing tournaments and through local sportsman organizations. The OCDWEP angler diary program uses record keeping forms similar to those used by the New York State Department of Environmental Conservation in their angler diary program.

10.0 CHRONOLOGY OF QAPP

The QAPP for the Onondaga Lake Fish Sampling Program is a living document in that it will be periodically updated to reflect changes in the monitoring program that are instituted to improve the efficiency of data collection, focus on a particular aspect of the fish community, or narrow or expand the scope of investigation. The periodic updating of the QAPP will provide a written record of sampling procedures over the entire life of the Onondaga Lake Fish Sampling Program. This April 2007 version of the QAPP is the sixth version/issue of the document.

The first version (Initial Draft) was submitted to OCDWEP on October 18, 2000 for review and comment by OCDWEP staff. Following review of the Initial Draft by OCDWEP, a meeting was held between IA and OCDWEP in which comments on the Initial Draft were provided. These comments, along with information gathered during data analysis and report preparation for the 2000 fish sampling program were incorporated into a second version of the document submitted to OCDWEP in July 2001. Annual revisions to the QAPP have incorporated various changes made to the fisheries assessment program.

The original QAPP, and subsequent revisions, have been reviewed by the NYSDEC, revised by OCDWEP as requested, and approved by the NYSDEC prior to implementation.

11.0 LITERATURE CITED

- EcoLogic, LLC. Onondaga County Ambient Monitoring Program: Year 2000 Onondaga Lake Fish Sampling Program. Prepared for Onondaga County Department of Drainage and Sanitation, Syracuse, NY. EcoLogic, LLC., Cazenovia, NY.
- OCDWEP SOP For Fish Scale Age and Growth Determination (DOC No. BIO-001)
- OCDWEP SOP For Larval Fish Identification (DOC No. BIO-002)
- OCDWEP SOP For Fish Tagging (DOC No. BIO-003)
- OCDWEP SOP For Littoral-Profundal Zone Fixed Deep Water Gill Net Sampling (DOC No. BIO-006)
- OCDWEP SOP For Littoral Zone Electrofishing (DOC No. BIO-007)
- OCDWEP SOP For Littoral Zone Young-Of-Year and Juvenile Fish Bag Seine (DOC No. BIO-008)
- OCDWEP SOP For Fish Nesting Survey (DOC No. BIO-009)
- OCDWEP SOP For Pelagic Larvae Sampling Miller High Speed/Modified Double Oblique Tow (DOC No. BIO-010)

APPENDIX A1:

Field Data Packet For Pelagic Larvae Sampling

Facility Code	Site	Site
	Abbreviation	Description
2700	NBMHT1	North Basin Miller High Speed Trawl 1
2701	NBMHT2	North Basin Miller High Speed Trawl 2
2702	NBMHT3	North Basin Miller High Speed Trawl 3
2703	NBMHT4	North Basin Miller High Speed Trawl 4
2704	SBMHT1	South Basin Miller High Speed Trawl 1
2705	SBMHT2	South Basin Miller High Speed Trawl 2
2706	SBMHT3	South Basin Miller High Speed Trawl 3
2707	SBMHT4	South Basin Miller High Speed Trawl 4

Facility Code and Station Description

Onondaga County Department of Water Environment Protection Onondaga Lake Fish Monitoring Program

Page 1 of

PELAGIC LARVAE -- MILLER TRAWL Modified Double Oblique Tow

Crew:			-	Site Abbrevi	ation:
0.011	Time Stort		Endi	Battl	a Nai
	(trawl)		_ End: (trawl)	Bottl	e No:
GPS:	North: 43 [°] (Start)		West: 76°	Fac. Code:	Preserv.Y/N
	North: 43 [°] (End)		West: 76°	# of Bottles:	Compass Brg:
Flow Met	er Start:		Flow End:	Cable Angle:	AtMeter
Total Tra	wl Time:		(min:sec)	Avg Speed:	(mph)
		Fi	ield Observations - C	Only Enter One (1) Option	
Weather:				Waves: Calm	/ Swells / Whitecaps
OVercast Wind:	PartlyCloudy Ha	Zy CLear R from:	RAining SNowing	Water Clarity: Poor	/ Moderate / Good
0-5mph 5	-10 10-15 >15		N,SE,SSE, etc.	Significant Rainfall i	in the Last 48 Hours?
W-4 0	uality Profile T	aken?	Yes / No	Yes/	/ No
Commen Meters	ts:	(Gear Cond	lition, Unusual Weather o	r Conditions, Equipment or Sampli	ng Problems, etc.)
Meters	ts: Cable Angle	(Gear Cond	lition, Unusual Weather o	r Conditions, Equipment or Sampli	ng Problems, etc.)
Commen Meters 10 9	ts: Cable Angle	(Gear Cond Meters 5 4	lition, Unusual Weather o	r Conditions, Equipment or Sampli	ng Problems, etc.)
Meters 10 8	Cable Angle	(Gear Cond Meters 5 4 3	lition, Unusual Weather o	r Conditions, Equipment or Sampli	ng Problems, etc.)
Commen Meters 10 9 8 7	ts: Cable Angle	(Gear Cond Meters 5 4 3 2	ition, Unusual Weather o	r Conditions, Equipment or Samplii	ng Problems, etc.)
Meters 10 9 8 7 6	Cable Angle	(Gear Cond 5 4 3 2 1	lition, Unusual Weather o Cable Angle	r Conditions, Equipment or Samplin	ng Problems, etc.)
Meters 10 9 8 7 6 Data Vali	dity Classifica	(Gear Cond 5 4 3 2 1 ation:	lition, Unusual Weather o	r Conditions, Equipment or Sampli	ng Problems, etc.)
Meters 10 9 8 7 6 Data Vali # of Attac	dity Classifica	(Gear Cond 5 4 3 2 1 ation: eets:	Iition, Unusual Weather o	r Conditions, Equipment or Sampli	ng Problems, etc.)
Meters 10 9 8 7 6 Data Vali # of Attac	dity Classifica	(Gear Cond 5 4 3 2 1 ation: eets:	ition, Unusual Weather o	r Conditions, Equipment or Sampli	ng Problems, etc.)
Meters 10 9 8 7 6 Data Vali	dity Classification Check Chec	(Gear Cond 5 4 3 2 1 ation: eets:	ition, Unusual Weather o	r Conditions, Equipment or Sampli	ng Problems, etc.)
Meters 10 9 8 7 6 Data Vali # of Attac	dity Classifica ched Data She Date Sorted: Initials:	(Gear Cond 5 4 3 2 1 ation: cets:	ition, Unusual Weather o	r Conditions, Equipment or Sampli	ng Problems, etc.)

Original Prepared for OCDWEP by Ichthyological Associates, Inc.

Species Codes and Common Names

Species Code	Common Name	Species Code	Common Name	Species Code	Common Name
0	No Catch	390	Spottail shiner	576	White bass
207	Sea lamprey	394	Spotfin Shiner	576.1	Temperate Basses
268	Longnose gar	396	Redfin shiner	591	Rock bass
271	Bowfin	397.1	Notropis sp	595	Green sunfish
276	American eel	400	Bluntnose minnow	596	Pumpkinseed
285	Blueback Herring	401	Fathead minnow	598	Bluegill
289	Alewife	401.1	Pimephalus sp.	599.1	Lepomis sp.
290.1	Blueback and/or Alewife	403	Longnose dace	600	Smallmouth bass
294	Gizzard shad	406	Creek chub	601	Largemouth bass
297.1	Herring Family (Cluepeidae)	407	Fallfish	601.1	Black Bass (SM or LM)
326	Rainbow trout	408.1	Semotilus sp.	602	White crappie
327	Atlantic salmon	409.1	Minnow Family (Cyprinadae)	603	Black crappie
328	Brown trout	419	White sucker	603.1	Crappie (White or Black)
329	Brook trout	423	Northern hog sucker	603.2	Sunfish Family (Centrarchidae)
329.1	Tiger Trout (hybrid)	432	Shorthead redhorse	613	Johnny darter
332	Splake	433.1	Suckers (Catostomidae)	614	Tesselated darter
332.1	Trout Family (Salmonidae)	443	Yellow bullhead	616.1	Ethostoma sp.
335	Rainbow smelt	444	Brown bullhead	617	Yellow perch
340	Central mudminnow	444.1	Bullhead (species unknown)	618	Logperch
347	Northern pike	445	Channel catfish	624.1	Darter (not YPerch)
349	Chain pickerel	450.1	Freshwater Catfish	626	Walleye
350	Tiger muskellunge	461	Trout perch	628.1	Perch Family (Percidae)
350.1	Pike Family (Esocidae)	493	Burbot	700	Freshwater drum
365	Carp	531	Banded killifish	970	NS (Bullhead sunfish, etc)
377	Golden shiner	545	Brook Silverside	999	SPECIES UNKNOWN
381	Emerald shiner	561	Brook stickleback		
385	Common shiner	575	White perch		

APPENDIX A2:

Field Data Packet For Littoral YOY/Juvenile Fish Sampling

Facility Code	Site	Site
	Abbreviation	Description
2581	ST1JS1R1	Stratum 1 Juvenile Seine Site 1
2584	ST1JS2R1	Stratum 1 Juvenile Seine Site 2
2587	ST1JS3R1	Stratum 1 Juvenile Seine Site 3
2590	ST2JS1R1	Stratum 2 Juvenile Seine Site 1
2593	ST2JS2R1	Stratum 2 Juvenile Seine Site 2
2596	ST2JS3R1	Stratum 2 Juvenile Seine Site 3
2599	ST3JS1R1	Stratum 3 Juvenile Seine Site 1
2602	ST3JS2R1	Stratum 3 Juvenile Seine Site 2
2605	ST3JS3R1	Stratum 3 Juvenile Seine Site 3
2608	ST4JS1R1	Stratum 4 Juvenile Seine Site 1
2611	ST4JS2R1	Stratum 4 Juvenile Seine Site 2
2614	ST4JS3R1	Stratum 4 Juvenile Seine Site 3
2617	ST5JS1R1	Stratum 5 Juvenile Seine Site 1
2620	ST5JS2R1	Stratum 5 Juvenile Seine Site 2
2623	ST5JS3R1	Stratum 5 Juvenile Seine Site 3

Facility Code and Station Description

Onondaga County Department of Water Envrironment Protection Onondaga Lake Fish Monitoring Program

Page 1 of LITTORAL JUVENILES -- BAG SEINE Date: Stratum: Site: Crew: Time End: Facility Code: _____ Time Start: (Processing Fish) (Start Seining) North: 43° _____ West: 76° _____ (decimal minutes) GPS Field Observations - Only Enter One (1) Option Weather: Waves: Calm / Swells / Whitecaps OVercast PartlyCloudy HaZy CLear RAining SNowing Water Clarity: Poor / Moderate / Good Significant Rainfall in the Last 48 Hours? Wind: from: 0-5mph 5-10 10-15 >15 N,SE,SSE, etc. Yes / No Habitat and Substrate Observations - Include Only The Actual Physical Area Seined. _____ Structure _____ Pct _____ overhead Veg. Rocks Logs Dropoff Manmade Habitat: Vegetation Pct cover Emergent Submerged Algae Debris None Pct Cover Codes: N=none 0=1-5% 1=6-25% 2=26-50% 3=51-90% 4=>90% Substrate: VeGetated Plant Debris MuD Sllt SAnd Туре Pct Туре Pct GRavel CObble BOulder BedRock CLay ONcolites WasteBed ConcreTe MarL UNknown Туре Pct Pct Cover Codes: N=none 0=1-5% 1=6-25% 2=26-50% 3=51-90% 4=>90% Water pН Depth(m) Temp('C) DO(mg/l) DO(%Sat) Cond Redox Quality: Average Depth (m): ____ Shoreline Length (m) Comments: (Gear Condition, Unusual Weather or Conditions, Equipment or Sampling Problems, etc.) Data Validity Classification: Good / Conditional / Invalid # of Attached Data Sheets: Bulk Fish _____ Indiv. Fish **QAPP Signoffs (Initital and Date):** Data ____ Office: Field: Entry: _____

Original Prepared for OCDWEP by Ichthyological Associates, Inc.

Page____ of _____

INDIVIDUAL FISH DATA SHEET

Date: Facility Code: Program/GearType: _____ Location/Site: _____

(Include Facility Codes for all samples on data sheet)

Facility Code	Species Code	Common Name	Stage (A,J,Y)	Length (mm)	Weight (grams)	Scale #	Tag #	ls fish Dead?	DELTFM Codes	Comments

QAPP Signoffs (Initital and Date):

Field: Office:

Data _____ Entry: _____

Original Prepared for OCDWEP by Ichthyological Associates, Inc.

Page

of

BULK CATCH DATA SHEET

(Record Individual Fish > Initial 30 Count, and Non-Boarded Estimates and/or Counts)

Date:

Program/GearType: _____ __ Location/Site: ____

Facility Code: (Include Facility Codes for all samples on data sheet)

Facility Code	Species Code	Common Name	Stage (A/J/Y)	Total #Fish	Total Wt (g)	#Fish Dead	Count or Est?
otal Fish:							
_							

Facility Code	Species Code	Common Name	Stage (A/J/Y)	Total #Fish	Total Wt (g)	#Fish Dead	Count or Est?
Total Fish:							

Facility Code	Species Code	Common Name	Stage (A/J/Y)	Total #Fish	Total Wt (g)	#Fish Dead	Count or Est?
otal Fish:							

QAPP Signoffs (Init	iital and Date):
Field:	Office:

Data _____ Entry: _____

* All fish with obvious DELTFM parameters must be listed on the individual fish data form.

Species	Common Name	Species	Common Name	Species	Common Name
Code		Code		Code	
0	No Catch	390	Spottail shiner	576	White bass
207	Sea lamprey	394	Spotfin Shiner	576.1	Temperate Basses
268	Longnose gar	396	Redfin shiner	591	Rock bass
271	Bowfin	397.1	Notropis sp.	595	Green sunfish
276	American eel	400	Bluntnose minnow	596	Pumpkinseed
285	Blueback Herring	401	Fathead minnow	598	Bluegill
289	Alewife	401.1	Pimephalus sp.	599.1	Lepomis sp.
290.1	Blueback and/or Alewife	403	Longnose dace	600	Smallmouth bass
294	Gizzard shad	406	Creek chub	601	Largemouth bass
297.1	Herring Family (Cluepeidae)	407	Fallfish	601.1	Black Bass (SM or LM)
326	Rainbow trout	408.1	Semotilus sp.	602	White crappie
327	Atlantic salmon	409.1	Minnow Family (Cyprinadae)	603	Black crappie
328	Brown trout	419	White sucker	603.1	Crappie (White or Black)
329	Brook trout	423	Northern hog sucker	603.2	Sunfish Family (Centrarchidae)
329.1	Tiger Trout (hybrid)	432	Shorthead redhorse	613	Johnny darter
332	Splake	433.1	Suckers (Catostomidae)	614	Tesselated darter
332.1	Trout Family (Salmonidae)	443	Yellow bullhead	616.1	Ethostoma sp.
335	Rainbow smelt	444	Brown bullhead	617	Yellow perch
340	Central mudminnow	444.1	Bullhead (species unknown)	618	Logperch
347	Northern pike	445	Channel catfish	624.1	Darter (not YPerch)
349	Chain pickerel	450.1	Freshwater Catfish	626	Walleye
350	Tiger muskellunge	461	Trout perch	628.1	Perch Family (Percidae)
350.1	Pike Family (Esocidae)	493	Burbot	700	Freshwater drum
365	Carp	531	Banded killifish	970	NS (Bullhead sunfish, etc)
377	Golden shiner	545	Brook Silverside	999	SPECIES UNKNOWN
381	Emerald shiner	561	Brook stickleback		
385	Common shiner	575	White perch		

Species Codes and Common Names

APPENDIX A3:

Field Data Packet For Nesting Surveys

Facility Code	Site	Site		
	Abbreviation	Description		
2626	NS1	Nesting Survey Transect 1		
2627	NS2	Nesting Survey Transect 2		
2628	NS3	Nesting Survey Transect 3		
2629	NS4	Nesting Survey Transect 4		
2630	NS5	Nesting Survey Transect 5		
2631	NS6	Nesting Survey Transect 6		
2632	NS7	Nesting Survey Transect 7		
2633	NS8	Nesting Survey Transect 8		
2634	NS9	Nesting Survey Transect 9		
2635	NS10	Nesting Survey Transect 10		
2636	NS11	Nesting Survey Transect 11		
2637	NS12	Nesting Survey Transect 12		
2638	NS13	Nesting Survey Transect 13		
2639	NS14	Nesting Survey Transect 14		
2640	NS15	Nesting Survey Transect 15		
2641	NS16	Nesting Survey Transect 16		
2642	NS17	Nesting Survey Transect 17		
2643	NS18	Nesting Survey Transect 18		
2644	NS19	Nesting Survey Transect 19		
2645	NS20	Nesting Survey Transect 20		
2646	NS21	Nesting Survey Transect 21		
2647	NS22	Nesting Survey Transect 22		
2648	NS23	Nesting Survey Transect 23		
2649	NS24	Nesting Survey Transect 24		

Facility Code and Station Description

Onondaga County Department of Water Environment Protection Onondaga Lake Fish Monitoring Program

Page 1	of	

NEST SURVEY COVER SHEET

Date: Crew:					Faci	Transect: _			
Time Start:	:	End:		Observer:					
		Fiel	d Observat	ions - Only	Enter One	(1) Option			
GPS: S	Starting Coor	rdinates	Ν	lorth: 43°		West: 76°	(decimal minute	s)
	Ending Coor	rdinates	Ν	lorth: 43°		West: 76°	(decimal minute	s)
Weather:	5			-	Waves:	Calm / Swe	lls / Whiteca	aps	
OVercast Par	tlyCloudy HaZy	/ CLear RA	ining	- Wa	ter Clarity:	Poor / Mod	lerate / Good	1	
Wind:		from:			Significant	Rainfall in	the Last 48	Hours?	
0-5mph 5-1	0 10-15 >15	~	,SE,SSE, etc	<u>-</u>	g	}	/es / No		
Habitat:	Vegetation		Pct cover			Structure		Pct	
	Emergent S	ubmerged A	lgae Debris			overhead Veg.	Rocks Logs	Dropoff Man	made
	Pct Cover Co	des: N=nor	e 0=1-5% 1	=6-25% 2=2	6-50% 3=51-9	90% 4=>90%			
Substrate	VeGetated I	Plant Debris	MuD Sllt	SAnd	Туре		Pct_		
	GRavel COb	ble BOulde	r BedRock	CLay	Туре		Pct		
	ONcolites Wa	asteBed Col	ncreTe MarL	UNknown	Type		Pct		
	Pct Cover Co	des: N=non	e 0=1-5% 1	=6-25% 2=2	6-50% 3=51-9	0% 4=>90%	-		
Water	Depth(m)	Temp('C)	DO(ma/l)	DO(%Sat)	Cond	ρΗ	Redox		
Quality			(_ = (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	22/14	<i></i>			
Comments	;I	(Gear Cond	tion, Unusual	Weather or C	Conditions, Equ	ipment or Sam	pling Problems	, etc.)	

SppCode Common Name Field Marks #Nests 999 UNKNOWN Image: Common Name Image: Common Name<

Office:

Total No. of Nests Observed:

Data Validity Class: Good / Conditional / Invalid

QAPP Signoffs (Initital and Date):

Field:

Data _____ Entry: _____

Original Prepared for OCDWEP by Ichthyological Associates, Inc.

APPENDIX A4:

Field Data Packet For Littoral Adult Fish Sampling (Electrofishing)

Facility Code	Site	Site		
	Abbreviation	Description		
2676	EF1	Electrofishing Transect 1		
2677	EF2	Electrofishing Transect 2		
2678	EF3	Electrofishing Transect 3		
2679	EF4	Electrofishing Transect 4		
2680	EF5	Electrofishing Transect 5		
2681	EF6	Electrofishing Transect 6		
2682	EF7	Electrofishing Transect 7		
2683	EF8	Electrofishing Transect 8		
2684	EF9	Electrofishing Transect 9		
2685	EF10	Electrofishing Transect 10		
2686	EF11	Electrofishing Transect 11		
2687	EF12	Electrofishing Transect 12		
2688	EF13	Electrofishing Transect 13		
2689	EF14	Electrofishing Transect 14		
2690	EF15	Electrofishing Transect 15		
2691	EF16	Electrofishing Transect 16		
2692	EF17	Electrofishing Transect 17		
2693	EF18	Electrofishing Transect 18		
2694	EF19	Electrofishing Transect 19		
2695	EF20	Electrofishing Transect 20		
2696	EF21	Electrofishing Transect 21		
2697	EF22	Electrofishing Transect 22		
2698	EF23	Electrofishing Transect 23		
2699	EF24	Electrofishing Transect 24		

Facility Code and Station Description

Onondaga County Department of Water Environment Protection Onondaga Lake Fish Monitoring Program

Page 1 of

LITTORAL ADULTS -- BOAT ELECTROFISHER

Date:		_			Transect:		
Crew:	Facility Code:						
<u>Start</u>		<u>End</u>					
Time :				Time:			
GPS: North:	43°	West: 76°		GPS:	North: 43	o 	West: 76°
		Field Observ	ations - Only	Enter One	(1) Option		
Neather:			_	Waves:	Calm / Sw	ells / White	ecaps
OVercast PartlyCl	oudy HaZy CLe	ar RAining SNow	^{ving} Wa	ter Clarity:	Poor / Mo	oderate / Go	ood
Wind:	from:		_	Significar	t Rainfall	in the Last	48 Hours?
0-5mph 5-10 10-1	5 >15	N,S,E,W,SE,SW	,NE,NW.		Yes / No		
	n) Temp('C)	DO(mg/l)	DO(%Sat)	Cond	pН	Redox	
Water Depth(

BULK CATCH DATA -- Include Individual fish > initial 30 count, & non-boarded estimates and/or counts)

Species	Common Name	Stage	Total #Eisb	Total Wt (g)	#Fish Dead	Count or Est2
Code		(A/J/T)	#11511	Wit (g)	Deau	
		+ +				
		+ +				
	т	otal Catch:				
FF Settings:	Sec. Start:	- Sec End	Total #	- Seconds:		
Li Settings.	Pct Range:	Amps:	I Otal #	vg. Speed:		
	Frequency:	Volts:	A	vg. Depth:		
Data Validity	Classification: Good / Cor	nditional / Invalio	4			
		h	Jadiy Fick			
# of Attached	Data Sneets: Bulk FIS	n	Indiv. Fist	I		
QAPP Signot	ffs (Initital and Date):					
Field:	Office	:	Data	I		
			Entry	r:		

Original Prepared for OCDWEP by Ichthyological Associates, Inc.

Page____ of _____

INDIVIDUAL FISH DATA SHEET

Date: Facility Code: Program/GearType: _____ Location/Site: _____

(Include Facility Codes for all samples on data sheet)

Facility Code	Species Code	Common Name	Stage (A,J,Y)	Length (mm)	Weight (grams)	Scale #	Tag #	ls fish Dead?	DELTFM Codes	Comments

QAPP Signoffs (Initital and Date):

Field: Office:

Data _____ Entry: _____

Original Prepared for OCDWEP by Ichthyological Associates, Inc.

Page

of

BULK CATCH DATA SHEET

(Record Individual Fish > Initial 30 Count, and Non-Boarded Estimates and/or Counts)

Date:

Program/GearType: _____ __ Location/Site: ____

Facility Code: (Include Facility Codes for all samples on data sheet)

Facility Code	Species Code	Common Name	Stage (A/J/Y)	Total #Fish	Total Wt (g)	#Fish Dead	Count or Est?
otal Fish:							
_							

Facility Code	Species Code	Common Name	Stage (A/J/Y)	Total #Fish	Total Wt (g)	#Fish Dead	Count or Est?
Total Fish:							

Facility Code	Species Code	Common Name	Stage (A/J/Y)	Total #Fish	Total Wt (g)	#Fish Dead	Count or Est?
otal Fish:							

QAPP Signoffs (Init	iital and Date):
Field:	Office:

Data _____ Entry: _____

* All fish with obvious DELTFM parameters must be listed on the individual fish data form.

Species	Common Name	Species	Common Name	Species	Common Name
Code		Code		Code	
0	No Catch	390	Spottail shiner	576	White bass
207	Sea lamprey	394	Spotfin Shiner	576.1	Temperate Basses
268	Longnose gar	396	Redfin shiner	591	Rock bass
271	Bowfin	397.1	Notropis sp.	595	Green sunfish
276	American eel	400	Bluntnose minnow	596	Pumpkinseed
285	Blueback Herring	401	Fathead minnow	598	Bluegill
289	Alewife	401.1	Pimephalus sp.	599.1	Lepomis sp.
290.1	Blueback and/or Alewife	403	Longnose dace	600	Smallmouth bass
294	Gizzard shad	406	Creek chub	601	Largemouth bass
297.1	Herring Family (Cluepeidae)	407	Fallfish	601.1	Black Bass (SM or LM)
326	Rainbow trout	408.1	Semotilus sp.	602	White crappie
327	Atlantic salmon	409.1	Minnow Family (Cyprinadae)	603	Black crappie
328	Brown trout	419	White sucker	603.1	Crappie (White or Black)
329	Brook trout	423	Northern hog sucker	603.2	Sunfish Family (Centrarchidae)
329.1	Tiger Trout (hybrid)	432	Shorthead redhorse	613	Johnny darter
332	Splake	433.1	Suckers (Catostomidae)	614	Tesselated darter
332.1	Trout Family (Salmonidae)	443	Yellow bullhead	616.1	Ethostoma sp.
335	Rainbow smelt	444	Brown bullhead	617	Yellow perch
340	Central mudminnow	444.1	Bullhead (species unknown)	618	Logperch
347	Northern pike	445	Channel catfish	624.1	Darter (not YPerch)
349	Chain pickerel	450.1	Freshwater Catfish	626	Walleye
350	Tiger muskellunge	461	Trout perch	628.1	Perch Family (Percidae)
350.1	Pike Family (Esocidae)	493	Burbot	700	Freshwater drum
365	Carp	531	Banded killifish	970	NS (Bullhead sunfish, etc)
377	Golden shiner	545	Brook Silverside	999	SPECIES UNKNOWN
381	Emerald shiner	561	Brook stickleback		
385	Common shiner	575	White perch		

Species Codes and Common Names

APPENDIX A5:

Field Data Packet For Pelagic Adult Fish Sampling (Gill Nets)

Facility Code	Site
	Description
2750	Stratum 1 – Northwest Shore
2756	Stratum 2 – Wastebeds
2762	Stratum 3 – South Shore
2768	Stratum 4 – Southeast Shore
2774	Stratum 5 – Northeast Shore

Facility Code and Station Description

Onondaga County Department of Water Environment Protection Onondaga Lake Fish Monitoring Program

Page 1 of

PELAGIC ADULTS -- GILL NET

Haul Date:	Basin:	Facility Code:	
<u>Net Set</u>		1	Net Hauled
Date:		Date:	
Crew:		Crew:	
Time:		Time:	
GPS North: 43°	(decimal minutes)	GPS North:	43° (decimal minutes)
Position: West: 76°	_	Position: West:	76°
Weather:		Weather:	
OVercast PartlyCloudy HaZy CLear	RAining SNowing	OVercast PartlyCloudy Ha	Zy CLear RAining SNowing
Wind: from	n:	Wind:	from:
0-5mph 5-10 10-15 >15	N,SE,SSE, etc.	0-5mph 5-10 10-15 >15	N,SE,SSE, etc.
For the Following Data, Circle the App	ropriate Response	For the Following Data, Circ	cle the Appropriate Response
Waves: Calm / Swells / Wh	nitecaps	Waves: Calm	/ Swells / Whitecaps
Water Clarity: Poor / A	/loderate / Good	Water Cla	rity: Poor / Moderate / Good
Significant Rainfall in the Las	st 48 Hours?	Significant Rainfall in	n the Last 48 Hours?
Yes / N	0		Yes / No
Water Quality Profile Taken?		Water Quality Profile	Taken?
Yes / N	0		Yes / No

Comments: (Gear Condition, Unusual Weather, Predator Damage, Equipment or Sampling Problems, etc.)

s Net Intact Upon Recovery?	Yes / No		
otal # of Hours Fished (Unit E	ffort):		
Data Validity Classification:	Good / Conditional / Invalid		
f of Attached Data Sheets:	BulkFish In	div. Fish	
QAPP Signoffs (Initital and Dat Field:	e): Office:	Data Entry:	

Original Prepared for OCDWEP by Ichthyological Associates, Inc.

Page____ of _____

INDIVIDUAL FISH DATA SHEET

Date: Facility Code: Program/GearType: _____ Location/Site: _____

(Include Facility Codes for all samples on data sheet)

Facility Code	Species Code	Common Name	Stage (A,J,Y)	Length (mm)	Weight (grams)	Scale #	Tag #	ls fish Dead?	DELTFM Codes	Comments

QAPP Signoffs (Initital and Date):

Field: Office:

Data _____ Entry: _____

Original Prepared for OCDWEP by Ichthyological Associates, Inc.

Page

of

BULK CATCH DATA SHEET

(Record Individual Fish > Initial 30 Count, and Non-Boarded Estimates and/or Counts)

Date:

Program/GearType: _____ __ Location/Site: ____

Facility Code: (Include Facility Codes for all samples on data sheet)

Facility Code	Species Code	Common Name	Stage (A/J/Y)	Total #Fish	Total Wt (g)	#Fish Dead	Count or Est?
otal Fish:							

Facility Code	Species Code	Common Name	Stage (A/J/Y)	Total #Fish	Total Wt (g)	#Fish Dead	Count or Est?
Total Fish:							

Facility Code	Species Code	Common Name	Stage (A/J/Y)	Total #Fish	Total Wt (g)	#Fish Dead	Count or Est?
otal Fish:							

QAPP Signoffs (Init	tital and Date):
Field [.]	Office:

Data _____ Entry: _____

* All fish with obvious DELTFM parameters must be listed on the individual fish data form.

Species	Common Name	Species	Common Name	Species	Common Name
Code		Code		Code	
0	No Catch	390	Spottail shiner	576	White bass
207	Sea lamprey	394	Spotfin Shiner	576.1	Temperate Basses
268	Longnose gar	396	Redfin shiner	591	Rock bass
271	Bowfin	397.1	Notropis sp.	595	Green sunfish
276	American eel	400	Bluntnose minnow	596	Pumpkinseed
285	Blueback Herring	401	Fathead minnow	598	Bluegill
289	Alewife	401.1	Pimephalus sp.	599.1	Lepomis sp.
290.1	Blueback and/or Alewife	403	Longnose dace	600	Smallmouth bass
294	Gizzard shad	406	Creek chub	601	Largemouth bass
297.1	Herring Family (Cluepeidae)	407	Fallfish	601.1	Black Bass (SM or LM)
326	Rainbow trout	408.1	Semotilus sp.	602	White crappie
327	Atlantic salmon	409.1	Minnow Family (Cyprinadae)	603	Black crappie
328	Brown trout	419	White sucker	603.1	Crappie (White or Black)
329	Brook trout	423	Northern hog sucker	603.2	Sunfish Family (Centrarchidae)
329.1	Tiger Trout (hybrid)	432	Shorthead redhorse	613	Johnny darter
332	Splake	433.1	Suckers (Catostomidae)	614	Tesselated darter
332.1	Trout Family (Salmonidae)	443	Yellow bullhead	616.1	Ethostoma sp.
335	Rainbow smelt	444	Brown bullhead	617	Yellow perch
340	Central mudminnow	444.1	Bullhead (species unknown)	618	Logperch
347	Northern pike	445	Channel catfish	624.1	Darter (not YPerch)
349	Chain pickerel	450.1	Freshwater Catfish	626	Walleye
350	Tiger muskellunge	461	Trout perch	628.1	Perch Family (Percidae)
350.1	Pike Family (Esocidae)	493	Burbot	700	Freshwater drum
365	Carp	531	Banded killifish	970	NS (Bullhead sunfish, etc)
377	Golden shiner	545	Brook Silverside	999	SPECIES UNKNOWN
381	Emerald shiner	561	Brook stickleback		
385	Common shiner	575	White perch		

Species Codes and Common Names

APPENDIX A6:

Game Fish List

Onondaga Lake Fisheries Assessment Game Fish List

Largemouth bass Walleye White Crappie Yellow Bullhead Bluegill Pumpkinseed Yellow Perch Smallmouth bass Black Crappie Brown Bullhead Channel catfish All esocids (pike family) All salmonids (trout) Rock bass

ATTACHMENT 3

QUALITY ASSURANCE PROGRAM PLAN

FOR THE 2007 ONONDAGA LAKE MACROPHYTE ASSESSMENT PROGRAM

AMBIENT MONITORING PROGRAM

Prepared for the NYSDEC

Prepared by:

Onondaga County Department Of Water Environment Protection

April 2007

TABLE OF CONTENTS

1.0	IN	FRODUCTION/PURPOSE	
2.0	ST	AFF TRAINING	5
3.0	AE	RIAL PHOTOGRAPHY	6
3.1	Р	rocedures	6
3.	1.1	Lake Macrophyte Growth Conditions	6
3.	1.2	Pre-flight planning and coordination	6
3.2	Ν	Iacrophyte Digitizing from Aerial Photos	7
4.0	FIE	LD SPECIES VERFICATION OF AERIAL PHOTOGRAPHY	
4.1	Р	rocedures	8
4.	1.1	Pre-field:	8
4.	1.2	Field:	
4.	1.3	End of Sample Day	
4.	1.4	End of Sample Event	10
4.	1.5	Field Data Sheet Packet	10
5.0	MA	ACROALGAE	
5.1	Р	rocedures	
5.	1.1	Pre-field:	11
5.	1.2	Field:	11
5.	1.3	End of Sample Day	
5.	1.4	End of Sample Event	
5.	1.5	Field Data Sheet Packet	
6.0	CH	RONOLOGY OF QAPP	
7.0	LI	TERATURE CITED	13

1.0 INTRODUCTION/PURPOSE

As part of the Onondaga Lake Ambient Monitoring Program the Onondaga County Department of Water Environment Protection has prepared a Quality Assurance Program Plan (QAPP) for the Onondaga Lake Macrophyte Assessment Program, 2007.

The County's long-term monitoring program includes assessment of physical, chemical, and biological attributes of the aquatic resource. The baseline Onondaga Lake Macrophyte Assessment Program and on going studies are expected to address the goal of the *Ambient Monitoring Program*.

Background

The Macrophyte Assessment Program was developed in consultation with expert technical advisors in limnology. The 2007 lake macrophyte program is summarized in Table 1.

Development of the QAPP

The purpose of the QAPP is to mesh field collection procedures and data requirements into a comprehensive document that provides a template for field, laboratory, and data management methods. The QAPP is meant to supplement in-house training of OCDWEP technicians and provide a framework from which trained staff can conduct consistent field surveys. The QAPP is considered to be a living document. That is, as changes are made in the Onondaga Lake Macrophyte Assessment Program, revisions will be made to the QAPP to reflect those changes. These may include changes to the:

- intensity of the sampling program;
- incorporation of new elements to the program, or deletion of specific;
- revisions and improvements to methodologies; and
- incorporation of new methodologies into the program.

Thus the QAPP will serve multiple purposes. It will provide documentation of standardized operations and procedures (SOPs), although more formal SOPs have been developed for inhouse training and documentation purposes. It will provide a framework of data forms designed to ensure collection and entry of data, and provide a framework for training of OCDWEP's staff via consistent mentoring by more senior, experienced staff through the structure of the QAPP.

The QAPP has been divided into chapters. Each chapter represents a major field component of the AMP. Each chapter provides a purpose and description of the component, the procedures for sampling that component, appropriate data sheets, maps, and descriptions of stations and station codes. Only minor clarifications were made to the QAPP, and no major program modifications were incorporated in to the 2007 monitoring season.
Component	Methodology/Gear	Sampling Objectives	Location and Number of Samples	Timing	Change
Onondaga Lake Aerial Photography	Program utilizes plane with belly mounted 9x9 camera. 60% forward overlap, 30% side overlap.	Determine annual percent of littoral zone with macrophytes.	-Three (3) flight lines full lake coverage.	-June or July when water clarity is approximately 3-meters on the secchi disk. -Early morning or early evening with low sun angle.	-No change from previous year.
Field Species Verification of Aerial Photography	Visual identification.	Determine species.	-Two (2) sites in each of the five (5) strata for a total of ten (10) sites.	-Within 1 week of the aerial photos.	-No change from previous year.
Macroalgae	At nine (9) near shore locations using a laser range finder to estimate distance from shore and visual percent cover estimate.	Document percent cover and annual proliferation of littoral zone macroalgae.	-Survey once per week at nine (9) near shore buoy locations.	-May through September.	- No change from previous year.

 Table 1. Summary of year 2007 Onondaga Lake Macrophyte Assessment Program.

2.0 STAFF TRAINING

The OCDWEP has approached the AMP under the self-monitoring element that is central to the federal Clean Water Act. OCDWEP has acquired a staff with a wide range of academic education supplemented by experience gained by working for state agencies, universities, and environmental consulting and research firms. This staff of scientists and technicians are supported by maintenance and operation personnel that provide the skills to build, construct, maintain, and modify gear needed to conduct the surveys. This expertise allows the OCDWEP to successfully train and mentor qualified individuals to provide a high level of quality to the data of the macrophyte assessment program. As with any long-term monitoring program, individuals will advance in their careers, retire, or move to new locations. This matriculation will require periodic in-house training of new individuals. The QAPP is integral to this training. Its use and understanding will provide each individual with an easy to understand document to ensure day-to-day and year-to-year consistency of the Onondaga Lake Macrophyte Assessment Program.

In addition to the QAPP and SOPs, the County's Consultant, Ecologic LLC, conducts annual audits for macrophyte field verification component. The audit is intended to ensure that the field technicians conducted their work in a professional manner and comply with the procedures outlined in the QAPP and SOPs. In addition, the audits determine if any observation would jeopardize the quality of the data (technique, field logs, training, etc.).

Thus the use of the QAPP in conjunction with the formal Standard Operating Procedures (SOPs) and external audits for the biological monitoring program activities, the *Onondaga County Ambient Monitoring Program: Year 2007 Onondaga Lake Macrophyte Assessment Program* and subsequent programs will provide OCDWEP with a successful monitoring program.

3.0 AERIAL PHOTOGRAPHY

3.1 Procedures

Aerial photographs will be taken of Onondaga Lake on an annual basis utilizing a qualified contracted aerial photography firm. The aerial photographs must meet the following specifications:

- 1"=445' +/- scale.
- 3 flight lines (Must duplicate previous flight lines).
- 63 total exposures.
- 60% forward lap.
- 30% side lap.
- Formal titling of 63 exposure (Onondaga Lake Macrophyte Survey Date, Time, Scale, Flight Line and Exposure).
- 2 sets of color contact prints.
- 1 set of black and white prints.

3.1.1 Lake Macrophyte Growth Conditions

- Step 1. Visually survey the macrophyte growth in the littoral zone from a boat during other lake sampling events (optimal time is usually Early July). Timing is critical; the aerial flight needs to be scheduled when macrophytes are approaching their peak, but before the lake macroalgae peaks (Usually late June to mid July).
 - **Note:** Prior to the aerial flight, large buoys (nearly 3ft diameter) will be positioned at the field verification locations for visual identification in the photos.
- Step 2. Contact flight contractor to determine flight feasibility.
 - **Note:** These indicators are not always achieved due to turbidity, wind and other environmental factors. These are guidelines to determine the best possible conditions for aerial photographs.

3.1.2 Pre-flight Planning and Coordination

- Step 1. Review weekly secchi disc readings.
- Step 2. Review weather report for the past week. No significant rainfall should be recorded for at least 48 hours prior to the flight.
- Step 3. Review detailed weather report for the next few days. A clear day with low humidity and no haze needs to be targeted for the flight.

Step 4. Contact flight contractor as early as possible in the morning to confirm the flight. Usually this is done at 700 hours to allow the contractor travel time to shoot the photos during the period of low sun angle which is the period of 600 - 1030 hours and 1630 - 2000 hours during this time of year.

3.2 Macrophyte Digitizing from Aerial Photos

- Step 1. Geo referenced color Tiff images of the littoral zone are imported into an ArcView job file.
- Step 2. The Tiff images are overlaid at a scale of 1:1,856 on a bathymetric map of Onondaga Lake. Digitizing should be carried out on the computer screen and areas perceived as macrophyte growth, based on color and texture, should be delineated.
- Step 3. The perimeter of each macrophyte bed in the lake is outlined using the polygon feature of ArcView.
- Step 4. In addition to macrophyte beds, nearshore areas that appear to have been dredged, piers, and other structures should be delineated and categorized separately from the macrophyte beds.
- Step 5. ArcView will calculate the area of polygons in the file; this will be comparable to the area of the lake where macrophytes are present.

4.0 FIELD SPECIES VERIFICATION OF AERIAL PHOTOGRAPHY

4.1 **Procedures**

Field verification of macrophyte species present in Onondaga Lake will be conducted within one (1) week of the aerial flight. Two (2) samples will be collected from each of the five (5) strata for a total of ten (10) samples.

4.1.1 Pre-field:

- Step 1. Review QAPP to determine overall needs of programs.
- Step 2. Assemble: map and field sheets, equipment, and species key.
- Step 3. Review weather reports for sampling feasibility.

4.1.2 Field:

Step 1. Proceed to the first monitoring site. The following table summarizes the site description and coordinates for each sampling location.

Site Description	Coordinates/Position
Onondaga Lake Site 1	43° 06.653' N, 76° 13.746' W
Onondaga Lake Site 2	43° 05.966' N, 76° 12.525' W
Onondaga Lake Site 3	43° 05.468' N, 76° 11.773' W
Onondaga Lake Site 4	43° 04.489' N, 76° 10.667' W
Onondaga Lake Site 5	43° 03.853' N, 76° 11.057' W
Onondaga Lake Site 6	43° 04.324' N, 76° 12.202' W
Onondaga Lake Site 7	43° 05.388' N, 76° 12.565' W
Onondaga Lake Site 8	43° 06.813' N, 76° 14.702' W
Onondaga Lake Site 9	43° 05.589' N, 76° 13.937' W
Onondaga Lake Site 10	43° 06.909' N, 76° 14.390' W

- Step 2. Upon arrival at site position the boat in approximately 1 to 1.5 meters of water, Then anchor the boat to secure the position.
- Step 3. Confirm and record GPS location (the actual final position) and site number, then begin filling out the macrophyte field verification sheet (Figure 2).
- Step 4. With rope or pole attached, position the meter-squared frame in the water and lower to bottom If dense beds of macrophytes are present use the rake to firmly ground the frame.
- Step 5. Using the metal rake remove all macrophytes from the square meter area. If there are emergent or floating leafed macrophytes in the sample area, it may be necessary to

pull them by hand in order to get them loose from the bottom. If large amounts of macroalgae are present the algae should be carefully pushed aside prior to collecting the sample, note presence of macroalgae and relative abundance on the datasheet in the comment section.

- Step 6. As macrophytes are removed from the sample area place them in a tub filled with water.
- Step 7. After removing all the macrophytes in the sample area, visually separate them into similar groups, placing each group into a separate 5-gallon bucket.
- Step 8. Once all macrophytes are separated into groups, remove individual specimens from the 5-gallon buckets for identification. Spread the specimen out on a flat surface (top of a cooler) and identify it using a key. Record the identified species on the macrophyte field verification sheet. Continue to identify all remaining species of plants in this manner.
- Step 9. Estimate percent cover of macrophytes from the area around the sample site in approximately a 5-meter radius around the boat. In addition, estimate the relative abundance for each species within the 5-meter radius.
 - **Note:** Determine and record if the species in the 5-meter radius represent the species around the boat (growth may be patchy). For example, the 1-square meter area may be primarily curly pondweed, but may have an elodea nearby within the 5-meter radius. These types of comments should be noted on the field data sheet.
 - **Note:** If a successful identification cannot be completed in the field, place the specimen in a plastic quart jar and fill with 10% buffered formalin for preservation. Use a separate generic name on the data sheet (such as Species a, b and so on) for each unidentified species, and estimate relative abundance for that species as you would for species identified in the field. The jar should be clearly marked with the following information:
 - Date and time.
 - Generic species name.
 - Location.
 - Field crew.
 - Comments.
- Step 10. Once all of the plants have been identified or preserved for further identification, and the field data sheet entries are complete, remove group of buoys. Then proceed to next station, and repeat Step 1 through 9.

4.1.3 End of Sample Day

- Step 1. Review field notes for completeness.
- Step 2. Submit original data sheets and field notes for duplication.
- Step 3. Write down needed equipment repairs.
- Step 4. Log any samples into the biological laboratory

4.1.4 End of Sample Event

- Step 1. Log original data sheets/notes into OCDWEP Hardcopy File System.
- Step 2. Submit duplicate copy of data sheets/notes for data entry.

4.1.5 Field Data Sheet Packet

Appendix B1 contains examples of the field verification data sheet and map of sampling stations.

5.0 MACROALGAE

5.1 Procedures

Annual macroalgae proliferation will be estimated on Onondaga Lake to determine the season percent cover within the littoral zone. This task will be coupled with the weekly lake near shore sampling. A total of nine (9) measurements will be collected weekly. Stakes with reflective discs will be placed on shore at the beginning of the field season. These stakes will be the bench mark to estimate the distance that the algae extends from shore.

5.1.1 Pre-field:

- Step 1. Review QAPP to determine overall needs of programs.
- Step 2. Assemble field data sheets, laser range finder, and digital camera.
- Step 3. Check batteries in laser range finder.

5.1.2 Field:

Step 1. Proceed to site number, and position boat at its start at the outer edge of the algae mat, or in approximately 1 m of water if the algae mat does not extended beyond the 1 meter depth. The following table summarizes the coordinates of transects used in the macroalgae monitoring program in Onondaga Lake.

Site #	Location	Buoy Coordinates	Shore Benchmark
Site 1	Lake Nearshore (Nine Mile Creek)	43° 05.477'N 76° 13.650'W	Point adjacent to Trib Mouth.
Site 2	Lake Nearshore (Harbor Brook)	43° 03.877'N 76° 11.043'W	43° 03.77'N 76° 11.06'W
Site 3	Lake Nearshore (Metro/Outfall)	43° 03.923'N 76° 10.805'W	43° 03.90'N 76° 10.85'W
Site 4	Lake Nearshore (Ley Creek)	43° 04.516'N 76° 10.592'W	43° 04.52'N 76° 10.61'W
Site 5	Lake Nearshore (Eastside)	43° 06.529'N 76° 13.598'W	43° 06.55'N 76° 13.58'W
Site 6	Lake Nearshore (Willow Bay)	43° 06.907'N 76° 14.167'W	43° 06.90'N 76° 14.17'W
Site 7	Lake Nearshore (Maple Bay)	43° 06.732'N 76° 14.713'W	43° 06.70'N 76° 14.83'W
Site 8	Lake Nearshore (Bloody Brook)	43° 05.720'N 76° 12.225'W	43° 05.76'N 76° 12.11'W
Site 9	Lake Nearshore (Wastebeds)	43° 04.880'N 76° 12.620'W	NA

- Step 2. Using the laser range finder, aim at the shoreline stake with the reflective disc and record the distance on the field sheet. Record the approximate depth of water (in meters), and document each location with a digital picture.
- Step 3. Estimate the percentage of the algae mat surface coverage along a straight visual line, approximately 2 meters wide, from the boat to the shoreline. If the algae mat is not large, or to distinguish between algae mats and emergent macrophytes, the boat may be moved towards shore to establish an accurate estimate. The laser range finder may be used to measure the inner and outer edge of any large algae mats to develop the estimate.

- Step 4. The field data sheet should include a sketch of the algae mat formation from the boat to the shoreline, and include a description of the algae mats (e.g. some formation on emergent macrophytes, no mats present, primarily *Cladophora*, some blue-green algae present, etc.).
- Step 5. Proceed to next station, and repeat steps 1 through 4.

5.1.3 End of Sample Day

- Step 1. Review field notes for completeness.
- Step 2. Submit original data sheets and field notes for duplication.
- Step 3. Write down needed equipment repairs and report to supervisor.
- Step 4. Download digital pictures.

5.1.4 End of Sample Event

- Step 1. Log original data sheets/notes into OCDWEP Hardcopy File System.
- Step 2. Submit duplicate copy of data sheets/notes for data entry.

5.1.5 Field Data Sheet Packet

The following items should be included in the field data sheet packet for this sampling activity.

- Station data sheet
- Map showing location of sampling stations
- Facility code/station description and coordinates

Appendix B2 contains examples of the station data sheet and map of sampling stations.

6.0 CHRONOLOGY OF QAPP

The QAPP for the Onondaga Macrophyte Assessment Program is a living document in that it will be periodically updated to reflect changes in the monitoring program that are instituted to improve the efficiency of data collection, focus on a particular aspect of the aquatic macrophytes. The periodic updating of the QAPP will provide a written record of sampling procedures over the entire life of the Onondaga Macrophyte Assessment Program. Annual revisions to the QAPP have incorporated various changes made to the macrophyte assessment program.

The original QAPP, and subsequent revisions, have been reviewed by the NYSDEC, revised by OCDWEP as requested, and approved by the NYSDEC prior to implementation.

7.0 LITERATURE CITED

OCDWEP	SOP For Macroalgae Survey (DOC No. BIO-011)
OCDWEP	SOP For Macrophyte Field Verification of Aerial Photography (DOC No. BIO-012)

APPENDIX B1

Field Data Packet for Macrophyte Species Verification of Aerial Photography

MACROPHYTE FIELD VERIFICATION SHEET

Date:	GPS Coordinates:	N: 43° W: 76°	
Crew:			
Site Number:	MACROPHYTE SPECIES IDENTIFICATION		
Weather:	Common Name	Scientific Name	Est. Percent Coverage (5-meter Radius)
OVercast PartlyCloudy HaZy CLear RAining SNowing			
Wind: from: 0-5mph 5-10 10-15 >15			
Date of Aerial Photography:			
Depth of Water (Meters):			
Substrate Type: Rock, logs, sand, silt, oncolites, solvay waste, etc.			
Do the Species in the 1-meter ² Represent the Species Found in the 5-meter Radius (Y/N)?	Samples Col	lected For Laborat	tory Identification*
COMMENTS:	^ Preser	ve samples in 10% But	fered Formalin.
Date:	GPS Coordinates:	N: 43°	
Crew:		W: /6	
Site Number:	MACROP	HYTE SPECIES ID	ENTIFICATION
Weather: OVercast PartlyCloudy HaZy CLear RAining SNowing	Common Name	Scientific Name	Est. Percent Coverage (5-meter Radius)
Wind: from: 0-5mph 5-10 10-15 >15 N,S,E,W,SE,SW,NE,NW.			
Date of Aerial Photography:			
Depth of Water (Meters):			
Substrate Type:			
Rock, logs, sand, silt, oncolites,solvay waste, etc.			
Do the Species in the 1-meter ² Represent the Species Found in the 5-meter Radius (Y/N)?	Samples Col	lected For Laborat	tory Identification*
COMMENTS:	* Preser	ve samples in 10% Buf	fered Formalin.

APPENDIX B2

Field Data Packet for Macroalgae

MACROALGAE FIELD SHEET - 2007

Date:	Date:
Crew:	Crew:
Near Shore Location:	Near Shore Location:
Weather: OVercast PartlyCloudy HaZy CLear RAining SNowing	Weather: OVercast PartlyCloudy HaZy CLear RAining SNowing
Wind: from: 0-5mph 5-10 10-15 >15	Wind: from: 0-5mph 5-10 10-15 >15
Are Shoreline Bench Marks Intact (Y/N)?	Are Shoreline Bench Marks Intact (Y/N)?
Check if Any Algae Samples Were Collected:	Check if Any Algae Samples Were Collected:
Depth of Water at Edge of Algal Mat (or Formation) in (Meters):	Depth of Water at Edge of Algal Mat (or Formation) in (Meters):
(Loff side) (Middle) (Pight Side)	(Left side) (Middle) (Pight Side)
Distance From Edge of Algal Mat (or Formation) To Shoreline Benchmark/Target (Meters):	Distance From Edge of Algal Mat (or Formation) To Shoreline Benchmark/Target (Meters):
(Left side) (Middle) (Right Side) Estimated Percent Cover (Range):	(Left side) (Middle) (Right Side) Estimated Percent Cover (Range):
(Left side) (Middle) (Right Side) Percent Cover Ranges: 0%, 1-20%, 21-40%, 41-60%, 61-80%, 81-100%	(Left side) (Middle) (Right Side) Percent Cover Ranges: 0%, 1-20%, 21-40%, 41-60%, 61-80%, 81-100%
COMMENTS:	COMMENTS:
Algal Mat Sketch	Algal Mat Sketch
Shoreline	Shoreline
Left Side Middle Right Side	Left Side Middle Right Side

APPENDIX 2: QUALITY ASSURANCE/ QUALITY CONTROL REVIEW OF 2007 DATA

LIST OF ATTACHMENTS:

Attachment 1 - Laboratory Minimum Reportable Limits Summary

- Attachment 2 List of Sample Results Qualified for Blank Contamination
- Attachment 3 Field Duplicates with RPDs Exceeding 20%
- Attachment 4 Laboratory Letter Addressing QC Issue
- Attachment 5 Results of Field Audits, 2007
- Attachment 6 Environment Canada Phosphorus Proficiency Samples
- Attachment 7 List of Qualified and Rejected Data

<u>Overview</u>

The following analytical data quality review was conducted on the 2007 data in the Onondaga database (Onondaga.mdb) obtained from the County on February 25, 2008. The results of this review are summarized below, and detailed in the sections following.

Recommended actions have been taken as of the date of this report unless otherwise noted.

1. Rinsate and field blanks

31 samples were associated with 10 blanks that had detectable concentrations of BOD5, SRP, TKN or Turbidity. <u>Recommended Action</u>: These sample results should be qualified in the database for possible blank contamination. As of April 2007, the action taken was to flag the data "2" in the RESULT_FLAG field of the database, which means these results are not included in data queries.

2. Field duplicates

Thirty-six duplicate results were associate with relative percent differences (RPDs) in excess of 20% and were submitted for re-evaluation to the laboratory; four data entry errors were identified by the laboratory, and the rest of the results were verified. <u>No further action was required.</u>

3. Charge Balance summary

The laboratory re-evaluated the major cations and anions for 8 samples where charge balance exceeded 20%; high solids were cited as the source of interference in the balance calculation for most of the samples. <u>No further action</u> was required.

4. Hardness calculation

The laboratory corrected two samples for which hardness, as calculated by EcoLogic using magnesium and calcium results from the database, did not match the hardness result reported in the database. <u>No further action</u> was required.

5. Database non-detects check

The laboratory reviewed sample results (26 metals, 623 solids and 32 other parameters) for possible data entry errors in reporting results less than the MRL; two results were identified as data entry errors, the remainder were either adjusted higher due to sample dilution factors or were metals results from contract laboratory CES which used a different MRL. No further action was required for the 2007 data.

<u>Recommendation for the future</u>: sort data by laboratory prior to initiating the MRL screening, request MRL from each laboratory.

6. Verify parameters for limnological reasonableness

The laboratory verified the results for one sample where the total dissolved phosphorus reported was greater than the soluble reactive phosphorus result (10/30/07 Onondaga Creek at Kirkpatrick). <u>Recommended Action</u>: Both sample results should be flagged in database as estimated (N flag). This action has not been taken as of April 2007.

The laboratory verified one sample result where the chlorophyll-a value seemed unusually high (09/11/07 at Lake South Deep, both Photic Zone and Tube Composite samples). <u>No further action</u> was required.

7. Review for outliers

In tributary data, several outliers were identified associated with extreme low or high flow conditions. The laboratory verified two tributary results (sulfate and pH) with results exceeding the screening protocol. <u>No further action</u> required.

In the lake data, one dissolved oxygen profile was identified as questionable. The profile was flagged by field personnel, and verified as erroneous by EcoLogic after comparing the data to results of that day's robotic monitoring devices. Data from this profile were deleted from the database. <u>No further action</u> required.

8. Low-level mercury results

QC limits were met, except for blank contamination confirmed for 04/10/07. The associated sample results had concentrations less than 5x the blank concentration. <u>Recommended Action</u>: Results should be flagged as potentially affected by blank contamination (N flag). As of April 2007, the action taken was to flag the data "2" in the RESULT_FLAG field of the database, which means these results are not included in data queries.

1. Rinsate and field blanks

Blanks are designed to detect whether target analytes are present in the sampling equipment or are introduced during sampling (i.e. background contamination) or during analysis (i.e. laboratory contamination). "Rinsate" blanks are used to measure equipment contamination. "Field" blanks measure target compounds introduced during transport and field handling.

To conduct this analysis, four steps were taken:

- <u>Analytes of interest were identified</u>. Blanks in the database were screened for those with detectable concentrations of analytes. These analytes formed the basis of the rest of the evaluation.
- <u>Blanks were evaluated against QC thresholds.</u> Concentrations in the blanks were evaluated against the Minimum Reportable Limit (MRL) using the NELAC exceedance criterion (less than 2 times the MRL) and a threshold of less than 5 times the MRL.
- <u>Blanks were evaluated against field sample results.</u> Concentrations in the blanks were evaluated against the field sample and field duplicate concentrations to identify which samples may be affected by blank contamination.
- <u>Actions were identified</u>. Based on these evaluations, conclusions were drawn as to which results required qualification in the database due to blank contamination.

Analytes of interest were identified.

The blanks in the database were screened for detectable concentrations. Twelve parameters were detected in the blanks:

Alkalinity (ALK-T)
Biochemical oxygen demand (BOD5)
Chloride
Organic nitrogen (ORG-N)
Silica (SiO2)
Soluble reactive phosphorus (SRP)

Total dissolved solids (TDS) Total Kjeldahl nitrogen (TKN) Total phosphorus (TP) Total solids (TS) Turbidity Total volatile solids (TVS) There were blank detections for low-level mercury as well, and these are discussed in the low-level mercury section of this memorandum.

Blanks were evaluated against QC thresholds.

A value of twice the Minimum Reportable Limit (MRL) of the corresponding analytical method is used as a criterion to screen for potential presence of contamination in blanks (Attachment 1). Five parameters were detected at trace concentrations in blanks, less than twice the MRL.

Parameters with blank concentrations <2x MRL				
	Minimum		Blank	
	Reportable Limit		Detections	
Parameter	MRL 2x MRL		min – max (count)	
BOD5 (mg/l)	2	4	3 (1)	
SiO2 (mg/l)	0.2	0.4	0.26 (1)	
SRP (mg/l)	0.003	0.006	0.002 (1)	
TKN (mg/l)	0.15	0.30	0.15 - 0.2 (8)	
TP (mg/l)	0.003	0.006	0.003 - 0.003 (2)	

Another QC threshold is reported each year in the annual AMP QC report: detected concentrations greater that five times the MRL. Four of the twelve parameters had blank concentrations more than 5x the MRL, indicating possible issues with blank contamination:

Parameters with blank concentrations >5x MRL:					
	Minimum Reportable Limit		Blank Detections		
Parameter	MRL 5x MRL		min – max (count)		
ALK-T (mg/l)	1	5	6 – 9 (6)		
TDS (mg/l)	1	5	10 - 19(5)		
TS (mg/l)	1	5	20 - 20(1)		
TVS (mg/l)	1	5	15 – 15 (1)		

...

This analysis indicates that blank contamination is occasionally an issue for these four parameters. ALK-T blank contamination was investigated in 2005; container residue was identified as the source, so the laboratory switched to hand-rinsing of the alkalinity bottles. In 2006, 58% of the ALK-T blanks exhibited detectable concentrations; in 2007 41% of the blanks exhibited detectable concentrations. The presence of measurable alkalinity in laboratory water does not affect data usability.

Blanks were evaluated against field sample results

Sample and field duplicate analytical results for the twelve parameters detected in the blanks were also screened to identify those results potentially affected by blank contamination. For each of the twelve parameters detected in blanks, the minimum and maximum blank concentrations were identified and the number of blanks counted. Then, using sample and field duplicate results from the database, the minimums and maximums for each of the twelve parameters were identified. The maximum blank concentrations were compared with the minimum sample (or duplicate) concentrations to screen the data for possible contamination. Where the minimum sample (or duplicate) result was more than five times the maximum blank concentration, the sample results likely were not affected by blank contamination for that parameter. This condition was true for these seven parameters in samples (and duplicates) associated with the contaminated blanks:

samples likely not affected by blank contamination.				
Blank		Sample/Duplicate		
	Detections	Detections		
Parameter	min – max (count)	min – max		
ALK-T (mg/l)	1 – 9 (46)	114 - 296		
Chloride (mg/l)	2 - 2 (2)	196 - 504		
SiO2 (mg/l)	0.26(1)	3.63 - 11		
TDS (mg/l)	10 – 19 (5)	352-3,072		
TP (mg/l)	0.003 - 0.003(2)	0.02 - 0.14		
TS (mg/l)	20 - 20(1)	1,110-1,234		
TVS (mg/l)	15 – 15 (1)	94 - 170		

Parameters	with sample r	esults >5x bl	lank concentration –
samples like	ely not affected	d by blank co	ontamination.

For the remaining five parameters, the minimum sample (or duplicate) concentration was less than five times the maximum concentration detected in the blanks. As a result, these parameters warranted closer scrutiny for possible blank contamination:

Parameters with	sample results	<5x blank	concentration –
samples possibly	affected by bla	ink contami	ination.

	Blank	Sample/Duplicate
	Detections	Detections
Parameter	min – max (count)	min – max
BOD5 (mg/l)	3 – 3 (1)	2-3
ORG-N (mg/l)	0.12 – 0.17 (113)	0.1 - 4.5
SRP (mg/l)	0.002 - 0.002(1)	0.002
TKN (mg/l)	0.15 - 0.2 (8)	0.18 - 9.39
Turbidity (mg/l)	0.16 - 0.48(5)	0.93 - 31.6

Actions were identified

Using both sets of criteria: blanks < twice the MRL and sample results > 5x blank concentrations – a QC matrix of actions was developed:

	Samples >5x Blanks	Samples <5x Blanks
Blanks < 2x MRL	Samples not affected <i>No action required</i>	Samples may be affected <i>Qualify samples</i>
Blanks > 2x MRL	Samples not affected <i>Investigate blanks</i>	Samples may be affected Investigate blanks and qualify samples

Using this matrix, the parameters detected in blanks were sorted to evaluate level of action required.

	Samples >5x Blanks	Samples <5x Blanks			
Blanks < 2x MRL	No action required:	Qualify samples:			
	SiO2	BOD-5			
	TP	SRP			
		TKN			
Blanks > 2x MRL	Investigate blanks:	Investigate blanks and			
	ALK-T*	qualify samples:			
	Chloride	ORG-N**			
	TDS	Turbidity			
	TS				
	TVS				
* ALK-T blank contamination, an issue first identified in 2005, has improved with efforts from the laboratory; however, the problem persists. Since sample results are generally more than an order of magnitude greater than the concentrations in the blanks, measureable alkalinity levels in the blanks does not affect the data usability.					
** ORG-N is a calculated parameter (TKN minus ammonia as N) so the reported presence of organic N in rinsate samples reflects the variability in the measurements (i.e. precision) of TKN and ammonia as N. No further action is needed.					

The matrix indicates that some of the analytical results for BOD-5, SRP, TKN and Turbidity may be affected by blank contamination. The sample results associated with elevated blanks for these parameters are tabulated at the end of this memorandum (**Attachment 2**). These sample results should be qualified in the water quality database to denote the associated blank contamination.

2. Field duplicates

Field duplicates were evaluated using relative percent difference (RPD) of the results. RPDs greater than 20% are considered outside of quality control limits, following U.S. EPA guidance on data quality objectives (U.S. EPA 1994). In some cases, the RPDs are greater than 20% because concentrations are at or near the detection level.

Thirty-six duplicate results with RPDs exceeding 20% were re-evaluated by the laboratory. The laboratory confirmed the sample results for most of the duplicates, and identified four errors to be corrected in the database:

Sample No.	Parameter	Error Description	Original RPD	RPD using corrected data
2703998	Potassium	result was <0.020 missed a dilution factor; corrected to <0.20 mg/L	198%	2.1%
2712268	NH3-N	result was 0.034 typo corrected to 0.34 mg/L	163%	1.3%
2713288	NH3-N	result was 0.045 typo; corrected to 0.45 mg/L	176%	1.7%
2710488	TKN	result was 2.63 typo; corrected to 1.20 mg/L	67%	2.3%
NH3-N = ammo	onia as nitrogen;	TKN = total Kjeldahl nitrogen		

A listing of the field duplicate RPDs exceeding 20% (after database correction) are tabulated at the end of this memorandum (Attachment 3).

3. Charge Balance Summary

The charge balance results were evaluated against an upper limit of 20% for field samples and duplicates from the lake and the tributaries. The upper limit of 20% is the value used by the laboratory (Attachment 4).

	<u>Tributaries</u>	<u>Lake</u>
Average	4.87%	2.74%
Median	3.70%	2.19%
N Exceeds 20%	8	0

The laboratory re-evaluated the major cations and anions for eight samples where charge balance exceeded 20% (listed below), and confirmed the results. The laboratory noted that several samples had high solids which will interfere with the analytical measurements.

Sample			Charge Balance	TSS (mg/l)
No.	Source	Date	(%)	
2702493	Crk-Allied East Flume-Over Weir	3/14/2007	23.36	297
2706919	Crk-Allied East Flume-Over Weir	6/26/2007	26.32	8
2706925	Crk-Allied East Flume-Over Weir - Duplicate	6/26/2007	25.07	36
2702494	Crk-Harbor Brook @ Velasko Road	3/14/2007	60.24	738
2709041	Crk-Harbor Brook @ Velasko Road	8/21/2007	20.88	6
2713154	Crk-Onondaga Creek @ Adams Street	11/27/2007	26.4	520
2713151	Crk-Onondaga Creek @ Dorwin Ave.	11/27/2007	29.5	546
2707968	Crk-Onondaga Creek @ Kirkpatrick	7/24/2007	22.64	47

4. Hardness Calculation

Hardness is calculated using calcium and magnesium results. To review the hardness values in the database, EcoLogic used the calcium (Ca) and magnesium (Mg) results in the database to re-calculate hardness using the equation:

Hardness = (Ca * 2.5) + (Mg * 4.12)

The calculated values for hardness were compared with the values reported in the database, and the results were reasonable except for two samples:

		Ca	Mg	Hardness (mg/l)	
Sample	Date	(mg/l)	(mg/l)	Calculated	Database
Ley Creek at Park Street Duplicate (2700847)	1/23/07	156	30.9	517	392
Ninemile Creek at Rt 48 (2700839)	1/23/07	163	24.1	507	418

The laboratory reviewed these sample results, and reported that results for magnesium were modified after the hardness had been calculated. The hardness results were re-calculated and corrected for samples 2700847 and 2700839.

5. Database non-detects check

Non-detect data in the database are reported as less than the MRL. As a QC check to identify possible typographic errors, the "less than MRL" values were compared against the published MRL list for the 2007 AMP. The result of this evaluation may be divided into three categories: metals, solids, and other parameters.

□ *Metals* – These metals were reported at levels less than the MRL, but the MRL does not match with the published values. The MRLs for metals varies depending on whether concentration procedures were used. There are relatively few samples for which the MRL does not match the reported value, which may be an indicator of a data entry error. The laboratory was asked to verify that the reported sample results were accurate, and the laboratory's responses by parameter are presented below.

Parameter (units)	Reported Result	N Samples	Published MRL	Laboratory response
Cd (mg/l)	<0.0020	4	0.0008	MRL values differ due to
	< 0.0050	6	0.0008	results from contract laboratory CES
Ca (mg/l)	<0.125	1	1	Ca was entered incorrectly. Result was <0.125 and has been corrected to <1.25 mg/L
Cu (mg/l)	<0.002	1	0.0125 (0.0031)	MRL values differ due to results from contract laboratory CES
Pb (mg/l)	< 0.001	1	0.002	MRL values differ due to
	<0.03	6	0.002	results from contract laboratory CES
Hg (mg/l)	<0.0002	4	0.00002	MRL values differ due to results from contract laboratory CES
Ni (mg/l)	<0.00200	1	0.015 (0.00375)	MRL values differ due to results from contract laboratory CES
Ag (mg/l)	<0.001	1	0.0125	MRL values differ due to results from contract laboratory CES
Zn (mg/l)	<0.00200	1	0.025 (0.00625)	MRL values differ due to results from contract laboratory CES
Cd = cadmium Ag = silver; Z	n; Ca = calcium In = zinc	; $Cu = coppe$	r; Pb = lead; Hg = m	ercury; Ni = nickel;

□ Solids – The MRL for solids (TS, TVS, TSS, VSS and TDS) is 1 mg/l. Numerous results were reported ranging from <2 to <20. Given the high number of sample results with elevated detection levels, it is likely these are not data entry errors. However, for completeness, the laboratory was asked to verify that the reported sample results were accurate, and the laboratory's responses by parameter are presented below.

Parameter	Reported	Ν	Published MRL	Laboratory response
(units)	Result	Samples		
TS	<10	22	1	MRL adjusted higher due to sample dilution factors
TVS	<10	22	1	MRL adjusted higher due to sample dilution factors
TSS	<2	86	1	MRL adjusted higher due to
	<4	253	1	sample dilution factors
	<5	2	1	
	<10	2	1	
VSS	<2	108	1	MRL adjusted higher due to
	<4	22	1	sample dilution factors
TDS	<10	106	1	MRL adjusted higher due to
	<20	1	1	sample dilution factors
$TS = total \ solid$	<i>ls;</i> $TVS = total$	volatile solids;	: TSS = total suspende	d solids;
VSS = volatile	suspended solid	s; $TDS = tota$	l dissolved solids	

□ *Other parameters* – Five other parameters were reported in the database with "less than MRL" values that did not match the published MRLS. The number of these samples was low, raising the possibility of data entry error. The laboratory was asked to verify that the reported sample results were accurate, and the laboratory's responses by parameter are presented below.

Parameter (units)	Reported Result	N Samples	Published MRL	Laboratory response
TIC	< 0.05	1	0.5	TIC was entered incorrectly.
				Result was <0.05 and has
				been corrected to <0.5 mg/L
TKN	<1.5	2	0.15	MRL adjusted higher due to
				sample dilution factors
TKN-F	<1.5	1	0.15	MRL adjusted higher due to
				sample dilution factors
ТР	< 0.05	3	0.01	MRL adjusted higher due to
				sample dilution factors
FCOLI-MF	<10	24	2	MRL adjusted higher due to
< 20 1 2 sample dilution factor				
TIC = total ind	organic carbon;	TKN = total K	Kjeldahl nitrogen; TKN	V-F = filtered TKN;
TP = total pho	sphorus; FCOL	J-MF = fecal c	coliforms	

6. Verify parameters for limnological reasonableness

Several parameters were evaluated for limnological reasonableness for each sample, using the data from tributaries and the lakes. These evaluations were:

- Soluble reactive phosphorus (SRP) should be less than or equal to total phosphorus (TP)
- Total dissolved phosphorus (TDP) should be greater than or equal to SRP
- TDP should be less than or equal to TP
- Ammonia as nitrogen (NH3-N) should be less than or equal to total Kjeldahl nitrogen (TKN)
- NH3-N should be less than or equal to filtered TKN
- Biochemical oxygen demand (BOD5) should be greater than or equal to carbonaceous biochemical oxygen demand (CBOD5)

- Plot TP versus TSS
- Plot TP versus chlorophyll-α (lake only)

Overall, the comparisons were reasonable, with two exceptions:

- □ One sample exhibited a TDP value (0.003 mg/l) that was less than the SRP result (0.009 mg/l). This sample was collected on October 30 at the Onondaga Creek Kirkpatrick Street location. The laboratory verified these results. Both results were close to the analytical limit of detection for the low-level phosphorus method.
- \Box A plot of TP vs chlorophyll- α revealed a sample result for which chlorophyll- α seemed unusually high given the phosphorus concentration at the time. The sample was collected from South Deep on September 11. For comparison, two other dates with South Deep phosphorus concentrations similar to September 11 are shown below with chlorophyll- α concentrations.

		South Deep	Comparison Dates	
Parameter	Sample	9/11/07	7/3/07	10/9/07
Phosphorus (mg/l)	Average 0-3m	0.035	0.036	0.030
Chlorophyll-α (mg/m ³)	Photic Zone Tube Composite	28.84 26.17	7.48 5.87	16.55 17.09

The laboratory confirmed the chlorophyll- α sample results from September 11.

7. Review for Outliers

The 2007 AMP data were reviewed for outliers in the tributaries and in the lake. Due to the nature of the data set, this review for outliers was conducted using different methods for tributaries and the lake:

<u>Tributaries</u>: The tributary data are influenced in large part by stream flow. Therefore, the 2007 concentration data for the monitored parameters were compared against the 10-year average plus two standard deviations. Outliers were identified as data that fell outside the two standard deviation range.

<u>Onondaga Lake</u>: Histograms and temporal plots were constructed for analytical parameters of greatest interest – dissolved oxygen (DO), chlorophyll- α , Phaeophytin- α , Secchi depth, fecal coliforms (FCOLI), E. coli (ECOLI), phosphorus (TP, SRP and TDP), nitrogen (NH3-N, nitrate NO3 and nitrite NO2). These parameters were evaluated separately for depths 0-3 meters, 6 meters, and 9-18 meters at both North and South Deep. Outliers were identified by visual assessment of the plots.

The results of the outlier reviews are discussed below.

a. Tributaries

Several parameters were identified with results greater than the defined screening values (10-year average plus two standard deviations). Many of these were found to occur on sample dates with high or low flow (based on preliminary USGS flow data downloaded from the web site on 3/4/08):

□ March 14 was a high flow date for Onondaga Creek, Ninemile Creek, Ley Creek and Harbor Brook. According to National Weather Service climate data for the period in Syracuse, snow depth was 9 inches on March 13. Warm temperatures (maximums above 55°F from the 12^h through the 14th) reduced the snow depth to 1 inch by March

15. Snowmelt combined with precipitation (0.36 inches on the 14th, and 0.33 inches on the 15th), resulting in a significant runoff event that spiked tributary flows from March 14 through 15. Parameters that exceeded the screening values on this date included BOD5, DO, FCOLI, Fe (iron), Mn (manganese), NH3-N, NO2, ORG-N, pH, TOC (total organic carbon), TOC-F (filtered TOC), TP, TKN, and TSS. Not all parameters exceeded the screening values for all tributaries:

Parameter	KIRKPAT	DORWIN	VELASKO	HIAWATHA	RT48	PARK	TRIB5A	EFLUME
BOD5 (mg/l)			8	10			9	10
DO (mg/l)			17.65				10.56	
FCOLI (count/100)							4800	5800
Fe (mg/l)			19.2	6.23	3.53			5.94
Mn (mg/l)	0.212		0.529	0.135	0.134			0.114
NH3-N (mg/l)			0.22					
NO2 (mg/l)	0.08		0.09	0.06				
ORG-N (mg/l)			3.19	1.68	1.08			
TKN (mg/l)		0.98	3.41	1.92				
TP (mg/l)				0.508				0.523
TOC (mg/l)			5.26				8.03	
TOC-F (mg/l)			3.89				7.98	
pH (std units)			8.25				8.42	
TSS (mg/l)	270	271	738	243	144			297

Parameter concentrations exceeding 10-year average plus two standard deviations on March 14. 2007.

□ November 27 was another high flow date for Onondaga Creek, Ninemile Creek, and Ley Creek; the ratings tables were being revised for Harbor Brook on this date. According to National Weather Service, there had been 1.10 inches of precipitation the day before, which likely accounts for the spike in tributary flows. Parameters that exceeded the screening values on this date included BOD5, DO, Fe, Mn, NO2, NO3 ORG-N, TOC, TOC-F, TP, TKN, and TSS. Not all parameters exceeded the screening values for all tributaries:

deviations on November 27, 2007.										
Parameter	KIRKPAT	DORWIN	VELASKO	HIAWATHA	RT48	PARK	TRIB5A	EFLUME		
BOD5 (mg/l)		3								
DO (mg/l)	16.83				16.89					
Fe (mg/l)		19.8			5.42					
Mn (mg/l)	0.586	0.685			0.203					

Parameter concentrations exceeding 10-year average plus two standard

Parameter	KIRKPAT	DORWIN	VELASKO	НІАWATHA	RT48	PARK	TRIB5A	EFLUME
NO2 (mg/l)	0.16	0.18						
NO3 (mg/l)					1.57			
ORG-N (mg/l)	1.89	2.1			1.43			
TKN (mg/l)	1.99	2.18			1.52			
TP (mg/l)	0.285	0.855			0.272			
TOC (mg/l)		5.8						
TOC-F (mg/l)					5.21			
TSS (mg/l)	562	546			191			

Parameter concentrations exceeding 10-year average plus two standard deviations on November 27, 2007.

- □ August 7 was a low-flow date for Harbor Brook. At the Hiawatha sampling location, TDS exceeded the screening value. The charge balance for this date was 7.74%. The charge balance verifies the TDS result.
- □ October 2 was a low-flow date for Onondaga Creek. At the Kirkpatrick sampling location, both chloride and sodium exceeded the screening values. The charge balance for this date was 3.24%. The charge balance verifies the Na and Cl results.

Two parameters that exceeded the statistically-defined screening values were identified for the laboratory to review:

- □ In Harbor Brook at the Velasko Road sampling location, sulfate was measured at 827 mg/l on October 16. The screening value was 787 mg/l. The laboratory verified this result.
- □ In Ley Creek at the Park Street sampling location, pH was measured at 7.98 standard units on December 26. The winter screening value was 7.77 standard units. The laboratory verified this result.

The 2007 data were also screened against the winter (December, January and February) 10year average plus two standard deviations to refine evaluation of parameters found in road de-icing materials.

- □ At the Harbor Brook Hiawatha Boulevard monitoring location, chloride and sodium exceeded the winter screening values on December 18. The charge balance for this date was 1.27%. The charge balance verifies that these results are not the result of laboratory analytical issues.
- □ At the Ley Creek Park Street monitoring location, chloride, hardness, sodium and total dissolved solids exceeded the winter screening values on February 27. The charge balance for this date was 1.70%. The charge balance verifies that these results are not the result of laboratory analytical issues.
- □ At the Tributary 5A monitoring location, sodium exceeded the winter screening values on January 23. The charge balance for this date was 1.05%. The charge balance verifies that the sodium result is not in error.

b. Onondaga Lake North and South basins

Review of the histograms and temporal plots of the 2007 lake data did not reveal outliers except for dissolved oxygen field profile measurements collected in South Deep on September 25. These data were compared with the UFI buoy located in close proximity to the County buoy.

	Dissolved Oxygen (mg/l)								
Depth (m)	Field Profile DWEP Buoy UFI Buoy								
0 to 3	6.52 to 4.16		11.09						
6	0.38	8.88	9.19						
9 to 18	-9.43 to 0.27		0.19 - 0.17						

The Onondaga County field profile data was clearly in error for this date (9/25/2007), and was removed from the database. Another field profile was measured on 9/27/07.

8. Low-level mercury results

The County subcontracts low-level mercury and methyl mercury analyses. In 2007, samples were collected on four dates, and two laboratories were used:

Brooks Rand Labs	Frontier Geosciences Inc.
April 10	August 29
June 5	October 24

The hard copy data packages for low-level mercury were reviewed, and the results presented below.

- Sample receipt:
 - insufficient sample volume received for methyl mercury for location Lake 18m South and Duplicate collected on 4/10/07; the results were qualified as nondetect (U) at elevated MDLs.
- Holding times were met (Method 1631 = 90 days)
- Calibration verification was within QC limits.
- Matrix Spike and Matrix spike duplicates were within QC limits
- Method, Prep and Calibration Blanks were within QC limits except:
 - 8/29/07 Total Mercury Prep Blanks two of the six blanks were reported with detectable concentrations; these blanks are noted that the blank was preserved to 3% and 5% rather than 1% BrCl, and that the control limit for these blanks is the preservation percentage multiplied by the MRL. There were no comments from the laboratory that this affects the reported results, or that any action was taken to correct it.
- Laboratory Spike Blanks were within QC limits
- Laboratory duplicates were within QC limits
- MDLs and PQLs: The laboratories both identified sample-specific adjustments to the MDLs and PQLs, which are summarized below by laboratory:

Date	Parameter	MDL	PQL	Sample-specific MDL & PQL
4/10/07	Total mercury	0.15	0.40	Equip Blank – 0.28 & 0.74
				Field Blank – 0.31 & 0.82
	Methyl mercury	0.020	0.050	Lake 18m South – 0.098 & 0.245
				Lake 18m South Dup – 0.115 & 0.287
6/5/07	Total mercury	0.15	0.40	Lake 3m South – 0.72 & 1.91
				Lake 18m South – 0.25 & 0.66
				Lake 18m South Dup – 0.25 & 0.66
				Lake 3m North – 0.64 & 1.70
				Lake 18m North – 0.23 & 0.60
	Methyl mercury	0.020	0.050	none identified.

1. Brooks Rand Dataset - Some MDLs adjusted to account for sample aliquot size.

2. Frontie	2. Frontier Geosciences						
Date	Parameter	MRL	Sample-specific MRL				
8/29/07	Total mercury	0.50	Lake 18m South – 0.51				
		Lake 18m South - Duplicate – 0.51					
			Lake $18m$ North -0.51				
	Methyl mercury	0.050	none; dilution noted as 1.25				
10/24/07	Total mercury	0.50	Lake Field Blk (Teflon Dunker) - 0.98				
			(dilution 1.95)				
			Lake $3m$ North -0.67 (dilution 1.33)				
	Methyl mercury	0.050	none; dilution noted as 1.25				

- Rinsate and Field Blanks were non-detect except for:
 - \circ 4/10/07 the laboratory noted Total Mercury blank contamination, and confirmed it with reanalysis. The associated sample results had concentrations less than 5x the blank concentration, therefore the sample results could be affected by blank contamination. The laboratory did not flag these sample results with any qualifiers to indicate possible blank contamination.

Attachment 1

Laboratory Minimum Reportable Limits Summary

				Analytical Procedures for Water Quality Analyses				
	Da	itabase param	eters - 2007	2006 (Jan-May)		2007 (May-	·Dec)	
Parameter	Code	Units	Method	Method	MRL	Method	MRL	
Bio Oxy Demand 5-day	BOD5	mg/L	3	2:(5210)	2	2:(5210)	2	
Carbon. Bio Oxy Demand 5-day	CBOD5	mg/L	48	2:(5210 B)	2	2:(5210 B)	2	
Bio Oxy Demand 10-day	BOD10	mg/L	450	2:(5210)	2	2:(5210)	2	
Carbon. Bio Oxy Demand 10-day	CBOD10	mg/L	451	2:(5210 B)	2	2:(5210 B)	2	
Total Alk as CaCO3	ALK-T	mg/L	37	1:(310.1)	1	1:(310.1)	1	
Total Organic Carbon	тос	mg/L	140; 146	1:(415.1)	0.5	1:(415.1)	0.5	
Total Organic Carbon - Filtered	TOC-F	mg/L	141; 146	1:(415.1)	0.5	1:(415.1)	0.5	
Total Inorganic Carbon	TIC	mg/L	146	1:(415.1)	0.5	1:(415.1)	0.5	
Particulate Organic Carbon	POC	mg/L	398	Contract Lab		Contract Lab		
Total Kjeldahl Nitrogen as N	TKN	mg/L	138	3:(10-107-06-2-D)	0.15	3:(10-107-06-2-D)	0.15	
Total Kjeldahl Nitrogen as N, filtered	TKN-F	mg/L	139	3:(10-107-06-2-D)	0.15	3:(10-107-06-2-D)	0.15	
Ammonia Nitrogen as N	NH3-N	mg/L	125	3:(10-107-06-1-B)	0.05	3:(10-107-06-1-B)	0.03	
Organic Nitrogen as N	ORG-N	mg/L	447	3:(10-107-06-2-D)	0.05	3:(10-107-06-2-D)	0.05	
Nitrate as N	NO3	mg/L	118	3:(10-107-04-1-B)	0.01	3:(10-107-04-1-B)	0.01	
Nitrite as N	NO2	mg/L	118	3:(10-107-04-1-B)	0.01	3:(10-107-04-1-B)	0.01	
Total Phosphorus -Manual	TP	mg/L	354	1:(365.2)	0.003	1:(365.2)	0.003	
Total Phosphorus	TP	mg/L	5	3:(10-115-01-1-E)	0.01	3:(10-115-01-1-E)	0.01	
Total Dissolved Phosphorus	TDP	mg/L	134	1:(365.2)	0.003	1:(365.2)	0.003	
Soluble Reactive Phosphorus	SRP	mg/L	308	1:(365.2)	0.003	1:(365.2)	0.001	
Silica	SiO2	mg/L	129	1:(370.1)	0.2	1:(370.1)	0.2	
Sulfates	SO4	mg/L	130	1:(375.4)	10	1:(375.4)	10	
Sulfide	Sulfide	mg/L	127	1:(376.1)	0.2	1:(376.1)	0.2	
Total Solids	TS	mg/L	143	1:(160.3)	1	1:(160.3)	1	
Total Volatile Solids	TVS	mg/L	144	1:(160.4)	1	1:(160.4)	1	
Total Suspended Solids	TSS	mg/L	4	1:(160.2)	1	1:(160.2)	1	

Attachment 1.	Ambient Monitoring	Program 2007 -	 Parameter Minimur 	n Reportable	Limits Summarv
		-0			

				Analytical Procedures for Water Quality Analyses			yses
	Datal	base paramete	rs - 2007	2006 (Jan-May)		2007 (Ma	ay-Dec)
Parameter	Code	Units	Method	Method	MRL	Method	MRL
Total Volatile Suspended Solids	VSS	mg/L	38	1:(160.4)	1	1:(160.4)	1
Total Dissolved Solids	TDS	mg/L	142	1:(160.1)	1	1:(160.1)	1
Arsenic - furnace	As	mg/L	473; 509	4:(200.9)	0.002	4:(200.9)	0.002
Beryllium	Ве	mg/L	509	Contract Lab		Contract Lab	
Total Cadmium	Cd	mg/L	161; 500; 509	4:(200.9)	0.0008	4:(200.9)	0.0008
Total Calcium	Са	mg/L	35	1:(215.1)	1	1:(215.1)	1
Total Chromium	Cr	mg/L	65; 161; 356; 509	4:(200.7)	0.010(0.0025)*	4:(200.7)	0.010(0.0025)*
Hexavalent Chromium	Cr-Hex	mg/L	69	2:(3500CrD)	0.005	2:(3500CrD)	0.005
Chloride	Chloride	mg/L	68	3:(10-117-07-1-B)	2	3:(10-117-07-1-B)	1
Residual Chlorine	CL2-Res-field	mg/L	206	1:(330.4)	0.1	1:(330.4)	0.1
Total Copper	Cu	mg/L	67; 161; 356; 509	4:(200.7)	0.0125(0.0031)*	4:(200.7)	0.0125(0.0031)*
Ammendable Cyanide	CN-A	mg/L	73	3:(10-204-00-1-A)	0.005	3:(10-204-00-1-A)	0.005
Chlorinated Cyanide	CN-Cl2	mg/L	73	3:(10-204-00-1-A)	0.005	3:(10-204-00-1-A)	0.005
Total Cyanide	CN-T	mg/L	73; 75; 399	3:(10-201-00-1-A)	0.005	3:(10-201-00-1-A)	0.003
Total Iron	Fe	mg/L	85; 537	4:(200.7)	0.05	4:(200.7)	0.05
Total Lead - furnace	Pb	mg/L	95; 161; 509	4:(200.9)	0.002	4:(200.9)	0.002
Total Magnesium	Mg	mg/L	88	1:(242.1)	0.1	1:(242.1)	0.1
Total Manganese	Mn	mg/L	89	4:(200.7)	0.025	4:(200.7)	0.025
Total Molybdenum	Мо	mg/L	311	Contract Lab		Contract Lab	
Total Mercury (Cold Vapor)	Hg	mg/L	86; 389; 509	1:(245.2)	0.00002	1:(245.2)	0.00002
Total Mercury (Brooks Rand)	Hg	ng/l	393				
Methyl Mercury (Brooks Rand)	Hg-methyl	ng/l	295				
Antimony	Sb	mg/L	509	Contract Lab		Contract Lab	
Selenium - furnace	Se	mg/L	472; 509	4:(200.9)	0.002	4:(200.9)	0.002
Total Sodium	Na	mg/L	92	1:(273.1)	3	1:(273.1)	3
Total Nickel	Ni	mg/L	93; 161; 356; 509	4:(200.7)	0.015(0.00375)*	4:(200.7)	0.015(0.00375)*
Potassium	к	mg/L	87	1:(258.1)	0.02	1:(258.1)	0.02
Thallium	ТІ	mg/L	509	Contract Lab		Contract Lab	
Total Silver	Ag	mg/L	17; 509	4:(200.7)	0.0125	4:(200.7)	0.0125

Attachment 1. Ambient Monitoring Program 2007 - Parameter Minimum Reportable Limits Summary
				Analyti	cal Procedures for	Water Quality Analyses	
	Database parameters - 2007			2006 (Ja	n-May)	2007 (Ma	ıy-Dec)
Parameter	Code	Units	Method	Method	MRL	Method	MRL
Total Zinc	Zn	mg/L	97; 161; 356; 509	4:(200.7)	0.025(0.00625)*	4:(200.7)	0.025(0.00625)*
Turbidity	Turbidity	NTU	145	2:(2130B)	0.1	2:(2130B)	0.1
Hardness	Hardness	mg/L	238	4:(215.1 & 424.1)	3	4:(215.1 & 424.1)	3
Conductivity - field	COND-field	umHos/cm	286	2:(2510B)	-	2:(2510B)	-
Dissolved Oxygen - field	DO-field	mg/L	286	1:(360.1)	0.1	1:(360.1)	0.1
pH - field	pH-field	Std Units	286	1:(150.1)	-	1:(150.1)	-
Temperature - field	Temp-field	°C	133; 286	1:(170.1)	-	1:(170.1)	-
Phenol	Phenol	µg/L	433	Contract Lab (GC m	ethod cannot be cor	l npared. Unknown MR	L)
Phenol	Phenol	mg/L	126	3:(10-210-00-1-B)	0.015	3:(10-210-00-1-B)	0.015
Phaeophytin a	Phaeophytin-a	mg/m3	155	2:(10200 H.2)	0.0002	2:(10200 H.2)	0.0002
Chlorophyll a	Chlorophyll-a	mg/m3	155	2:(10200 H.2)	0.0002	2:(10200 H.2)	0.0002
E. Coliform	ECOLI-MF	cells/100ml	360	2:(9213 D)	2	2:(9213 D)	2
E. Coliform	ECOLI	cells/100ml	525	N/A		2:(9223 B)	1.0 MPN
Fecal Coliform	FCOLI-MF	cells/100ml	80	2:(9222 D)	2	2:(9222 D)	2
Fecal Coliform	FCOLI	cells/100ml	80	2:(9222 D)	2	2:(9222 D)	2

Attachment 1. Ambient Monitoring Program 2007 - Parameter Minimum Reportable Limits Summary

<u>Notes:</u>

Contract Lab - indicates the analyses were conducted by a contract laboratory (in 2007, Certified Environmental Services) using unidentified method or reporting limits. N/A - Not applicable; MPN – Most Probable Number

List of Sample Results Qualified for Blank Contamination

Attachment 2. List of 2007 samples where (a) exceedance criterion (blank concentration $\leq 2x$ MRL) was met, but sample results were less than five times the concentration measured in the blank, or (b) exceedance criterion was not met, and sample results were less than five times the concentration measured in the blank.

BOD-5 (mg/l) - exceedance criterion (blank concentration <2x MRL) was met, but sample results were less than five times the concentration measured in the blank.

Date	Blank ID	Blank	Sample	Ind_Code	Source	Result
		Result	No			
8/27/2007	Crk-Blank Churn (Crew A)	3	2709307	910	Crk-Onondaga Creek @ Dorwin Ave.	<2
			2709345	789	Metro Final Effluent	3

SRP (mg/l) - exceedance criterion (blank concentration <2x MRL) was met, but sample results were less than five times the concentration measured in the blank.

Date	Blank ID	Blank Result	Sample No	Ind_Code	Source	Result
1/30/2007	Crk-Blank Churn (Crew A)	0.002	2701090	910	Crk-Onondaga Creek @ Dorwin Ave.	0.002

TKN (mg/l) - exceedance criterion (blank concentration <2x MRL) was met, but sample results were less than five times the concentratio	n
measured in the blank.	

Date	Blank ID	Blank	Sample	Ind_Code	Source	Result
		Result	No			
5/30/2007	Crk-Blank Dunker Churn (Crew B)	0.16	2705777	902	Crk-Harbour Brook @ Hiawatha	0.29
			2705780	1906	Crk-Onondaga Lake Outlet 2 ft.	0.60
			2705781	1907	Crk-Onondaga Lake Outlet 12 ft.	0.52
			2705790	1907	Crk-Onondaga Lake Outlet 12 ft Duplicate	0.54
			2705783	904	Crk-Tributary 5a @ State Fair Blvd	0.60
			2705785	911	Crk-Harbor Brook @ Velasko Road	0.18
2/7/2007	Crk-Blank Churn (Crew A)	0.16	2701332	882	Crk-Onondaga Creek @ Kirkpatrick	0.29
			2701344	882	Crk-Onondaga Creek @ Kirkpatrick-Duplicate	0.34
			2701336	905	Crk-Nine Mile Creek @ Lakeland Rt 48	0.75
			2701340	910	Crk-Onondaga Creek @ Dorwin Ave.	0.31
			2701343	1939	Crk-Onondaga Creek @ Adams Street	0.29
2/12/2007	Crk-Blank Churn (Crew A)	0.18	2701550	910	Crk-Onondaga Creek @ Dorwin Ave.	0.32

TKN (mg/l) - (continued)

Date	Blank ID	Blank	Sample	Ind_Code	Source	Result
		Result	No			
2/27/2007	Crk-Blank Churn (Crew A)	0.2	2701843	882	Crk-Onondaga Creek @ Kirkpatrick	0.3
			2701847	905	Crk-Nine Mile Creek @ Lakeland Rt 48	0.53
			2701849	903	Crk-Allied East Flume-Over Weir	0.83
			2701851	910	Crk-Onondaga Creek @ Dorwin Ave.	0.38
			2701855	1939	Crk-Onondaga Creek @ Adams Street	0.31
3/28/2007	Crk-Blank Churn (Crew A)	0.15	2703573	882	Crk-Onondaga Creek @ Kirkpatrick	0.36
			2703577	905	Crk-Nine Mile Creek @ Lakeland Rt 48	0.45
			2703579	903	Crk-Allied East Flume-Over Weir	0.64
			2703584	903	Crk-Allied East Flume-Over Weir -Duplicate	0.61
			2703581	910	Crk-Onondaga Creek @ Dorwin Ave.	0.37
			2703588	1939	Crk-Onondaga Creek @ Adams Street	0.38
4/26/2007	Crk-Blank Churn (Crew A)	0.18	2704636	910	Crk-Onondaga Creek @ Dorwin Ave.	0.30
8/14/2007	Crk-Blank Churn (Crew A)	0.19	2708717	910	Crk-Onondaga Creek @ Dorwin Ave.	0.38
9/10/2007	Crk-Blank Churn (Crew A)	0.17	2710013	910	Crk-Onondaga Creek @ Dorwin Ave.	0.57

Turbidity (NTU) -	 exceedance criterion was not me 	t. and sam	nple results were	less than five	times the cond	centration measure	d in the blank.
		.,					

Date	Blank ID	Blank	Sample	Ind_Code	Source	Result
		Result	No			
5/15/2007	Crk-Blank Dunker Churn (Crew B)	0.34 P	2705266	902	Crk-Harbour Brook @ Hiawatha	1.63
9/11/2007	Lake Equip. Blk (Dunker Churn)	0.48	2710055	918	Lake 0m South	1.55
			2710066	925	Lake Upper Mixed Layer South	2.11
			2710070	983	Lake Nearshore (Nine Mile Creek)	1.46
			2710072	985	Lake Nearshore (Metro/Outfall)	1.74
			2710074	987	Lake Nearshore (Eastside)	0.93
			2710075	988	Lake Nearshore (Willow Bay)	1.34
			2710076	989	Lake Nearshore (Maple Bay)	1.15
			2710096	895	Lake Nearshore (Bloody Brook)	1.31
5/15/2007	Crk-Blank Churn (Crew A)	0.37 P	2705276	789	Crk-Metro Effluent	1.43

Field Duplicates with RPDs Exceeding 20%

		Number	Number	r urumotor (unito)	Conc	Conc		Difference
Crk-Allied East Flume-Over Weir	6/26/2007	2706919	2706925	TOC (mg/l)	4.49	1.78	86.44	2.71
				TOC-F (mg/l)	4.06	1.56	88.97	2.5
				TSS (mg/l)	8	36	127.27	28
	11/14/2007	2712739	2712745	TSS (mg/l)	<4	5	22.22	1
Crk-Harbour Brook @ Hiawatha	5/1/2007	2704764	2704777	ORG-N (mg/l)	0.46	0.19	83.08	0.27
				TKN (mg/l)	0.49	0.22	76.06	0.27
Crk-Ley Creek @ Park Street	5/15/2007	2705268	2705279	TDP (mg/l)	0.011	0.058 P	136.23	0.047
	10/30/2007	2712258	2712268	ORG-N (mg/l)	0.42	0.74	55.17	0.32
Crk-Onondaga Creek @ Kirkpatrick	2/7/2007	2701332	2701344	TSS (mg/l)	<4	5	22.22	1
Crk-Onondaga Lake Outlet 12 ft.	5/30/2007	2705781	2705790	Phaeophytin-a (mg/m ³)	0.32	<0.2	46.15	0.12
				Fe (mg/l)	0.116	0.0678	52.45	0.0482
Crk-Onondaga Lake Outlet 2 ft.	6/12/2007	2706298	2706307	Fe (mg/l)	0.0585	0.144	84.44	0.0855
Lake 6m North	6/19/2007	2706587	2706592	TDP (mg/l)	0.008	<0.003	90.91	0.005
Lake 6m South	5/22/2007	2705544	2705549	TVS (mg/l)	124	178	35.76	54
	9/25/2007	2710705	2710710	NH3-N (mg/l)	0.071	0.101	34.88	0.03
Lake Tube Composite (South)	6/5/2007	2705985	2705986	Phaeophytin-a (mg/m ³)	<0.20	1.01	133.88	0.81
	7/17/2007	2707682	2707683	Phaeophytin-a (mg/m ³)	0.48	1.76	114.29	1.28
	8/6/2007	2708464	2708467	Phaeophytin-a (mg/m ³)	0.85	<0.2	123.81	0.65
	9/4/2007	2709711	2709712	Phaeophytin-a (mg/m ³)	1.17	0.43	92.50	0.74
	11/8/2007	2712608	2712609	Phaeophytin-a (mg/m ³)	0.59	1.12	61.99	0.53
	12/13/2007	2713465	2713466	Phaeophytin-a (mg/m ³)	0.21	1.5	150.88	1.29
Lake Upper Mixed Layer North	3/7/2007	2702615	2702617	Fe (mg/l)	0.141	0.0776	58.01	0.0634
	4/10/2007	2703996	2703998	K (mg/l)	3.6	<0.020	197.79	3.58
	6/19/2007	2706593	2706595	Fe (mg/l)	<0.050	0.0821	48.60	0.0321
	10/9/2007	2711405	2711407	BOD5 (mg/l)	<2 N	4 N	66.67	2
				Zn (mg/l)	0.0094	<0.0063	39.49	0.0031
Lake Upper Mixed Layer South	4/10/2007	2700226	2700228	Fe (mg/l)	0.134	0.383	96.32	0.249
	6/5/2007	2705981	2705983	BOD5 (mg/l)	<2	3	40.00	1
	6/19/2007	2706576	2706578	Pb (mg/l)	0.0036	<0.0020	57.1 <mark>4</mark>	0.0016
	Crk-Allied East Flume-Over Weir Crk-Harbour Brook @ Hiawatha Crk-Ley Creek @ Park Street Crk-Onondaga Creek @ Kirkpatrick Crk-Onondaga Lake Outlet 12 ft. Crk-Onondaga Lake Outlet 2 ft. Lake 6m North Lake 6m South Lake Tube Composite (South) Lake Upper Mixed Layer North Lake Upper Mixed Layer South	Crk-Allied East Flume-Over Weir 6/26/2007 11/14/2007 11/14/2007 Crk-Harbour Brook @ Hiawatha 5/11/2007 Crk-Ley Creek @ Park Street 5/15/2007 10/30/2007 10/30/2007 Crk-Onondaga Creek @ Kirkpatrick 2/7/2007 Crk-Onondaga Lake Outlet 12 ft. 5/30/2007 Crk-Onondaga Lake Outlet 2 ft. 6/19/2007 Lake 6m North 6/19/2007 Lake 6m South 5/22/2007 P/25/2007 9/25/2007 Lake Tube Composite (South) 6/5/2007 11/18/2007 11/8/2007 11/8/2007 11/18/2007 Lake Upper Mixed Layer North 3/7/2007 Lake Upper Mixed Layer South 4/10/2007 Lake Upper Mixed Layer South 4/10/2007 6/5/2007 6/5/2007	Crk-Allied East Flume-Over Weir 6/26/2007 2706919 11/14/2007 2712739 Crk-Harbour Brook @ Hiawatha 5/1/2007 2704764 Crk-Ley Creek @ Park Street 5/15/2007 2705268 10/30/2007 2712258 10/30/2007 2712258 Crk-Onondaga Creek @ Kirkpatrick 2/7/2007 2705781 Crk-Onondaga Lake Outlet 12 ft. 5/30/2007 2706587 Lake 6m North 6/19/2007 2705544 9/25/2007 2710705 240698 Lake 6m South 5/22/2007 2707682 8/6/2007 2706985 7/17/2007 2706985 11/14/2007 2707682 8/6/2007 2707682 8/6/2007 2708464 9/4/2007 27013465 Lake Upper Mixed Layer North 3/7/2007 2702615 4/10/2007 2703996 6/19/2007 27013996 6/19/2007 2701405 10/9/2007 27013936 Lake Upper Mixed Layer South 4/10/2007 270226 6/5/2007 2705981 6/19/2007 2705981 <td>Crk-Allied East Flume-Over Weir 6/26/2007 2706919 2706925 11/14/2007 2712739 2712745 Crk-Harbour Brook @ Hiawatha 5/1/2007 2704764 2704777 Crk-Ley Creek @ Park Street 5/15/2007 2705268 2705279 10/30/2007 2712258 2712268 2712268 Crk-Onondaga Creek @ Kirkpatrick 2/7/2007 2701332 2701344 Crk-Onondaga Lake Outlet 12 ft. 5/30/2007 2706598 2706307 Lake 6m North 6/19/2007 2706587 2705549 9/25/2007 2710705 2710710 Lake 6m South 5/5/2007 270585 2710710 Lake Tube Composite (South) 6/5/2007 2707682 270683 8/6/2007 2708464 2708467 9/4/2007 2709711 11/8/2007 2702615 2702617 4/10/2007 2702615 2703986 6/19/2007 2701326 2710398 2712609 12/13/2007 2706593 2706595 10/9/2007 2702615 2702615 27026</td> <td>Crk-Allied East Flume-Over Weir 6/26/2007 2706919 2706925 TOC (mg/l) TOC-F (mg/l) TSS (mg/l) 11/14/2007 2712739 2712745 TSS (mg/l) Crk-Harbour Brook @ Hiawatha 5/1/2007 2704764 2704777 ORG-N (mg/l) TKN (mg/l) Crk-Ley Creek @ Park Street 5/15/2007 2705268 2705279 TDP (mg/l) Crk-Onondaga Creek @ Kirkpatrick 2/7/2007 2710332 2701344 TSS (mg/l) Crk-Onondaga Lake Outlet 12 ft. 5/30/2007 2705781 2706592 TDP (mg/l) Crk-Onondaga Lake Outlet 2 ft. 6/12/2007 2705587 2706592 TDP (mg/l) Lake 6m North 6/12/2007 2705584 2705549 TVS (mg/l) Lake 6m South 5/22/2007 2710705 2710710 NH3-N (mg/l) 9/25/2007 2705854 2705549 TVS (mg/l) Lake Tube Composite (South) 6/5/2007 2707682 2706836 Phaeophytin-a (mg/m³) 9/4/2007 27078454 2709712 Phaeophytin-a (mg/m³) 11/8/2007 2713465 Phaeophytin-a (mg/m³)</td> <td>Crk-Allied East Flume-Over Weir 6/26/2007 2706919 2706925 TOC (mg/l) 4.49 TOC-F (mg/l) 4.06 TSS (mg/l) 8 11/14/2007 2712739 2712745 TSS (mg/l) 8 Crk-Harbour Brook @ Hiawatha 5/1/2007 2704764 2704777 ORG-N (mg/l) 0.46 Crk-Ley Creek @ Park Street 5/15/2007 2705268 2705279 TDP (mg/l) 0.011 10/30/2007 2712288 2712268 ORG-N (mg/l) 0.42 Crk-Onondaga Creek @ Kirkpatrick 2/71/2007 2705781 2705790 Phaeophytin-a (mg/m³) 0.32 Crk-Onondaga Lake Outlet 2 ft. 6/12/2007 2706587 2706592 TDP (mg/l) 0.0168 Lake 6m North 6/12/2007 2706587 2706592 TDP (mg/l) 0.0285 Lake 6m South 5/22/2007 2705784 2705749 TVS (mg/l) 124 9/25/2007 2710705 2710710 NH3-N (mg/l) 0.071 Lake 6m South 5/22/2007 2705788 Phaeophytin-a (mg/m³) <td< td=""><td>Crk-Allied East Flume-Over Weir 6/26/2007 2706919 2706925 TOC (mg/l) 4.49 1.78 TOC-F (mg/l) 4.06 1.56 TSS (mg/l) 8 36 11/14/2007 2712739 2712745 TSS (mg/l) <4</td> 5 Crk-Harbour Brook @ Hiawatha 5/1/2007 2704764 2704777 ORG-N (mg/l) 0.46 0.19 Crk-Ley Creek @ Park Street 5/15/2007 2705268 2705279 TDP (mg/l) 0.011 0.0585 Crk-Onondaga Creek @ Kirkpatrick 2/7/2007 2705781 2705790 Phaeophytin-a (mg/m³) 0.32 <0.2</td<></td> Crk-Onondaga Lake Outlet 2 ft. 6/12/2007 270587 2706592 TDP (mg/l) 0.016 0.0585 Crk-Onondaga Lake Outlet 2 ft. 6/12/2007 270587 2706592 TDP (mg/l) 0.008 <0.003	Crk-Allied East Flume-Over Weir 6/26/2007 2706919 2706925 11/14/2007 2712739 2712745 Crk-Harbour Brook @ Hiawatha 5/1/2007 2704764 2704777 Crk-Ley Creek @ Park Street 5/15/2007 2705268 2705279 10/30/2007 2712258 2712268 2712268 Crk-Onondaga Creek @ Kirkpatrick 2/7/2007 2701332 2701344 Crk-Onondaga Lake Outlet 12 ft. 5/30/2007 2706598 2706307 Lake 6m North 6/19/2007 2706587 2705549 9/25/2007 2710705 2710710 Lake 6m South 5/5/2007 270585 2710710 Lake Tube Composite (South) 6/5/2007 2707682 270683 8/6/2007 2708464 2708467 9/4/2007 2709711 11/8/2007 2702615 2702617 4/10/2007 2702615 2703986 6/19/2007 2701326 2710398 2712609 12/13/2007 2706593 2706595 10/9/2007 2702615 2702615 27026	Crk-Allied East Flume-Over Weir 6/26/2007 2706919 2706925 TOC (mg/l) TOC-F (mg/l) TSS (mg/l) 11/14/2007 2712739 2712745 TSS (mg/l) Crk-Harbour Brook @ Hiawatha 5/1/2007 2704764 2704777 ORG-N (mg/l) TKN (mg/l) Crk-Ley Creek @ Park Street 5/15/2007 2705268 2705279 TDP (mg/l) Crk-Onondaga Creek @ Kirkpatrick 2/7/2007 2710332 2701344 TSS (mg/l) Crk-Onondaga Lake Outlet 12 ft. 5/30/2007 2705781 2706592 TDP (mg/l) Crk-Onondaga Lake Outlet 2 ft. 6/12/2007 2705587 2706592 TDP (mg/l) Lake 6m North 6/12/2007 2705584 2705549 TVS (mg/l) Lake 6m South 5/22/2007 2710705 2710710 NH3-N (mg/l) 9/25/2007 2705854 2705549 TVS (mg/l) Lake Tube Composite (South) 6/5/2007 2707682 2706836 Phaeophytin-a (mg/m³) 9/4/2007 27078454 2709712 Phaeophytin-a (mg/m³) 11/8/2007 2713465 Phaeophytin-a (mg/m³)	Crk-Allied East Flume-Over Weir 6/26/2007 2706919 2706925 TOC (mg/l) 4.49 TOC-F (mg/l) 4.06 TSS (mg/l) 8 11/14/2007 2712739 2712745 TSS (mg/l) 8 Crk-Harbour Brook @ Hiawatha 5/1/2007 2704764 2704777 ORG-N (mg/l) 0.46 Crk-Ley Creek @ Park Street 5/15/2007 2705268 2705279 TDP (mg/l) 0.011 10/30/2007 2712288 2712268 ORG-N (mg/l) 0.42 Crk-Onondaga Creek @ Kirkpatrick 2/71/2007 2705781 2705790 Phaeophytin-a (mg/m ³) 0.32 Crk-Onondaga Lake Outlet 2 ft. 6/12/2007 2706587 2706592 TDP (mg/l) 0.0168 Lake 6m North 6/12/2007 2706587 2706592 TDP (mg/l) 0.0285 Lake 6m South 5/22/2007 2705784 2705749 TVS (mg/l) 124 9/25/2007 2710705 2710710 NH3-N (mg/l) 0.071 Lake 6m South 5/22/2007 2705788 Phaeophytin-a (mg/m ³) <td< td=""><td>Crk-Allied East Flume-Over Weir 6/26/2007 2706919 2706925 TOC (mg/l) 4.49 1.78 TOC-F (mg/l) 4.06 1.56 TSS (mg/l) 8 36 11/14/2007 2712739 2712745 TSS (mg/l) <4</td> 5 Crk-Harbour Brook @ Hiawatha 5/1/2007 2704764 2704777 ORG-N (mg/l) 0.46 0.19 Crk-Ley Creek @ Park Street 5/15/2007 2705268 2705279 TDP (mg/l) 0.011 0.0585 Crk-Onondaga Creek @ Kirkpatrick 2/7/2007 2705781 2705790 Phaeophytin-a (mg/m³) 0.32 <0.2</td<>	Crk-Allied East Flume-Over Weir 6/26/2007 2706919 2706925 TOC (mg/l) 4.49 1.78 TOC-F (mg/l) 4.06 1.56 TSS (mg/l) 8 36 11/14/2007 2712739 2712745 TSS (mg/l) <4	Crk-Allied East Flume-Over Weir 6/26/2007 2706919 2706925 TOC (mg/l) TOC (mg/l) 4.49 1.78 86.44 TOC-F(mg/l) 4.06 1.56 88.97 7 755 (mg/l) 8 36 127.27 Crk-Harbour Brook @ Hiawatha 5/12/207 2704764 2704777 ORG-N (mg/l) 0.46 0.19 83.08 Crk-Ley Creek @ Park Street 5/15/2007 2705268 2705279 TDP (mg/l) 0.011 0.058 P 136.23 Crk-Onondaga Creek @ Kirkpatrick 2/7/2007 2705781 2705790 Phaeophytina (mg/m³) 0.32 <0.2

Attachment 3. List of 2007 samples and field duplicates with Relative Percent Difference (RPD) exceeding 20%.

Site	Source	Date	Sample Number	Duplicate Number	Parameter (units)	Sample Conc	Dup Conc	RPD	Absolute Difference
Lake	Lake Upper Mixed Layer South	7/3/2007	2707229	2707231	Fe (mg/l)	0.213	0.16	28.42	0.053
(continued)	(continued)	10/24/2007	2712065	2712067	TKN-F (mg/l)	0.63	0.33	62.50	0.3
		10/31/2007	2712336	2712337	Phaeophytin-a (mg/m ³)	0.69	1.82	90.04	1.13
Treatment	Metro Final Effluent	11/28/2007	2713253	2713288	TP (mg/l)	0.072	<0.05	36.07	0.022
Plant					NH3-N (mg/l)	0.69	0.45 P	42.11	0.24

Laboratory Letter Addressing QC Issues

Onondaga County Department of Water Environment Protection

Inter-Office Letter

Subject: AMP 2007 QC data Review

To:	Janaki Suryadevara
From:	Mark Fowkes
Date:	Tuesday, March 25, 2008

Below is a list of questions from Kerry Thurston and responses.

1. Please double-check Chlorophyll-a (South Basin on 9/11/07) for sample numbers 2710069 (Photic Zone) and 2710095 (Tube composite) – the values seem high.

Confirmed by laboratory.

2. Please re-evaluate the cations/anions for these samples, where Charge Balance exceeds 15%:

SAMPLE_NO SOURCE START_DATE ChargeBalance%

2702493 Crk-Allied East Flume-Over Weir 3/14/2007	23.36	
2706919 Crk-Allied East Flume-Over Weir 6/26/2007	26.32	
2706925 Crk-Allied East Flume-Over Weir - Duplicate	e 6/26/2007	25.07
2702494 Crk-Harbor Brook @ Velasko Road 3/14/200	60.24	
2703243 Crk-Harbor Brook @ Velasko Road 3/20/200	19.44	
2708513 Crk-Harbor Brook @ Velasko Road 8/7/2007	19.84	
2709041 Crk-Harbor Brook @ Velasko Road 8/21/200	07 20.88	
2709764 Crk-Harbor Brook @ Velasko Road 9/6/2007	17.57	
2707426 Crk-Metro Effluent 7/10/2007 15.41		
2709766 Crk-Metro Effluent 9/6/2007 18.5		
2702491 Crk-Nine Mile Creek @ Lakeland Rt 48 3/1	14/2007 17.4	8
2709769 Crk-Onondaga Creek @ Adams Street 9/0	5/2007 15.11	l
2713154 Crk-Onondaga Creek @ Adams Street 11	/27/2007 26.4	1
2713151 Crk-Onondaga Creek @ Dorwin Ave. 11	/27/2007 29.3	5
2707968 Crk-Onondaga Creek @ Kirkpatrick 7/24	4/2007 22.64	

Confirmed by laboratory. Note that most samples had high solids which will interfere with the balance calculation. Current limit used is 20% not 15%.

3. Please check the samples listed in the attached Excel spreadsheet

(Review_FieldDups_AMP2007.xls), for data entry or other possible errors. The duplicate RPDs are high.

The following data were corrected:

Sample# 2703998 Potassium result was <0.020 missed a dilution factor and is now <0.20 mg/L.

Sample# 2712268 NH3-N result was 0.034 typo and result is now 0.34 mg/L.

Sample# 2713288 NH3 result was 0.045 typo and result is now 0.45 mg/L.

Sample# 2710488 TKN result waas 2.63 typo and result is now 1.20 mg/L.

All other results are confirmed by laboratory. See revised table (\$Update_Review_FieldDups_AMP2007.xls)

4. Please check the hardness calculations for samples 2700847 and 2700839. The reported results in the database (392 and 418 mg/l, respectively) are less than that calculated using Mg and Ca (517 and 507 mg/l, respectively).

Hardness results are a calculation based upon Mg and Ca. Results for Mg were modified after the hardness calculation. Results have now been re-calculated and corrected for Samples 2700847 and 2700839.

5. Would you verify if samples collected from Bloody Brook and Sawmill Creek on March 28, 2007 were collected by Crew A or Crew B? This information would be helpful in evaluating the equipment blanks.

Samples were collected by Crew B.

6. I am updating a table of the MRLs associated with the 2007 AMP data. Would you review the attached spreadsheet (Review-MRLTable-2007AMP.xls) for accuracy and fill in missing information?

See revised Table (\$Update-MRL Table-2007 AMP.xls). Note that some samples and data were reported from the contract laboratory CES and therefore the methods and detection limits do not match.

7. Please check the data in the attached spreadsheet (Review-MRLTypos-2007AMP.xls) for possible typographic errors. The 2007 non-detect data reported (less than MRL) were compared to the published MRLs; where the non-detect result doesn't match the published MRL, there could be a data entry error.

Sample# 2711380 for TIC was entered incorrectly. Result was <0.05 and has been corrected to <0.5 mg/L.

Sample# 2712731 for Ca was entered incorrectly. Result was <0.125 and has been corrected to <1.25 mg/L.

All MRL for the following parameter have been adjusted higher due to sample dilution factors (TSS,VSS,TDS,TKN,TKN-F,TP,FCOLI)

Other than Calcium, all other metal MRL values differ due to results from the contract laboratory CES.

See revised Table (\$Update-MRL Typos-2007AMP.xls).

Results of Field Audits, 2007

Onondaga County Department of Water Environment Protection Tributary Audit Checklist

Completed on: <u>June 26, 2007</u> Completed by: <u>Liz Moran, EcoLogic</u>

Quality Assurance Project Plan	Comment
Requirement	
(April 2006 Revision)	
Sondes calibrated per written procedure	Acceptable
and logged in bound notebook	
Bottles pre-labeled and match planned field	Acceptable
effort	
Chain-of-custody accurate and complete	Acceptable
Wash blanks prepared on cleaned	Acceptable
equipment and submitted to lab check-in	
Field crews verify that all equipment is	Acceptable
loaded into vehicles prior to departure	
Schedule and sequence of sites are	Acceptable
reviewed prior to departure	
Safety precautions observed	Most sites are OK. Need to place traffic
	cones on lower Onondaga Cr sites
Field team verifies correct location prior to	Acceptable. Discussion of upstream vs.
initiating sampling	downstream sampling locations (Adams St)
Samples collected per QAPP	Acceptable
Duplicate sample collected	Acceptable
Water mixed in churn	Discussed proper rate of churning and
	associated degree of agitation with field
	crew. Need to churn with sufficient energy
	to keep particulates in suspension, without
	creating turbulence.
Bottles rinsed with sample water prior to	Acceptable
filling	
Field filtration SRP, TDP samples	Acceptable
Preservation in accordance with QAPP	Acceptable
Proper equipment used for each sampling	Acceptable
location	
Field crews observe ambient conditions	Acceptable
and make notes as needed	
Field crews properly trained and	Acceptable
understand assignments	

Onondaga County Department of Water Environment Protection Lake Audit Checklist

Completed on: <u>May 22, 2007</u> Completed by: <u>Liz Moran, EcoLogic</u>

Quality Assurance Project Plan	Comment
Requirement	
(April 2006 Revision)	
Sondes calibrated per written procedure and	Acceptable
logged in bound notebook	
Bottles pre-labeled and match planned field	Acceptable
effort	
Chain-of-custody accurate and complete	Acceptable
Wash blanks prepared on cleaned equipment	Acceptable
and submitted to lab check-in	
Field crews verify that all equipment is loaded	Acceptable
into vehicle prior to departure	
Schedule and sequence of sites are reviewed	Acceptable (S. Deep plus nearshore)
prior to departure	
Field team verifies correct location prior to	Acceptable
initiating sampling	
Samples collected per QAPP	Acceptable
Duplicate sample collected	Acceptable
Equipment markings maintained and legible	Acceptable
Submersible pump allowed to run for sufficient	Acceptable
time to purge system of previous sample	
Tube composites sampled properly	Acceptable
Depth composites determined in field using	DWEP to include reference profiles to assist
proper reasoning and reference to SOP	field crews with determination of composites
Water mixed in churn at proper rate	Acceptable (gentle mixing best for lake water,
	discussed with field crew)
Flow meter for zooplankton net tow	Acceptable
Calculations	A
Bottles rinsed with sample prior to filling	Acceptable
Field filtration SRP, TDP samples	Acceptable
Field crew discusses and reaches correct	Acceptable
decision regarding collection of sulfide samples	A
Preservation in accordance with QAPP	Acceptable
Proper equipment used for each sampling	Ассериане
Field groups absorb ambient conditions and	Accontable
make notes as needed	Acceptable
Field crows properly trained and understand	Accentable
assignments	Acceptable
assigninents	

EcoLogic Memorandum

TO:	Joe Mastriano, DWEP
FROM:	Liz Moran
RE:	Quality control measures for phosphorus sampling and analysis
DATE:	August 1, 2007

There are a number of quality assurance/quality control (QA/QC) measures built into the Ambient Monitoring Program to document the precision and accuracy of the phosphorus measurements. As you requested, I have prepared this brief summary of current DWEP practices.

Several techniques are employed to assess and document the integrity of the entire sample collection and analysis process.

- Audits of the field efforts.
- Voluntary proficiency samples of the Onondaga County environmental laboratory (in addition to the proficiency samples required twice per year as part of the ELAP certification).
- Calculation of relative percent difference in field duplicates.
- Inclusion of equipment rinsate and laboratory blank analyses,

In addition to these criteria, analytical and field data are screened for criteria of "limnological reasonableness", which refers to compliance with a conceptual model of how lakes function and our cumulative understanding of the processes in Onondaga Lake. Examples of criteria for limnological reasonableness are noted below.

- Distribution of chemicals as a function of depth, thermal stratification, and season.
- Relationship between total and dissolved fractions of a parameter.
- Charge balance of samples for which major cations and anions are measured.
- Changes in concentration between sampling events that are not explicable (for example, a sudden reappearance of dissolved oxygen in the lower waters during stable thermal stratification).

Finally, the integrated database of AMP water quality results designed by Dr. William Walker has an outlier screening function that identifies results that are statistical outliers. This enables the program managers and laboratory staff to investigate and verify individual results and make any necessary corrections.

Several of these measures are discussed in greater detail in the following sections.

(1) The annual AMP workplan and accompanying QA/QC plan

The annual program submittal is reviewed from the perspective of whether the AMP provides the data and information needed to assess management questions. This review includes OCDWEP and Onondaga County managers and members of the Onondaga Lake Technical Advisory Committee.

The annual submittal documents the measures OCDWEP has implemented to document the EPA PARCC parameters (precision, accuracy, representativeness, completeness and comparability). Good data begins with good field sampling, and the County has committed enormous resources in equipment and staff training to ensure proper sampling of the lake, river, tributary streams, and effluents. The nature and integrity of the sample containers is fully documented. A routine program of blanks evaluates whether there is any potential for cross-contamination of samples. Chain-of-custody forms accompany each sample through collection and analysis.

The annual QA/QC plan is submitted to NYSDEC for review and approval annually.

(2) Field audits

Field sampling is audited a minimum of twice each year, when professional staff accompany the AMP sampling teams to observe sampling and sample handling. NYSDEC and USGS have also accompanied the field teams.

(3) Laboratory audits

The National Water Research Institute (NWRI) of Environment Canada manages performance evaluation (PE) studies to help laboratories assess the accuracy and integrity of their analytical results. More than 200 laboratories from the US and Canada participate in the PE studies; results are evaluated for precision and systematic bias. The NWRI routinely provides samples of natural waters for analysis of a suite of water quality parameters. PE samples are prepared for major ions and nutrients, or for TP. The water originates from various lakes and rivers in different geologic and land use settings. Lake Superior water is used as the TP blank. Samples were prepared in natural lake and river waters and preserved with 0.2% sulfuric acid. Standard phosphate solutions were prepared with potassium dihydrogen phosphate and sodium β -glycerophosphate for inorganic and organic spikes respectively.

The PE evaluations are run twice each year, spring and fall. The Onondaga County Environmental Laboratory participated in the NWRI program for the first time in fall 2002. Since then, the County laboratory has routinely participated in the twice-yearly (spring and fall) performance evaluations.

Prior to 2002, DWEP implemented various other round-robin evaluations using proficiency samples from USGS, from commercial sources, and from other local certified laboratories.

(4) ELAP certification requirements

The Onondaga County environmental laboratory is required to fully document precision and accuracy and method detection limit for all analytes, including phosphorus. This includes formal determination of control limits, reference samples, spikes, duplicates, blanks, and surrogate samples. The laboratory is subject to formal audit by the New York State Department of Health twice annually.

(5) Program-level oversight

OCDWEP has designed several means of assessing whether the goals of the data acquisition program are being met. Both the field and laboratory components of the AMP are assessed on an ongoing basis, with formal checkpoints each month.

Data are received from the laboratory on a monthly basis and are immediately reviewed for completeness and potential outliers.

The program team reviews the workplan with key field and laboratory personnel. Monthly coordination meetings are held with field and laboratory personnel. Any significant activities or problems identified in either the field or laboratory component of the program are discussed. A formal list of action items is kept from these monthly meetings.

EcoLogic LLC conducts an annual training and feedback session that is open to the entire AMP field, laboratory, and management team. The "State of the Lake" is presented as an opportunity for the AMP team to understand the significance of their efforts in striving for excellence in data quality. There is also ample opportunity for questions and answers.

Environment Canada Phosphorus Proficiency Samples

Background

The National Water Research Institute (NWRI) of Environment Canada manages performance evaluation (PE) studies to help laboratories assess the accuracy and integrity of their analytical results. More than 200 laboratories from the US and Canada participate in the PE studies; results are evaluated for precision and systematic bias. The NWRI routinely provides samples of natural waters for analysis of a suite of water quality parameters. PE samples are prepared for major ions and nutrients in water, Total Phosphorus in water, rain and soft waters, trace elements in water, and trace elements in sediment.

The Onondaga County Environmental Laboratory participated in the NWRI program for the first time in fall 2002. Since that time, the County laboratory has routinely participated in the proficiency testing program for total phosphorus in water. Water used in this evaluation originates from various lakes and rivers in different geologic and land use settings. Lake Superior water is used as the TP blank. Samples are prepared in natural lake and river waters and preserved with 0.2% sulfuric acid. Standard phosphate solutions are prepared with potassium dihydrogen phosphate and sodium β -glycerophosphate for inorganic and organic spikes respectively.

Results

Onondaga County participated in PT Study 0090, June to September 2007 and received results on September 17, 2007. The performance of the laboratory was rated as "satisfactory". Two of the ten samples were flagged as outside of advisory limits. No bias was assigned to the laboratory results. The laboratory rates performance based on the percent of the sample results that are flagged (2/10 in this round) or systematically biased (0/10 in this round). The satisfactory rating on Study Code 0090 reflected a 10% score.

NWRI Laboratory Performance Rating

Rating	Percent Score *
Good	0 - 5
Satisfactory	>5-12.5
Moderate	>12.5 - 30
Poor	>30

*Sum of Bias and Flagged Data

Previous proficiency testing through the Environment Canada program consistently earned a rating of "good". The laboratory completed an internal review of the June – Sept 2007 proficiency study to identify factors contributing to the decline in rating. The samples and results are summarized in the table below.

Sample	Measured Result (mg/l)	Assigned Value (mg/l)	High warning Limit (mg/l)	High acceptance Limit (mg/l)	Standard deviation (mg/l)
PT90-1	< 0.003	0.0010	0.003	0.004	0.0012
РТ90-2	<0.003	0.0040	0.005	0.006	0.0007
РТ90-3	0.008	0.0065	0.008	0.009	0.0009
РТ90-4	0.087	0.0880	0.098	0.103	0.0051
РТ90-5	0.015	0.0180	0.021	0.023	0.0017
РТ90-6	0.060	0.06490	0.073	0.077	0.0041
РТ90-7	0.422*	0.334	0.364	0.379	0.0151
РТ90-8	0.131	0.1336	0.148	0.155	0.0062
РТ90-9	0.254 #	0.228	0.249	0.259	0.0103
РТ90-10	0.854	0.834	0.893	0.922	0.0294

Note: # Warning limits: greater than 2 standard deviations above the mean responses of participating laboratories

*Acceptance limits: greater than 3 standard deviations above the mean responses of participating laboratories

According to the internal investigation, the calibration range for TP samples extends to 0.3 mg/l. The two samples outside of the range (PT90-7 and PT90-10) were manually diluted, re-digested, and re-analyzed. Sample PT90-9 was also re-digested and re- analyzed due to an undocumented problem with the original analysis. The review resulted in a recommendation for additional training and supervision of analysts, which has been implemented. Two procedural changes have also been implemented:

- 1. When the relative percent difference between laboratory duplicates exceeds established control limits, regardless of whether the sample was subsequently diluted, the sample must be re-analyzed, verified by the QC officer, and documented.
- 2. The rationale for repeating the digestion and/or analysis of a sample must be documented.

The laboratory will continue to participate in the Environment Canada proficiency testing program.

FINAL Revised April 2009

Attachment 7

Lists of Qualified and Rejected Data

					LAB_				
SAMPLE_	IND_				SAMPLE_	SAMPLE_		START_	
NO	CODE	SOURCE	CATEGORY	STUDY	TYPE	TYPE	DEPTH	DATE	SAMPLE_REMARKS
2709187	789	Metro Final Effluent	Quality Control	HRFS Project	Composite	TIME	0	8/21/2007	Side by side second sampler
2709187	789	Metro Final Effluent	Quality Control	HRFS Project	Composite	TIME	0	8/21/2007	Side by side second sampler
2709187	789	Metro Final Effluent	Quality Control	HRFS Project	Composite	TIME	0	8/21/2007	Side by side second sampler
2709187	789	Metro Final Effluent	Quality Control	HRFS Project	Composite	TIME	0	8/21/2007	Side by side second sampler
2709187	789	Metro Final Effluent	Quality Control	HRFS Project	Composite	TIME	0	8/21/2007	Side by side second sampler
2709187	789	Metro Final Effluent	Quality Control	HRFS Project	Composite	TIME	0	8/21/2007	Side by side second sampler
2709249	789	Metro Final Effluent	Quality Control	HRFS Project	Composite	TIME	0	8/22/2007	Side by side second sampler
2709249	789	Metro Final Effluent	Quality Control	HRFS Project	Composite	TIME	0	8/22/2007	Side by side second sampler
2709249	789	Metro Final Effluent	Quality Control	HRFS Project	Composite	TIME	0	8/22/2007	Side by side second sampler
2709249	789	Metro Final Effluent	Quality Control	HRFS Project	Composite	TIME	0	8/22/2007	Side by side second sampler
2709249	789	Metro Final Effluent	Quality Control	HRFS Project	Composite	TIME	0	8/22/2007	Side by side second sampler
2709249	789	Metro Final Effluent	Quality Control	HRFS Project	Composite	TIME	0	8/22/2007	Side by side second sampler
2709249	789	Metro Final Effluent	Quality Control	HRFS Project	Composite	TIME	0	8/22/2007	Side by side second sampler
2709223	789	Metro Final Effluent	Quality Control	HRFS Project	Composite	TIME	0	8/23/2007	Side by side second sampler
2709223	789	Metro Final Effluent	Quality Control	HRFS Project	Composite	TIME	0	8/23/2007	Side by side second sampler
2709223	789	Metro Final Effluent	Quality Control	HRFS Project	Composite	TIME	0	8/23/2007	Side by side second sampler
2709223	789	Metro Final Effluent	Quality Control	HRFS Project	Composite	TIME	0	8/23/2007	Side by side second sampler
2709223	789	Metro Final Effluent	Quality Control	HRFS Project	Composite	TIME	0	8/23/2007	Side by side second sampler
2709223	789	Metro Final Effluent	Quality Control	HRFS Project	Composite	TIME	0	8/23/2007	Side by side second sampler

2007 samples flagged in the database as not to be used for data queries or analyses.

SAMPLE_		SOURCE	SAMPLE_	Daramatar	Unite		LAB_		START_	END_
0700407		JURCE	NOTES	Faranieler	Units	SKEGUET	COMMENTS			
2709187	789	Metro Final Effluent		CBOD2	mg/L	3		ELS	8:30	8:15
2709187	789	Metro Final Effluent		NH3-N	mg/L	0.23		ELS	8:30	8:15
2709187	789	Metro Final Effluent		BOD5	mg/L	5		ELS	8:30	8:15
2709187	789	Metro Final Effluent		TKN	mg/L	1.56		ELS	8:30	8:15
2709187	789	Metro Final Effluent		TP	mg/L	0.13		ELS	8:30	8:15
2709187	789	Metro Final Effluent		TSS	mg/L	3		ELS	8:30	8:15
0700040	700	Matra Final Effluent		то		0.40			0.20	0.45
2709249	789	Metro Final Elliuent			mg/L	0.12		ELS	8:30	8:15
2709249	789	Metro Final Effluent		IKN	mg/L	1.08		ELS	8:30	8:15
2709249	789	Metro Final Effluent		NH3-N	mg/L	0.2		ELS	8:30	8:15
2709249	789	Metro Final Effluent		Chloride	mg/L	222		ELS	8:30	8:15
2709249	789	Metro Final Effluent		CBOD5	mg/L	3		ELS	8:30	8:15
2709249	789	Metro Final Effluent		BOD5	mg/L	3		ELS	8:30	8:15
2709249	789	Metro Final Effluent		TSS	mg/L	5		ELS	8:30	8:15
2709223	789	Metro Final Effluent		TP	mg/L	0.15		ELS	8:30	8:15
2709223	789	Metro Final Effluent		BOD5	mg/L	6	Ν	ELS	8:30	8:15
2709223	789	Metro Final Effluent		CBOD5	mg/L	4		ELS	8:30	8:15
2709223	789	Metro Final Effluent		TKN	mg/L	1.36		ELS	8:30	8:15
2709223	789	Metro Final Effluent		TSS	ma/l	5		ELS	8:30	8:15
2709223	789	Metro Final Effluent		NH3-N	mg/L	0.17		ELS	8:30	8:15

2007 samples flagged in the database as not to be used for data queries or analyses.

					LAB_			
SAMPLE	IND				SAMPLE		START	SAMPLE
NO	CODE	SOURCE	CATEGORY	STUDY	_TYPE	DEPTH	DATE	REMARKS
2701343	1939	Crk-Onondaga Creek @ Adams Street	Onondaga Creeks		Grab	0	2/7/2007	TDS: Blank corrected.
2701855	1939	Crk-Onondaga Creek @ Adams Street	Onondaga Creeks		Grab	0	2/27/2007	
2703588	1939	Crk-Onondaga Creek @ Adams Street	Onondaga Creeks	High Flow	Grab	0	3/28/2007	
2701090	910	Crk-Onondaga Creek @ Dorwin Ave.	Onondaga Creeks	Midland RTF	Grab	0	1/30/2007	
				Dewater				
2701340	910	Crk-Onondaga Creek @ Dorwin Ave.	Onondaga Creeks		Grab	0	2/7/2007	TDS: Blank corrected.
2701550	910	Crk-Onondaga Creek @ Dorwin Ave.	Onondaga Creeks	Midland RTF	Grab	0	2/12/2007	Stage Gauge: Ice
				Dewater				conditions
2701851	910	Crk-Onondaga Creek @ Dorwin Ave.	Onondaga Creeks		Grab	0	2/27/2007	
2703581	910	Crk-Onondaga Creek @ Dorwin Ave.	Onondaga Creeks	High Flow	Grab	0	3/28/2007	
2704636	910	Crk-Onondaga Creek @ Dorwin Ave.	Onondaga Creeks	Midland RTF	Grab	0	4/26/2007	
				Dewater				
2708717	910	Crk-Onondaga Creek @ Dorwin Ave.	Onondaga Creeks	Midland RTF	Grab	0	8/14/2007	TDS: blank corrected.
				Dewater				
2710013	910	Crk-Onondaga Creek @ Dorwin Ave.	Onondaga Creeks	Midland RTF	Grab	0	9/10/2007	
				Dewater				
2701849	903	Crk-Allied East Flume-Over Weir	Onondaga Creeks		Grab	0	2/27/2007	
2703579	903	Crk-Allied East Flume-Over Weir	Onondaga Creeks	High Flow	Grab	0	3/28/2007	
0705066	000	Crit Llarbour Dreak @ Llieuratha	Onendere Creeke		Croh		E/4E/2007	TDC block corrected
2705266	902	Crk-Harbour Brook @ Hiawatha	Onondaga Creeks	Deutine (Diversity)	Grab	0	5/15/2007	IDS-blank corrected.
2705777	902	Crk-Harbour Brook @ Hiawatha	Onondaga Creeks	Routine (Biweekiy)	Grab	0	5/30/2007	
2701332	882	Crk-Onondaga Creek @ Kirkpatrick	Onondaga Creeks		Grah	0	2/7/2007	TDS: Blank corrected
2701843	882	Crk-Onondaga Creek @ Kirkpatrick	Onondaga Creeks		Grab	0	2/27/2007	
2703573	882	Crk-Onondaga Creek @ Kirkpatrick	Onondaga Creeks	High Flow	Grab	0	3/28/2007	
2700070	002					0	0/20/2007	
2710070	983	Lake Nearshore (Nine Mile Creek)	Onondaga Lake	Special Weekly	Grab	0	9/11/2007	
2710096	895	Lake Nearshore (Bloody Brook)	Onondaga Lake	Special Weekly	Grab	0	9/11/2007	
2/10074	987	Lake Nearshore (Eastside)	Unondaga Lake	Special Weekly	Grab	0	9/11/2007	
2710076	989	Lake Nearshore (Maple Bay)	Onondaga Lake	Special Weekly	Grab	0	9/11/2007	
2710072	985	Lake Nearshore (Metro/Outfall)	Onondaga Lake	Special Weekly	Grab	0	9/11/2007	
2710075	988	Lake Nearshore (Willow Bay)	Onondaga Lake	Special Weekly	Grab	0	9/11/2007	

2007 sample results flagged in the database as not to be used for data queries or analyses.

SAMPLE_ NO	IND_ CODE	SOURCE	Parameter	Units	SRESULT	LAB_ COMMENTS LAB	START_ TIME	END_ TIME
2701343	1939	Crk-Onondaga Creek @ Adams Street	TKN	mg/L	0.29	ELS	9:50	
2701855	1939	Crk-Onondaga Creek @ Adams Street	TKN	mg/L	0.31	ELS	9:50	
2703588	1939	Crk-Onondaga Creek @ Adams Street	TKN	mg/L	0.38	ELS	9:45	
2701090	910	Crk-Onondaga Creek @ Dorwin Ave.	SRP	mg/L	0.002	ELS	10:00	
2701340	910	Crk-Onondaga Creek @ Dorwin Ave.	TKN	mg/L	0.31	ELS	9:15	
2701550	910	Crk-Onondaga Creek @ Dorwin Ave.	TKN	mg/L	0.32	ELS	10:20	
2701851	910	Crk-Onondaga Creek @ Dorwin Ave.	TKN	mg/L	0.38	ELS	9:20	
2703581	910	Crk-Onondaga Creek @ Dorwin Ave.	TKN	mg/L	0.37	ELS	9:10	
2704636	910	Crk-Onondaga Creek @ Dorwin Ave.	TKN	mg/L	0.3	ELS	10:25	
2708717	910	Crk-Onondaga Creek @ Dorwin Ave.	TKN	mg/L	0.38	ELS	10:20	
2710013	910	Crk-Onondaga Creek @ Dorwin Ave.	TKN	mg/L	0.57	ELS	10:25	
2701849	903	Crk-Allied East Flume-Over Weir	TKN	mg/L	0.83	ELS	14:15	
2703579	903	Crk-Allied East Flume-Over Weir	TKN	mg/L	0.64	ELS	11:25	
2705266	902	Crk-Harbour Brook @ Hiawatha	Turbidity	NTU	1.63	ELS	10:35	
2705777	902	Crk-Harbour Brook @ Hiawatha	TKN	mg/L	0.29	ELS	9:05	
2701332	882	Crk-Onondaga Creek @ Kirkpatrick	TKN	mg/L	0.29	ELS	10:30	
2701843	882	Crk-Onondaga Creek @ Kirkpatrick	TKN	mg/L	0.3	ELS	10:35	
2703573	882	Crk-Onondaga Creek @ Kirkpatrick	TKN	mg/L	0.36	ELS	11:00	
2710070	983	Lake Nearshore (Nine Mile Creek)	Turbidity	NTU	1.46	ELS	11:50	
2710096	895	Lake Nearshore (Bloody Brook)	Turbidity	NTU	1.31	ELS	11:30	
2710074	987	Lake Nearshore (Eastside)	Turbidity	NTU	0.93	ELS	11:35	
2710076	989	Lake Nearshore (Maple Bay)	Turbidity	NTU	1.15	ELS	11:45	
2710072	985	Lake Nearshore (Metro/Outfall)	Turbidity	NTU	1.74	ELS	11:20	
2710075	988	Lake Nearshore (Willow Bay)	Turbidity	NTU	1.34	ELS	11:40	

2007 sample results flagged in the database as not to be used for data queries or analyses.
					LAB_			
SAMPLE_	IND_				SAMPLE		START_	SAMPLE_
NO	CODE	SOURCE	CATEGORY	STUDY	_TYPE	DEPTH	DATE	REMARKS
2705276	789	Crk-Metro Effluent	Onondaga Creeks		Grab	0	5/15/2007	TDS-blank corrected.
2709187	789	Metro Final Effluent	Quality Control	HRFS Project	Composite	0	8/21/2007	Side by side second
			-	-	-			sampler
2709187	789	Metro Final Effluent	Quality Control	HRFS Project	Composite	0	8/21/2007	Side by side second
								sampler
2709187	789	Metro Final Effluent	Quality Control	HRFS Project	Composite	0	8/21/2007	Side by side second
								sampler
2709187	789	Metro Final Effluent	Quality Control	HRFS Project	Composite	0	8/21/2007	Side by side second
								sampler
2709187	789	Metro Final Effluent	Quality Control	HRFS Project	Composite	0	8/21/2007	Side by side second
								sampler
2709187	789	Metro Final Effluent	Quality Control	HRFS Project	Composite	0	8/21/2007	Side by side second
								sampler
2709249	789	Metro Final Effluent	Quality Control	HRFS Project	Composite	0	8/22/2007	Side by side second
					-			sampler
2709249	789	Metro Final Effluent	Quality Control	HRFS Project	Composite	0	8/22/2007	Side by side second
								sampler
2709249	789	Metro Final Effluent	Quality Control	HRFS Project	Composite	0	8/22/2007	Side by side second
							- / /	sampler
2709249	789	Metro Final Effluent	Quality Control	HRFS Project	Composite	0	8/22/2007	Side by side second
0700040								sampler
2709249	789	Metro Final Effluent	Quality Control	HRES Project	Composite	0	8/22/2007	Side by side second
0700040	700		Quality Quatral		0		0.00.0007	sampler
2709249	789	Metro Final Effluent	Quality Control	HRES Project	Composite	0	8/22/2007	Side by side second
0700040	700	Mater Final Efficient	Overlite Constant		O a man a a ita	0	0/00/0007	sampler
2709249	789	Metro Final Effluent	Quality Control	HRFS Project	Composite	0	8/22/2007	
2700222	700	Matra Final Effluent	Quality Control		Composito	0	0/02/0007	Side by side accord
2709223	109			RRFS Ploject	Composite	0	0/23/2007	sampler
2700222	790	Motro Final Effluent	Quality Control	UDES Drojoct	Composito	0	8/22/2007	Sido by sido socond
2109225	709			TIRES FIUJECI	Composite	0	0/23/2007	sampler
2700223	780	Metro Final Effluent	Quality Control	HRES Project	Composite	0	8/23/2007	Side by side second
2103223	109				Composite	0	0/20/2007	sampler
2709223	789	Metro Final Effluent	Quality Control	HRES Project	Composite	0	8/23/2007	Side by side second
2100220	100				Composite	0	0/20/2001	sampler
								Jumpion

SAMPLE_	IND_	SOURCE	Devementer	Lin:to		LAB_		START_	END_
0705070		SUBRCE	Parameter	Units	SRESULI	COMINIENTS		10.55	
2705276	789	Crk-Metro Effluent	Turbidity	NIU	1.43		ELS	10:55	0.45
2709187	789		IKN	mg/L	1.50		ELS	8:30	8:15
2709187	789	Metro Final Effluent	TSS	mg/L	3		ELS	8:30	8:15
2709187	789	Metro Final Effluent	BOD5	mg/L	5		ELS	8:30	8:15
2709187	789	Metro Final Effluent	NH3-N	mg/L	0.23		ELS	8:30	8:15
2709187	789	Metro Final Effluent	TP	mg/L	0.13		ELS	8:30	8:15
2709187	789	Metro Final Effluent	CBOD5	mg/L	3		ELS	8:30	8:15
2709249	789	Metro Final Effluent	BOD5	mg/L	3		ELS	8:30	8:15
2709249	789	Metro Final Effluent	TP	mg/L	0.12		ELS	8:30	8:15
2709249	789	Metro Final Effluent	TKN	mg/L	1.08		ELS	8:30	8:15
2709249	789	Metro Final Effluent	NH3-N	mg/L	0.2		ELS	8:30	8:15
2709249	789	Metro Final Effluent	Chloride	mg/L	222		ELS	8:30	8:15
2709249	789	Metro Final Effluent	TSS	mg/L	5		ELS	8:30	8:15
2709249	789	Metro Final Effluent	CBOD5	mg/L	3		ELS	8:30	8:15
2709223	789	Metro Final Effluent	TSS	mg/L	5		ELS	8:30	8:15
2709223	789	Metro Final Effluent	TP	mg/L	0.15		ELS	8:30	8:15
2709223	789	Metro Final Effluent	TKN	mg/L	1.36		ELS	8:30	8:15
2709223	789	Metro Final Effluent	BOD5	mg/L	6	Ν	ELS	8:30	8:15

SAMPLE_ NO	IND_ CODE	SOURCE	CATEGORY	STUDY	LAB_ SAMPLE _TYPE	S DEPTH D	TART_ ATE	SAMPLE_ REMARKS
2709223	789	Metro Final Effluent	Quality Control	HRFS Project	Composite	0	8/23/2007	Side by side second sampler
2709223	789	Metro Final Effluent	Quality Control	HRFS Project	Composite	0	8/23/2007	Side by side second sampler
2709345	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	0	8/27/2007	Metals on Wednesday, Phenol & CN-A on Thursday
2704011	933	Lake 18m North	Onondaga Lake		Grab	18	4/10/2007	Seals on teflon dunker leaked during collection KOB 5/11/07
2704010	928	Lake 3m North	Onondaga Lake		Grab	3	4/10/2007	Seals on teflon dunker leaked during collection KOB 5/11/07
2705781	1907	Crk-Onondaga Lake Outlet 12 ft.	Onondaga Creeks	Routine (Biweekly)	Grab	3.6585	5/30/2007	
2705780	1906	Crk-Onondaga Lake Outlet 2 ft.	Onondaga Creeks	Routine (Biweekly)	Grab	0.6098	5/30/2007	
2701336	905	Crk-Nine Mile Creek @ Lakeland Rt 48	Onondaga Creeks		Grab	0	2/7/2007	TDS: Blank corrected.
2701847	905	Crk-Nine Mile Creek @ Lakeland Rt 48	Onondaga Creeks		Grab	0	2/27/2007	
2703577	905	Crk-Nine Mile Creek @ Lakeland Rt 48	Onondaga Creeks	High Flow	Grab	0	3/28/2007	
2704009	924	Lake 18m South - Duplicate	Quality Control		Grab	18	4/10/2007	Sample is Duplicate of #2704008 Seals on teflon dunker leaked during collection KOB 5/11/07
2704008	924	Lake 18m South	Onondaga Lake		Grab	18	4/10/2007	Seals on teflon dunker leaked during collection KOB 5/11/07
2704006	919	Lake 3m South	Onondaga Lake		Grab	3	4/10/2007	Seals on teflon dunker leaked during collection KOB 5/11/07
2710055	918	Lake 0m South	Onondaga Lake	Routine (Biweekly)	Grab	0	9/11/2007	TS: blank corrected. Actual field measurement taken at depth of 0.1

SAMPLE_ NO	IND_ CODE	SOURCE	Parameter	Units	SRESULT	LAB_ COMMENTS L	AB	START_ TIME	END_ TIME
2709223	789	Metro Final Effluent	NH3-N	mg/L	0.17	E	ELS	8:30	8:15
				_					
2709223	789	Metro Final Effluent	CBOD5	mg/L	4	E	ELS	8:30	8:15
2709345	789	Metro Final Effluent	BOD5	mg/L	3	E	ELS	8:30	8:15
2704011	933	Lake 18m North	Hg	ng/l	1.58	E F	BRKS_ RND	11:35	
2704010	928	Lake 3m North	Hg	ng/l	1.86	E	BRKS_ RND	11:30	
2705781	1907	Crk-Onondaga Lake Outlet 12 ft.	TKN	mg/L	0.52	E	ELS	11:10	
2705780	1906	Crk-Onondaga Lake Outlet 2 ft.	TKN	mg/L	0.6	E	ELS	10:55	
2701336	905	Crk-Nine Mile Creek @ Lakeland Rt 48	TKN	mg/L	0.75	E	ELS	11:15	
2701847	905	Crk-Nine Mile Creek @ Lakeland Rt 48	TKN	mg/L	0.53	E	ELS	11:20	
2703577	905	Crk-Nine Mile Creek @ Lakeland Rt 48	TKN	mg/L	0.45	E	ELS	14:20	
2704009	924	Lake 18m South - Duplicate	Hg	ng/l	1.32	E	BRKS_ RND	10:55	
2704008	924	Lake 18m South	Hg	ng/l	1.97	E F	BRKS_ RND	10:50	
2704006	919	Lake 3m South	Hg	ng/l	3.53	E F	BRKS_ RND	10:45	
2710055	918	Lake 0m South	Turbidity	NTU	1.55	E	ELS	9:25	

SAMPLE_ NO	IND_ CODE	SOURCE	CATEGORY	STUDY	LAB_ SAMPLE _TYPE	DEPTH	START_ DATE	SAMPLE_ REMARKS
2710066	925	Lake Upper Mixed Layer South	Onondaga Lake	Routine (Biweekly)	Grab	3	9/11/2007	
2710703	918	Lake 0m South	Onondaga Lake	Routine (Biweekly)	Grab	0	9/25/2007	TDS & TS: blank corrected. D.O. Profile questionable
2710704	919	Lake 3m South	Onondaga Lake	Routine (Biweekly)	Grab	3	9/25/2007	D.O. Profile questionable
2710705	920	Lake 6m South	Onondaga Lake	Routine (Biweekly)	Grab	6	9/25/2007	TDS & TS: blank corrected. D.O. Profile questionable
2710706	921	Lake 9m South	Onondaga Lake	Routine (Biweekly)	Grab	9	9/25/2007	D.O. Profile questionable
2710707	922	Lake 12m South	Onondaga Lake	Routine (Biweekly)	Grab	12	9/25/2007	TDS & TS: blank corrected. D.O. profile questionable
2710709	924	Lake 18m South	Onondaga Lake	Routine (Biweekly)	Grab	18	9/25/2007	TDS & TS: blank corrected. D.O. Profile questionable
2710708	923	Lake 15m South	Onondaga Lake	Routine (Biweekly)	Grab	15	9/25/2007	D.O. Profile questionable
2705783	904	Crk-Tributary 5a @ State Fair Blvd	Onondaga Creeks	Routine (Biweekly)	Grab	0	5/30/2007	Coli sample collected at 1230.
2705785	911	Crk-Harbor Brook @ Velasko Road	Onondaga Creeks	Routine (Biweekly)	Grab	0	5/30/2007	

SAMPLE_ NO	IND_ CODE	SOURCE	Parameter	Units	SRESULT	LAB_ COMMENTS	LAB	START_ TIME	END_ TIME
2710066	925	Lake Upper Mixed Layer South	Turbidity	NTU	2.11		ELS	9:25	
2710703	918	Lake 0m South	DO-field	mg/L	6.52	V	ELS	9:50	
2710704	919	Lake 3m South	DO-field	mg/L	4.16	V	ELS	10:00	
2710705	920	Lake 6m South	DO-field	mg/L	0.38	V	ELS	10:05	
2710706	921	Lake 9m South	DO-field	mg/L	-9.43	V	ELS	10:15	
2710707	922	Lake 12m South	DO-field	mg/L	-0.02	V	ELS	10:20	
2710709	924	Lake 18m South	DO-field	mg/L	0.13	V	ELS	10:30	
2710708	923	Lake 15m South	DO-field	mg/L	0.27	V	ELS	10:25	
2705783	904	Crk-Tributary 5a @ State Fair Blvd	TKN	mg/L	0.6		ELS	10:20	
2705785	911	Crk-Harbor Brook @ Velasko Road	TKN	mg/L	0.18		ELS	9:40	

2007 Data Qualified "P" = Laboratory data qualified with P do not meet all internal laboratory QC requirements, and are therefore considered unacceptable for quality assurance criteria.

START_	IND_				LAB_ SAMPLE_	SAMPLE_				LAB_	
DATE	CODE	SOURCE	CATEGORY	STUDY	TYPE	NO	Parameter	Units	SRESULT CO	OMMENTS	REMARK_CODE
1/31/2007	789	Metro Effluent- Duplicate	Quality Control		Composite	2701180	Chloride	mg/L	837	Р	Sample is Duplicate of #2701138
5/15/2007	888	Crk-Blank Dunker Churn (Crew B)	Quality Control		Grab	2705265	Turbidity	NTU	0.34	Ρ	Turbidity: Blanks taken before DI system change. TDS-blank corrected. ALK-T: initial pH is 9.80
5/15/2007	908	Crk-Ley Creek @ Park Street - Duplicate	Quality Control		Grab	2705279	TDP	mg/L	0.058	Ρ	Sample is Duplicate of #2705268. TDS- blank corrected.
5/15/2007	990	Crk-Blank Churn (Crew A)	Quality Control		Grab	2705264	Turbidity	NTU	0.37	Р	Turbidity:Blanks taken before DI system change. TDS-blank corrected.
10/30/2007	888	Crk-Blank Dunker Churn (Crew B)	Quality Control	Routine (Biweekly)	Grab	2712255	Chloride	mg/L	2	Р	
10/31/2007	789	Metro Effluent - Duplicate	Quality Control		Composite	2712374	BOD5	mg/L	3	Р	Sample is duplicate of #2712344
11/28/2007	789	Metro Effluent - Duplicate	Quality Control		Composite	2713288	NH3-N	mg/L	0.45	Р	Duplicate of sample #2713253; NH3:Reprepped 12/07/07

STADT										
		SOURCE	CATEGORY	STUDY	SAMPLE_	SAMPLE_ NO Paramotor	Unite			REMARK CODE
1/7/2007	790	Motro Einal Effluent	Treatment Plant	UDES Project	Composito		Units mg/l			ROD exhibited texis tendencies
1/1/2007	620	Metro By Doon Event	Treatment Plant		Composite	2700180 BOD5	mg/L	-10		Composite consiste of 2 grab complex
1/13/2007	630	wello by-Pass Event	freatment Plant		Composite	2700327 CBOD5	mg/L	13	v	Composite consists of 2 grab samples.
		#3								CBOD: past noid time: original result <24
										mg/l. CBOD: incubation temperature
										exceeded acceptable limits.
1/18/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2700690 BOD5	ma/L	4	V	BOD & CBOD: Incubation temperature
				j			5			exceeded acceptable limits.
1/18/2007	789	Metro Final Effluent	Treatment Plant	HRFS Proiect	Composite	2700690 CBOD5	ma/L	3	V	BOD & CBOD: Incubation temperature
				j			5			exceeded acceptable limits.
1/19/2007	789	Metro Final Effluent	Treatment Plant	HRFS Proiect	Composite	2700735 BOD5	ma/L	3	V	BOD & CBOD: Incubation temperature
				j			5			exceeded acceptable limits.
1/19/2007	789	Metro Final Effluent	Treatment Plant	HRFS Proiect	Composite	2700735 CBOD5	ma/L	<2	V	BOD & CBOD: Incubation temperature
				j			5			exceeded acceptable limits.
1/20/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2700738 BOD5	mg/L	3	V	TP: Reprepped 1/22/07. BOD& CBOD:
				,			0			Incubation temperature exceeded
										acceptable limits.
1/20/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2700738 CBOD5	mg/L	<2	V	TP: Reprepped 1/22/07. BOD& CBOD:
							0			Incubation temperature exceeded
										acceptable limits.
1/21/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2700756 CBOD5	mg/L	2	V	BOD & CBOD: Incubation temperature
					•		0			exceeded acceptable limits.
1/21/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2700756 BOD5	mg/L	4	V	BOD & CBOD: Incubation temperature
							-			exceeded acceptable limits.
1/22/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2700789 BOD5	mg/L	4	V	BOD & CBOD: Incubation temperature
										exceeded acceptable limits.
1/22/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2700789 CBOD5	mg/L	<2	V	BOD & CBOD: Incubation temperature
										exceeded acceptable limits.
1/23/2007	789	Crk-Metro Effluent	Onondaga Creeks		Grab	2700844 BOD5	mg/L	6	V	BOD: Incubation temperature exceeded
										acceptable limits.
										TKN:Reprepped 1/31/07
1/23/2007	882	Crk-Onondaga Creek	Onondaga Creeks		Grab	2700835 BOD5	mg/L	<2	V	BOD: Incubation temperature exceeded
		@ Kirkpatrick								acceptable limits.
										TKN:Reprepped 1/31/07
1/23/2007	888	Crk-Blank Dunker	Quality Control		Grab	2700833 BOD5	mg/L	<2	V	BOD: Incubation temperature exceeded
		Churn (Crew B)								acceptable limits.
1/23/2007	902	Crk-Harbour Brook @	Onondaga Creeks		Grab	2700834 BOD5	mg/L	<2	V	BOD: Incubation temperature exceeded
		Hiawatha								acceptable limits.
										TKN:Reprepped 1/31/07
1/23/2007	903	Crk-Allied East Flume	 Onondaga Creeks 		Grab	2700841 BOD5	mg/L	2	V	BOD: Incubation temperature exceeded
		Over Weir								acceptable limits.
										TKN:Reprepped 1/31/07
1/23/2007	904	Crk-Tributary 5a @	Onondaga Creeks		Grab	2700840 BOD5	mg/L	<2	V	BOD: Incubation temperature exceeded
		State Fair Blvd								acceptable limits.
										TKN:Reprepped 1/31/07

					LAB_				
START_	IND_				SAMPLE_	SAMPLE_		LA	
DATE	CODE	SOURCE	CATEGORY	STUDY	TYPE	NO Parameter	Units	SRESULT COM	MENTS REMARK_CODE
1/23/2007	905	Crk-Nine Mile Creek @ Lakeland Rt 48	Onondaga Creeks		Grab	2700839 BOD5	mg/L	<2	V BOD: Incubation temperature exceeded acceptable limits. TKN:Reprepped 1/31/07
1/23/2007	908	Crk-Ley Creek @ Park Street-Duplicate	Quality Control		Grab	2700847 BOD5	mg/L	4	 V Sample is Duplicate of #2700836. BOD: Incubation temperature exceeded acceptable limits.
1/23/2007	908	Crk-Ley Creek @ Park Street	Onondaga Creeks		Grab	2700836 BOD5	mg/L	4	V BOD: Incubation temperature exceeded acceptable limits. TKN:Reprepped 1/31/07
1/23/2007	910	Crk-Onondaga Creek @ Dorwin Ave.	Onondaga Creeks		Grab	2700843 BOD5	mg/L	<2	V BOD: Incubation temperature exceeded acceptable limits. TKN:Reprepped 1/31/07
1/23/2007	911	Crk-Harbor Brook @ Velasko Road	Onondaga Creeks		Grab	2700842 BOD5	mg/L	<2	V BOD: Incubation temperature exceeded acceptable limits. TKN:Reprepped 1/31/07
1/23/2007	990	Crk-Blank Churn (Crew A)	Quality Control		Grab	2700832 BOD5	mg/L	<2	V BOD: Incubation temperature exceeded acceptable limits.
1/23/2007	1906	Crk-Onondaga Lake Outlet 2 ft.	Onondaga Creeks		Grab	2700837 BOD5	mg/L	<2	V BOD: Incubation temperature exceeded acceptable limits. TKN:Reprepped 1/31/07
1/23/2007	1907	Crk-Onondaga Lake Outlet 12 ft.	Onondaga Creeks		Grab	2700838 BOD5	mg/L	<2	V BOD: Incubation temperature exceeded acceptable limits. TKN:Reprepped 1/31/07
1/23/2007	1939	Crk-Onondaga Creek @ Adams Street	Onondaga Creeks		Grab	2700846 BOD5	mg/L	<2	V BOD: Incubation temperature exceeded acceptable limits. TKN:Reprepped 1/31/07
2/13/2007	999	Lake 12m North	Onondaga Lake	Winter Lake	Grab	2701469 SRP	mg/L	0.008	V DGPS Coordinates: 43°06.128'N 76°13.257'W. SRP/TDP samples were filtered at Henry Clay Bio Lab. Actual field measurement taken at depth of 12.1.
2/13/2007	999	Lake 9m North	Onondaga Lake	Winter Lake	Grab	2701468 TDP	mg/L	0.018	V DGPS Coordinates: 43°06.128'N 76°13.257'W. SRP/TDP samples were filtered at Henry Clay Bio Lab. Actual field measurement taken at depth of 9.1.
2/13/2007	999	Lake 6m North - Duplicate	Quality Control	Winter Lake	Grab	2701472 TDP	mg/L	0.02	V DGPS Coordinates: 43°06.128'N 76°13.257'W. Sample is Duplicate of #2701467; SRP/TDP samples were filtered at Henry Clay Bio Lab.
2/13/2007	999	Lake 6m North - Duplicate	Quality Control	Winter Lake	Grab	2701472 SRP	mg/L	0.012	V DGPS Coordinates: 43°06.128'N 76°13.257'W. Sample is Duplicate of #2701467; SRP/TDP samples were filtered at Henry Clay Bio Lab.

START_	IND_				SAMPLE_	SAMPLE_			LAB_	
DATE	CODE	SOURCE	CATEGORY	STUDY	TYPE	NO Parameter	Units	SRESULT	COMMENTS	REMARK_CODE
2/13/2007	999	Lake 15m North	Onondaga Lake	Winter Lake	Grab	2701470 TDP	mg/L	0.017	V	DGPS Coordinates: 43°06.128'N 76°13.257'W. SRP/TDP samples were filtered at Henry Clay Bio Lab. TKN: Reprepped 02/20/07
2/13/2007	999	Lake 15m North	Onondaga Lake	Winter Lake	Grab	2701470 SRP	mg/L	0.008	V	DGPS Coordinates: 43°06.128'N 76°13.257'W. SRP/TDP samples were filtered at Henry Clay Bio Lab. TKN: Reprepped 02/20/07
2/13/2007	999	Lake 0m North	Onondaga Lake	Winter Lake	Grab	2701465 SRP	mg/L	0.008	V	DGPS Coordinates: 43°06.128'N 76°13.257'W. SRP samples were filtered at Henry Clay Bio Lab. Actual field measurement taken at depth of 0.5.
2/13/2007	999	Lake 6m North	Onondaga Lake	Winter Lake	Grab	2701467 TDP	mg/L	0.018	V	DGPS Coordinates: 43°06.128'N 76°13.257'W. SRP/TDP samples were filtered at Henry Clay Bio Lab. Actual field measurement taken at depth of 6.0. TKN,TK
2/13/2007	999	Lake 9m North	Onondaga Lake	Winter Lake	Grab	2701468 SRP	mg/L	0.012	V	DGPS Coordinates: 43°06.128'N 76°13.257'W. SRP/TDP samples were filtered at Henry Clay Bio Lab. Actual field measurement taken at depth of 9.1.
2/13/2007	999	Lake 6m North	Onondaga Lake	Winter Lake	Grab	2701467 SRP	mg/L	0.013	V	DGPS Coordinates: 43°06.128'N 76°13.257'W. SRP/TDP samples were filtered at Henry Clay Bio Lab. Actual field measurement taken at depth of 6.0. TKN,TK
2/13/2007	999	Lake 3m North	Onondaga Lake	Winter Lake	Grab	2701466 TDP	mg/L	0.019	V	DGPS Coordinates: 43°06.128'N 76°13.257'W. SRP/TDP samples were filtered at Henry Clay Bio Lab. Actual field measurement taken at depth of 3.1
2/13/2007	999	Lake 3m North	Onondaga Lake	Winter Lake	Grab	2701466 SRP	mg/L	0.011	V	DGPS Coordinates: 43°06.128'N 76°13.257'W. SRP/TDP samples were filtered at Henry Clay Bio Lab. Actual field measurement taken at depth of 3.1
2/13/2007	999	Lake 0m North	Onondaga Lake	Winter Lake	Grab	2701465 TDP	mg/L	0.015	V	DGPS Coordinates: 43°06.128'N

LAB_

76°13.257'W. TDP samples were filtered at Henry Clay Bio Lab. Actual field measurement taken at depth of 0.5.

					LAB					
START	IND				SAMPLE	SAMPLE			LAB	
DATE	CODE	SOURCE	CATEGORY	STUDY	TYPE	NO Parameter	Units	SRESULT (COMMENTS	REMARK CODE
2/13/2007	000	Lake 12m North	Onondaga Lake	Winter Lake	Grah	2701469 TDP	ma/l	0.017	V	DGPS Coordinates: 43°06 128'N
2/10/2007	000		Chondaga Lake		Orab	2701403 101	ing/L	0.017	v	76°13 257'W/ SRP/TDP samples were
										filtered at Henry Clay Bio Lab Actual field
										measurement taken at denth of 12.1
2/15/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2701693 CBOD5	mg/L	5	V	BOD/CBOD: Incubator temperature is
				•			-			outside of acceptable limits.
2/15/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2701693 BOD5	mg/L	11	V	BOD/CBOD: Incubator temperature is
				-	-		-			outside of acceptable limits.
2/16/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2701719 BOD5	mg/L	6	V	BOD/CBOD: Incubator temperature is
										outside of acceptable limits.
2/16/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2701719 CBOD5	mg/L	3	V	BOD/CBOD: Incubator temperature is
										outside of acceptable limits.
2/17/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2701722 BOD5	mg/L	6	V	BOD/CBOD: Incubator temperature is
										outside of acceptable limits.
2/17/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2701722 CBOD5	mg/L	3	V	BOD/CBOD: Incubator temperature is
										outside of acceptable limits.
2/18/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2701732 BOD5	mg/L	7	V	BOD/CBOD: Incubator temperature is
					_					outside of acceptable limits.
2/18/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2701732 CBOD5	mg/L	4	V	BOD/CBOD: Incubator temperature is
										outside of acceptable limits.
2/19/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2701754 BOD5	mg/L	6	V	BOD/CBOD: Incubator temperature is
					o "				.,	outside of acceptable limits.
2/19/2007	789	Metro Final Effluent	Treatment Plant	HRES Project	Composite	2701754 CBOD5	mg/L	3	V	BOD/CBOD: Incubator temperature is
0/00/0007	700	Mater Fired Fffbrant	The stars and Direct		0	0704707 00005		0		outside of acceptable limits.
2/20/2007	789	Metro Final Effluent	Treatment Plant	HRES Project	Composite	2701797 CBOD5	mg/L	3	V	BOD/CBOD: Incubator temperature is
2/20/2007	700	Matra Final Effluent	Tractment Diant	UDEC Droject	Composito	2701707 0005	ma/l	7	V	Outside of acceptable limits.
2/20/2007	109	Metro Final Enluent	freatment Plant	HRFS Ploject	Composite	2701797 BOD5	mg/L	1	v	BOD/CBOD. Incubator temperature is
2/21/2007	016	Laka Equip Plk	Quality Control	WinterLake	Croh	2701770 BOD5	ma/l	<2	V	POD: Insubstar temperature is outside of
2/21/2007	910	(Dunker Churn)			Grab	2701770 BOD3	mg/∟	~2	v	accentable limits
2/21/2007	916		Quality Control	Winter Lake	Grah	2701770 TIC	ma/l	<0.50	V	TIC:Past hold time
2/2 1/2001	010	(Dunker Churn)	Quality Control		Club	2101110 110	ing/L	-0.00	v	
2/21/2007	999	Lake Upper Mixed	Quality Control	Winter Lake	Grab	2701782 BOD5	mg/L	<2	V	DGPS Coordinates: 43°06.120'N
		Layer North -					Ū			76°13.271'W. Sample is Duplicate of
		Duplicate								#2701779. BOD: Incubator temperature is
										outside of acceptable limits.
2/21/2007	999	Lake Lower Water	Onondaga Lake	Winter Lake	Grab	2701781 BOD5	mg/L	<2	V	DGPS Coordinates: 43°06.120'N
		Layer North	-				-			76°13.271'W. BOD: Incubator
										temperature is outside of acceptable
										limits.
2/21/2007	999	Lake Upper Mixed	Onondaga Lake	Winter Lake	Grab	2701779 BOD5	mg/L	<2	V	DGPS Coordinates: 43°06.120'N
		Layer North								76°13.271'W. BOD: Incubator
										temperature is outside of acceptable
										limits.

START_ DATE	IND_ CODE	SOURCE	CATEGORY	STUDY	LAB_ SAMPLE_ TYPE	SAMPLE_ NO Parameter	Units	SRESULT	LAB_ COMMENTS	REMARK CODE
3/7/2007	999	Lake 3m North	Onondaga Lake	Winter Lake	Grab	2702608 SRP	mg/L	0.004	V	DGPS Coordinates: 43°06.117'N 76°13.320'W. SRP/TDP filtered @ HCF @ 12:20 PM Rm 168. Actual field measurement taken at depth of 3.1 m.
3/7/2007	999	Lake 6m North - Duplicate	Quality Control	Winter Lake	Grab	2702614 SRP	mg/L	0.01	V	DGPS Coordinates: 43°00.117'N 76°13.320'W. Sample is Duplicate of #2702609; SRP/TDP filtered @ HCF @ 12:20 PM Rm 168
3/7/2007	999	Lake 15m North	Onondaga Lake	Winter Lake	Grab	2702612 TDP	mg/L	0.016	V	DGPS Coordinates: 43°06.117'N 76°13.320'W. SRP/TDP filtered @ HCF @ 12:20 PM Rm 168.
3/7/2007	999	Lake 12m North	Onondaga Lake	Winter Lake	Grab	2702611 TDP	mg/L	0.018	V	DGPS Coordinates: 43°06.117'N 76°13.320'W. SRP/TDP filtered @ HCF @ 12:20 PM Rm 168. Actual field measurement taken at depth of 12.1 m.
3/7/2007	999	Lake 9m North	Onondaga Lake	Winter Lake	Grab	2702610 TDP	mg/L	0.017	V	DGPS Coordinates: 43°06.117'N 76°13.320'W. SRP/TDP filtered @ HCF @ 12:20 PM Rm 168
3/7/2007	999	Lake 9m North	Onondaga Lake	Winter Lake	Grab	2702610 SRP	mg/L	0.009	V	DGPS Coordinates: 43°06.117'N 76°13.320'W. SRP/TDP filtered @ HCF @ 12:20 PM Rm 168
3/7/2007	999	Lake 6m North	Onondaga Lake	Winter Lake	Grab	2702609 TDP	mg/L	0.016	V	DGPS Coordinates: 43°06.117'N 76°13.320'W. SRP/TDP filtered @ HCF @ 12:20 PM Rm 168. Actual field measurement taken at depth of 6.1 m.
3/7/2007	999	Lake 3m North	Onondaga Lake	Winter Lake	Grab	2702608 TDP	mg/L	0.013	V	DGPS Coordinates: 43°06.117'N 76°13.320'W. SRP/TDP filtered @ HCF @ 12:20 PM Rm 168. Actual field measurement taken at depth of 3.1 m.
3/7/2007	999	Lake 0m North	Onondaga Lake	Winter Lake	Grab	2702607 TDP	mg/L	0.021	V	DGPS Coordinates: 43°06.117'N 76°13.320'W. SRP/TDP filtered @ HCF @ 12:20 PM Rm 168
3/7/2007	999	Lake 0m North	Onondaga Lake	Winter Lake	Grab	2702607 SRP	mg/L	0.008	V	DGPS Coordinates: 43°06.117'N 76°13.320'W. SRP/TDP filtered @ HCF @ 12:20 PM Rm 168
3/7/2007	999	Lake 15m North	Onondaga Lake	Winter Lake	Grab	2702612 SRP	mg/L	0.008	V	DGPS Coordinates: 43°06.117'N 76°13.320'W. SRP/TDP filtered @ HCF @ 12:20 PM Rm 168.
3/7/2007	999	Lake 6m North - Duplicate	Quality Control	Winter Lake	Grab	2702614 TDP	mg/L	0.015	V	DGPS Coordinates: 43°06.117'N 76°13.320'W. Sample is Duplicate of #2702609; SRP/TDP filtered @ HCF @ 12:20 PM Rm 168

2007 Data Qualified "V" =	The laboratory data qualified with "	V" are reported as estimates due t	to variance from quality assurance of	or control criteria.

START	IND			LAB_					
DATE		CATEGORY	STUDY	SAMPLE_	NO Parameter	Units	SRESULT	LAB_ COMMENTS	REMARK CODE
3/7/2007	999 Lake 6m North	Onondaga Lake	Winter Lake	Grab	2702609 SRP	mg/L	0.009	V	DGPS Coordinates: 43°06.117'N 76°13.320'W. SRP/TDP filtered @ HCF @ 12:20 PM Rm 168. Actual field measurement taken at denth of 6.1 m
3/7/2007	999 Lake 12m North	Onondaga Lake	Winter Lake	Grab	2702611 SRP	mg/L	0.009	V	DGPS Coordinates: 43°06.117'N 76°13.320'W. SRP/TDP filtered @ HCF @ 12:20 PM Rm 168. Actual field measurement taken at depth of 12.1 m.
3/13/2007	999 Lake 6m North	Onondaga Lake	Winter Lake	Grab	2703022 TDP	mg/L	0.016	V	DGPS Coordinates: 43°00.117'N 76°13.316'W. SRP/TDP filtered @ HCF rm 168 @1150. TKN:Reprepped 03/22/07
3/13/2007	999 Lake 6m North- Duplicate	Quality Control	Winter Lake	Grab	2703027 TDP	mg/L	0.016	V	DGPS Coordinates: 43°06.117'N 76°13.316'W. Duplicate of sample 2703022; SRP/TDP filtered @ HCF rm 168 @1150. TKN:Reprepped 03/22/07
3/13/2007	999 Lake 6m North- Duplicate	Quality Control	Winter Lake	Grab	2703027 SRP	mg/L	0.008	V	DGPS Coordinates: 43°06.117'N 76°13.316'W. Duplicate of sample 2703022; SRP/TDP filtered @ HCF rm 168 @1150. TKN:Reprepped 03/22/07
3/13/2007	999 Lake 15m North	Onondaga Lake	Winter Lake	Grab	2703025 TDP	mg/L	0.014	V	DGPS Coordinates: 43°06.117'N 76°13.316'W. SRP/TDP filtered @ HCF rm 168 @1150.
3/13/2007	999 Lake 15m North	Onondaga Lake	Winter Lake	Grab	2703025 SRP	mg/L	0.008	V	DGPS Coordinates: 43°06.117'N 76°13.316'W. SRP/TDP filtered @ HCF rm 168 @1150.
3/13/2007	999 Lake 12m North	Onondaga Lake	Winter Lake	Grab	2703024 TDP	mg/L	0.013	V	DGPS Coordinates: 43°06.117'N 76°13.316'W. SRP/TDP filtered @ HCF rm 168 @1150.
3/13/2007	999 Lake 12m North	Onondaga Lake	Winter Lake	Grab	2703024 SRP	mg/L	0.006	V	DGPS Coordinates: 43°06.117'N 76°13.316'W. SRP/TDP filtered @ HCF rm 168 @1150.
3/13/2007	999 Lake 6m North	Onondaga Lake	Winter Lake	Grab	2703022 SRP	mg/L	0.008	V	DGPS Coordinates: 43°06.117'N 76°13.316'W. SRP/TDP filtered @ HCF rm 168 @1150. TKN:Reprepped 03/22/07
3/13/2007	999 Lake 9m North	Onondaga Lake	Winter Lake	Grab	2703023 SRP	mg/L	0.005	V	DGPS Coordinates: 43°06.117'N 76°13.316'W. SRP/TDP filtered @ HCF rm 168 @1150.
3/13/2007	999 Lake 0m North	Onondaga Lake	Winter Lake	Grab	2703020 SRP	mg/L	0.003	V	DGPS Coordinates: 43°06.117'N 76°13.316'W. SRP/TDP filtered @ HCF rm 168 @1150.
3/13/2007	999 Lake 0m North	Onondaga Lake	Winter Lake	Grab	2703020 TDP	mg/L	0.011	V	DGPS Coordinates: 43°06.117'N 76°13.316'W. SRP/TDP filtered @ HCF rm 168 @1150.

STADT					LAB_					
DATE	CODE	SOURCE	CATEGORY	STUDY	TYPE	NO Parameter	Units	SRESULT	COMMENTS	REMARK_CODE
3/13/2007	999	Lake 3m North	Onondaga Lake	Winter Lake	Grab	2703021 SRP	mg/L	0.004	V	DGPS Coordinates: 43°06.117'N 76°13.316'W. SRP/TDP filtered @ HCF rm 168 @1150.
3/13/2007	999	Lake 3m North	Onondaga Lake	Winter Lake	Grab	2703021 TDP	mg/L	0.011	V	DGPS Coordinates: 43°06.117'N 76°13.316'W. SRP/TDP filtered @ HCF rm 168 @1150.
3/13/2007	999	Lake 9m North	Onondaga Lake	Winter Lake	Grab	2703023 TDP	mg/L	0.012	V	DGPS Coordinates: 43°06.117'N 76°13.316'W. SRP/TDP filtered @ HCF rm 168 @1150.
3/14/2007	888	Crk-Blank Dunker Churn (Crew B)	Quality Control	High Flow	Grab	2702485 NO3	mg/L	<0.010	V	Concentration procedure used for some metals. TP (Manual): Reprepped 03/16/07. Note: Incorrect procedure used for collecting blank-(churn was not us
3/14/2007	888	Crk-Blank Dunker Churn (Crew B)	Quality Control	High Flow	Grab	2702485 ORG-N	mg/L	0.12	V	Concentration procedure used for some metals. TP (Manual): Reprepped 03/16/07. Note: Incorrect procedure used for collecting blank-(churn was not us
3/14/2007	888	Crk-Blank Dunker Churn (Crew B)	Quality Control	High Flow	Grab	2702485 Pb	mg/L	<0.0020	V	Concentration procedure used for some metals. TP (Manual): Reprepped 03/16/07. Note: Incorrect procedure used for collecting blank-(churn was not us
3/14/2007	888	Crk-Blank Dunker Churn (Crew B)	Quality Control	High Flow	Grab	2702485 SiO2	mg/L	<0.20	V	Concentration procedure used for some metals. TP (Manual): Reprepped 03/16/07. Note: Incorrect procedure used for collecting blank-(churn was not us
3/14/2007	888	Crk-Blank Dunker Churn (Crew B)	Quality Control	High Flow	Grab	2702485 SO4	mg/L	<10	V	Concentration procedure used for some metals. TP (Manual): Reprepped 03/16/07. Note: Incorrect procedure used for collecting blank-(churn was not us
3/14/2007	888	Crk-Blank Dunker Churn (Crew B)	Quality Control	High Flow	Grab	2702485 SRP	mg/L	<0.001	V	Concentration procedure used for some metals. TP (Manual): Reprepped 03/16/07. Note: Incorrect procedure used for collecting blank-(churn was not us
3/14/2007	888	Crk-Blank Dunker Churn (Crew B)	Quality Control	High Flow	Grab	2702485 TDP	mg/L	<0.003	V	Concentration procedure used for some metals. TP (Manual): Reprepped 03/16/07. Note: Incorrect procedure used for collecting blank-(churn was not us

START					LAB_ SAMPLE					LAB	
DATE	CODE	SOURCE	CATEGORY	STUDY	TYPE	NO I	Parameter	Units	SRESULT (COMMENTS	REMARK_CODE
3/14/2007	888	Crk-Blank Dunker Churn (Crew B)	Quality Control	High Flow	Grab	2702485	TDS	mg/L	<10	V	Concentration procedure used for some metals. TP (Manual): Reprepped 03/16/07. Note: Incorrect procedure used for collecting blank-(churn was not us
3/14/2007	888	Crk-Blank Dunker Churn (Crew B)	Quality Control	High Flow	Grab	2702485 -	TIC	mg/L	<0.50	V	Concentration procedure used for some metals. TP (Manual): Reprepped 03/16/07. Note: Incorrect procedure used for collecting blank-(churn was not us
3/14/2007	888	Crk-Blank Dunker Churn (Crew B)	Quality Control	High Flow	Grab	2702485	Turbidity	NTU	<0.10	V	Concentration procedure used for some metals. TP (Manual): Reprepped 03/16/07. Note: Incorrect procedure used for collecting blank-(churn was not us
3/14/2007	888	Crk-Blank Dunker Churn (Crew B)	Quality Control	High Flow	Grab	2702485	ГОС	mg/L	<0.50	V	Concentration procedure used for some metals. TP (Manual): Reprepped 03/16/07. Note: Incorrect procedure used for collecting blank-(churn was not us
3/14/2007	888	Crk-Blank Dunker Churn (Crew B)	Quality Control	High Flow	Grab	2702485	TP	mg/L	<0.003	V	Concentration procedure used for some metals. TP (Manual): Reprepped 03/16/07. Note: Incorrect procedure used for collecting blank-(churn was not us
3/14/2007	888	Crk-Blank Dunker Churn (Crew B)	Quality Control	High Flow	Grab	2702485	NO2	mg/L	<0.010	V	Concentration procedure used for some metals. TP (Manual): Reprepped 03/16/07. Note: Incorrect procedure used for collecting blank-(churn was not us
3/14/2007	888	Crk-Blank Dunker Churn (Crew B)	Quality Control	High Flow	Grab	2702485	TOC-F	mg/L	<0.50	V	Concentration procedure used for some metals. TP (Manual): Reprepped 03/16/07. Note: Incorrect procedure used for collecting blank-(churn was not us
3/14/2007	888	Crk-Blank Dunker Churn (Crew B)	Quality Control	High Flow	Grab	2702485 2	Zn	mg/L	<0.0063	V	Concentration procedure used for some metals. TP (Manual): Reprepped 03/16/07. Note: Incorrect procedure used for collecting blank-(churn was not us
3/14/2007	888	Crk-Blank Dunker Churn (Crew B)	Quality Control	High Flow	Grab	2702485 /	ALK-T	mg/L	1	V	Concentration procedure used for some metals. TP (Manual): Reprepped 03/16/07. Note: Incorrect procedure used for collecting blank-(churn was not us

					LAB_					
START_		SOURCE	CATECODY	STUDY	SAMPLE_	SAMPLE_	Unito		AB_ Mente	REMARK CODE
3/14/2007	888	Crk-Blank Dunker Churn (Crew B)	Quality Control	High Flow	Grab	2702485 TKN	mg/L	<0.15	V	Concentration procedure used for some metals. TP (Manual): Reprepped 03/16/07. Note: Incorrect procedure used for collecting blank-(churn was not us
3/14/2007	888	Crk-Blank Dunker Churn (Crew B)	Quality Control	High Flow	Grab	2702485 Ca	mg/L	<1.25	V	Concentration procedure used for some metals. TP (Manual): Reprepped 03/16/07. Note: Incorrect procedure used for collecting blank-(churn was not us
3/14/2007	888	Crk-Blank Dunker Churn (Crew B)	Quality Control	High Flow	Grab	2702485 Ni	mg/L	<0.0038	V	Concentration procedure used for some metals. TP (Manual): Reprepped 03/16/07. Note: Incorrect procedure used for collecting blank-(churn was not us
3/14/2007	888	Crk-Blank Dunker Churn (Crew B)	Quality Control	High Flow	Grab	2702485 TSS	mg/L	<4	V	Concentration procedure used for some metals. TP (Manual): Reprepped 03/16/07. Note: Incorrect procedure used for collecting blank-(churn was not us
3/14/2007	888	Crk-Blank Dunker Churn (Crew B)	Quality Control	High Flow	Grab	2702485 Cd	mg/L	<0.00080	V	Concentration procedure used for some metals. TP (Manual): Reprepped 03/16/07. Note: Incorrect procedure used for collecting blank-(churn was not us
3/14/2007	888	Crk-Blank Dunker Churn (Crew B)	Quality Control	High Flow	Grab	2702485 BOD5	mg/L	<2	V	Concentration procedure used for some metals. TP (Manual): Reprepped 03/16/07. Note: Incorrect procedure used for collecting blank-(churn was not us
3/14/2007	888	Crk-Blank Dunker Churn (Crew B)	Quality Control	High Flow	Grab	2702485 As	mg/L	<0.0020	V	Concentration procedure used for some metals. TP (Manual): Reprepped 03/16/07. Note: Incorrect procedure used for collecting blank-(churn was not us
3/14/2007	888	Crk-Blank Dunker Churn (Crew B)	Quality Control	High Flow	Grab	2702485 Chloride	mg/L	<1	V	Concentration procedure used for some metals. TP (Manual): Reprepped 03/16/07. Note: Incorrect procedure used for collecting blank-(churn was not us
3/14/2007	888	Crk-Blank Dunker Churn (Crew B)	Quality Control	High Flow	Grab	2702485 CN-T	mg/L	<0.003	V	Concentration procedure used for some metals. TP (Manual): Reprepped 03/16/07. Note: Incorrect procedure used for collecting blank-(churn was not us

START					LAB_ SAMPLE	SAMPLE				LAB	
DATE	CODE	SOURCE	CATEGORY	STUDY	TYPE	NO	Parameter	Units	SRESULT (COMMENTS	REMARK_CODE
3/14/2007	888	Crk-Blank Dunker Churn (Crew B)	Quality Control	High Flow	Grab	2702485	5 Cr	mg/L	<0.0025	V	Concentration procedure used for some metals. TP (Manual): Reprepped 03/16/07. Note: Incorrect procedure used for collecting blank-(churn was not us
3/14/2007	888	Crk-Blank Dunker Churn (Crew B)	Quality Control	High Flow	Grab	2702485	5 Fe	mg/L	<0.050	V	Concentration procedure used for some metals. TP (Manual): Reprepped 03/16/07. Note: Incorrect procedure used for collecting blank-(churn was not us
3/14/2007	888	Crk-Blank Dunker Churn (Crew B)	Quality Control	High Flow	Grab	2702485	5 Hg	mg/L	<0.000020	V	Concentration procedure used for some metals. TP (Manual): Reprepped 03/16/07. Note: Incorrect procedure used for collecting blank-(churn was not us
3/14/2007	888	Crk-Blank Dunker Churn (Crew B)	Quality Control	High Flow	Grab	2702485	5 K	mg/L	<0.025	V	Concentration procedure used for some metals. TP (Manual): Reprepped 03/16/07. Note: Incorrect procedure used for collecting blank-(churn was not us
3/14/2007	888	Crk-Blank Dunker Churn (Crew B)	Quality Control	High Flow	Grab	2702485	5 Mg	mg/L	<0.125	V	Concentration procedure used for some metals. TP (Manual): Reprepped 03/16/07. Note: Incorrect procedure used for collecting blank-(churn was not us
3/14/2007	888	Crk-Blank Dunker Churn (Crew B)	Quality Control	High Flow	Grab	2702485	5 Mn	mg/L	<0.025	V	Concentration procedure used for some metals. TP (Manual): Reprepped 03/16/07. Note: Incorrect procedure used for collecting blank-(churn was not us
3/14/2007	888	Crk-Blank Dunker Churn (Crew B)	Quality Control	High Flow	Grab	2702485	5 Na	mg/L	<4	V	Concentration procedure used for some metals. TP (Manual): Reprepped 03/16/07. Note: Incorrect procedure used for collecting blank-(churn was not us
3/14/2007	888	Crk-Blank Dunker Churn (Crew B)	Quality Control	High Flow	Grab	2702485	5 NH3-N	mg/L	<0.030	V	Concentration procedure used for some metals. TP (Manual): Reprepped 03/16/07. Note: Incorrect procedure used for collecting blank-(churn was not us
3/14/2007	888	Crk-Blank Dunker Churn (Crew B)	Quality Control	High Flow	Grab	2702485	5 Cu	mg/L	<0.0031	V	Concentration procedure used for some metals. TP (Manual): Reprepped 03/16/07. Note: Incorrect procedure used for collecting blank-(churn was not us

					LAB_						
START_	IND_				SAMPLE_	SAMPLE_				LAB_	
DATE	CODE	SOURCE	CATEGORY	STUDY	TYPE	NO	Parameter	Units	SRESULT	COMMENTS	REMARK_CODE
3/14/2007	902	Crk-Harbour Brook @ Hiawatha	Onondaga Creeks	High Flow	Grab	2702486	TOC-F	mg/L	4.68	V	Note: Incorrect procedure used for collecting blank
3/14/2007	902	Crk-Harbour Brook @	Onondaga Creeks	High Flow	Grab	2702486	SiO2	mg/L	3.99	V	Note: Incorrect procedure used for
		Hiawatha	Ū	0				0			collecting blank.
3/14/2007	902	Crk-Harbour Brook @	Onondaga Creeks	High Flow	Grab	2702486	SO4	mg/L	65	V	Note: Incorrect procedure used for
		Hiawatha									collecting blank.
3/14/2007	902	Crk-Harbour Brook @	Onondaga Creeks	High Flow	Grab	2702486	SRP	mg/L	0.087	V	Note: Incorrect procedure used for
2/14/2007	002	Hiawatha	Onondogo Crooko		Croh	2702406	Stago Cougo	C +	1 52	V	Collecting blank.
3/14/2007	902	Hiawatha	Ononuaya Creeks	FIGH FIOW	Glab	2702400	Slaye Gauge	гι.	4.55	v	collecting blank
3/14/2007	902	Crk-Harbour Brook @	Onondaga Creeks	High Flow	Grab	2702486	TDP	ma/L	0.103	V	Note: Incorrect procedure used for
		Hiawatha	j							-	collecting blank.
3/14/2007	902	Crk-Harbour Brook @	Onondaga Creeks	High Flow	Grab	2702486	TDS	mg/L	642	V	Note: Incorrect procedure used for
		Hiawatha									collecting blank.
3/14/2007	902	Crk-Harbour Brook @	Onondaga Creeks	High Flow	Grab	2702486	TIC	mg/L	41.1	V	Note: Incorrect procedure used for
		Hiawatha		···· · _ ·							collecting blank.
3/14/2007	902	Crk-Harbour Brook @	Onondaga Creeks	High Flow	Grab	2702486	lurbidity	NIU	159	V	Note: Incorrect procedure used for
2/14/2007	002	Hiawatha	Onondogo Crooko		Crob	2702496	TOC	mall	4 05	V	Collecting blank.
3/14/2007	902	Hiawatha	Ononuaya Creeks	RIGHTIOW	Grab	2702400	100	mg/L	4.95	v	collecting blank
3/14/2007	902	Crk-Harbour Brook @	Onondaga Creeks	High Flow	Grab	2702486	TP	ma/l	0 508	V	TP (manual): Reprepped 03/16/07 Note:
0,1 1/2001	002	Hiawatha	ononaugu oroono	ingit ton	Ciub	2102100		iiig/ E	0.000	•	Incorrect procedure used for collecting
											blank.
3/14/2007	902	Crk-Harbour Brook @	Onondaga Creeks	High Flow	Grab	2702486	TSS	mg/L	243	V	Note: Incorrect procedure used for
		Hiawatha									collecting blank.
3/14/2007	902	Crk-Harbour Brook @	Onondaga Creeks	High Flow	Grab	2702486	NH3-N	mg/L	0.24	V	Note: Incorrect procedure used for
		Hiawatha	· · · · · · · · ·		~ .	0700400	T 1/11				collecting blank.
3/14/2007	902	Crk-Harbour Brook @	Onondaga Creeks	High Flow	Grab	2702486	IKN	mg/L	1.92	V	Note: Incorrect procedure used for
3/14/2007	002		Onondaga Crooks	High Flow	Grab	2702486	Chargo Balanco	0/_	13 60	·····	Note: Incorrect procedure used for
3/14/2007	902	Hiawatha	Ononuaya Creeks	Tigit 10w	Grab	2702400	Charge Balance	70	15.09	v	collecting blank
3/14/2007	902	Crk-Harbour Brook @	Onondaga Creeks	High Flow	Grab	2702486	NO3	ma/L	1.29	V	Note: Incorrect procedure used for
		Hiawatha	j								collecting blank.
3/14/2007	902	Crk-Harbour Brook @	Onondaga Creeks	High Flow	Grab	2702486	ORG-N	mg/L	1.68	V	Note: Incorrect procedure used for
		Hiawatha									collecting blank.
3/14/2007	902	Crk-Harbour Brook @	Onondaga Creeks	High Flow	Grab	2702486	ALK-T	mg/L	154	V	Note: Incorrect procedure used for
		Hiawatha		···· · —·							collecting blank.
3/14/2007	902	Crk-Harbour Brook @	Onondaga Creeks	High Flow	Grab	2702486	Са	mg/L	95.9	V	Note: Incorrect procedure used for
2/14/2007	002	Hiawatha	Opendage Creeke		Croh	2702496	Chlorido		047	V	Collecting blank.
3/14/2007	902	Hiawatha	Ononuaya Creeks	RIGHTIOW	Grab	2702400	Chionae	mg/L	247	v	collecting blank
3/14/2007	902	Crk-Harbour Brook @	Onondaga Creeks	High Flow	Grab	2702486	FCOLI-MF	count/100	>6000	V	Note: Incorrect procedure used for
5 2 007	002	Hiawatha			2.00	2.02.00			0000	•	collecting blank.
3/14/2007	902	Crk-Harbour Brook @	Onondaga Creeks	High Flow	Grab	2702486	Fe	mg/L	6.23	V	Note: Incorrect procedure used for
		Hiawatha	-					-			collecting blank.

					LAB_						
START_	IND_				SAMPLE_	SAMPLE_				LAB_	
DATE	CODE	SOURCE	CATEGORY	STUDY	TYPE	NO	Parameter	Units	SRESULT (COMMENTS	REMARK_CODE
3/14/2007	902	Crk-Harbour Brook @	Onondaga Creeks	High Flow	Grab	2702486	Hardness	mg/L	329	V	Note: Incorrect procedure used for
		Hiawatha									collecting blank.
3/14/2007	902	Crk-Harbour Brook @	Onondaga Creeks	High Flow	Grab	2702486	Mg	mg/L	21.8	V	Note: Incorrect procedure used for
		Hiawatha									collecting blank.
3/14/2007	902	Crk-Harbour Brook @	Onondaga Creeks	High Flow	Grab	2702486	Mn	mg/L	0.135	V	Note: Incorrect procedure used for
0/4 4/0007		Hiawatha	<u> </u>	···· · =		0700400					collecting blank.
3/14/2007	902	Crk-Harbour Brook @	Onondaga Creeks	High Flow	Grab	2702486	Na	mg/L	147	V	Note: Incorrect procedure used for
2/14/2007	002		Onondogo Crooka		Croh	2702496		ma/l	0.06	V	Note: Incorrect precedure used for
3/14/2007	902	Hiswatha	Ononuaya Creeks	FIGH FIOW	Grab	2702400	NOZ	mg/L	0.00	v	collecting blank
3/14/2007	902	Crk-Harbour Brook @	Onondaga Creeks	High Flow	Grab	2702486	BOD5	ma/l	10	V	Note: Incorrect procedure used for
0,1 ,,2001	002	Hiawatha	ononaugu oroono	ingit tow	Ciub	2102100	2020	iiig/ E	10	•	collecting blank.
3/14/2007	908	Crk-Ley Creek @	Onondaga Creeks	High Flow	Grab	2702488	NO2	mg/L	0.02	V	Note: Incorrect procedure used for
		Park Street	0	0				0			collecting blank.
3/14/2007	908	Crk-Ley Creek @	Onondaga Creeks	High Flow	Grab	2702488	Fe	mg/L	1.38	V	Note: Incorrect procedure used for
		Park Street									collecting blank.
3/14/2007	908	Crk-Ley Creek @	Onondaga Creeks	High Flow	Grab	2702488	NH3-N	mg/L	0.22	V	Note: Incorrect procedure used for
		Park Street									collecting blank.
3/14/2007	908	Crk-Ley Creek @	Onondaga Creeks	High Flow	Grab	2702488	Na	mg/L	296	V	Note: Incorrect procedure used for
2/44/2007	000	Park Street	Onendere Creeke	Llieb Flau	Orah	0700400	N 4		0.0000		collecting blank.
3/14/2007	908	Crk-Ley Creek @	Unondaga Creeks	High Flow	Grab	2702488	MIN	mg/L	0.0986	v	Note: Incorrect procedure used for
3/14/2007	008		Opondaga Creeks	High Flow	Grah	2702488	Ma	ma/l	1/ 0	V	Note: Incorrect procedure used for
5/14/2007	300	Park Street	Ononuaga Creeks	i ligit i low	Orab	2702400	ivig	iiig/L	14.5	v	collecting blank
3/14/2007	908	Crk-I ev Creek @	Onondaga Creeks	High Flow	Grab	2702488	Hardness	ma/l	264	V	Note: Incorrect procedure used for
0.1.1.2001		Park Street	enenauga ereene		0.00					•	collecting blank.
3/14/2007	908	Crk-Ley Creek @	Onondaga Creeks	High Flow	Grab	2702488	FCOLI-MF	count/100	210	V	Note: Incorrect procedure used for
		Park Street		-							collecting blank.
3/14/2007	908	Crk-Ley Creek @	Onondaga Creeks	High Flow	Grab	2702488	Chloride	mg/L	450	V	Note: Incorrect procedure used for
		Park Street									collecting blank.
3/14/2007	908	Crk-Ley Creek @	Onondaga Creeks	High Flow	Grab	2702488	Charge Balance	%	9.09	V	Note: Incorrect procedure used for
0/4 4/0007	000	Park Street	Outradiana Outradia	Likela Elevis	Orah	0700400	0 -			·····	collecting blank.
3/14/2007	908	Crk-Ley Creek @	Onondaga Creeks	High Flow	Grab	2702488	Ca	mg/L	81.2	V	Note: Incorrect procedure used for
3/14/2007	008	Crk-Lev Creek	Opondaga Creeks	High Flow	Grah	2702488		ma/l	3	V	Note: Incorrect procedure used for
5/14/2007	300	Park Street	Ononuaga Creeks	i ligit i low	Orab	2702400	6005	iiig/L	5	v	collecting blank
3/14/2007	908	Crk-Lev Creek @	Onondaga Creeks	High Flow	Grab	2702488	AI K-T	ma/l	140	V	Note: Incorrect procedure used for
0.1.1.2001		Park Street	enenaugu ereene		0.00					•	collecting blank.
3/14/2007	908	Crk-Ley Creek @	Onondaga Creeks	High Flow	Grab	2702488	Turbidity	NTU	45.1	V	Note: Incorrect procedure used for
		Park Street	5	2			-				collecting blank.
3/14/2007	908	Crk-Ley Creek @	Onondaga Creeks	High Flow	Grab	2702488	TSS	mg/L	45	V	Note: Incorrect procedure used for
		Park Street									collecting blank.
3/14/2007	908	Crk-Ley Creek @	Onondaga Creeks	High Flow	Grab	2702488	NO3	mg/L	0.48	V	Note: Incorrect procedure used for
		Park Street									collecting blank.

					LAB_						
START_	IND_				SAMPLE_	SAMPLE_				LAB_	
DATE	CODE	SOURCE	CATEGORY	STUDY	TYPE	NO	Parameter	Units	SRESULT (COMMENTS	REMARK_CODE
3/14/2007	908	Crk-Ley Creek @	Onondaga Creeks	High Flow	Grab	2702488	TP	mg/L	0.157	V	Note: Incorrect procedure used for
		Park Street	-	-				-			collecting blank.
3/14/2007	908	Crk-Ley Creek @	Onondaga Creeks	High Flow	Grab	2702488	TOC-F	mg/L	5.13	V	Note: Incorrect procedure used for
		Park Street									collecting blank.
3/14/2007	908	Crk-Ley Creek @	Onondaga Creeks	High Flow	Grab	2702488	TOC	mg/L	5.22	V	Note: Incorrect procedure used for
		Park Street									collecting blank.
3/14/2007	908	Crk-Ley Creek @	Onondaga Creeks	High Flow	Grab	2702488	IKN	mg/L	0.78	V	Note: Incorrect procedure used for
2/14/2007	000	Park Street	Opendage Creeks		Croh	2702499	TIC		27.7	V	Collecting blank.
3/14/2007	906	Dark Street	Onondaga Creeks	FIGH FIOW	Grab	2702400	TIC .	mg/L	57.7	v	collecting blank
3/14/2007	908	Crk-Lev Creek @	Onondaga Creeks	High Flow	Grab	2702488	TDP	ma/l	0.028	V	Note: Incorrect procedure used for
0/14/2007	000	Park Street	Chondaga Creeks	riigit tiow	Ciub	2102400	1 Di	iiig/L	0.020	v	collecting blank.
3/14/2007	908	Crk-Ley Creek @	Onondaga Creeks	High Flow	Grab	2702488	Stage Gauge	Ft.	2.84	V	Note: Incorrect procedure used for
		Park Street	0	0			0 0				collecting blank.
3/14/2007	908	Crk-Ley Creek @	Onondaga Creeks	High Flow	Grab	2702488	SRP	mg/L	0.018	V	Note: Incorrect procedure used for
		Park Street									collecting blank.
3/14/2007	908	Crk-Ley Creek @	Onondaga Creeks	High Flow	Grab	2702488	SO4	mg/L	55	V	Note: Incorrect procedure used for
		Park Street									collecting blank.
3/14/2007	908	Crk-Ley Creek @	Onondaga Creeks	High Flow	Grab	2702488	SiO2	mg/L	4.52	V	Note: Incorrect procedure used for
2/44/2007	000	Park Street	Onendere Oreeke	Lieb Fleur	Oreh	0700400			0.50		collecting blank.
3/14/2007	908	Crk-Ley Creek @	Unondaga Creeks	High Flow	Grab	2702488	URG-N	mg/L	0.56	v	Note: Incorrect procedure used for
3/14/2007	008	Crk-Lev Creek @	Onondaga Creeks	High Flow	Grah	2702488	פחד	ma/l	1040	V	Note: Incorrect procedure used for
3/14/2007	300	Park Street	Onondaya Creeks	riigit tiow	Orab	2702400	105	iiig/L	1040	v	collecting blank
3/14/2007	1906	Crk-Onondaga Lake	Onondaga Creeks	High Flow	Grab	2702489	TSS	ma/L	<4	V	Note: Incorrect procedure used for
0.1.1.2001		Outlet 2 ft.	enendaga ereene		0.00					•	collecting blank.
3/14/2007	1906	Crk-Onondaga Lake	Onondaga Creeks	High Flow	Grab	2702489	SiO2	mg/L	4.31	V	Note: Incorrect procedure used for
		Outlet 2 ft.	-	-				-			collecting blank.
3/14/2007	1906	Crk-Onondaga Lake	Onondaga Creeks	High Flow	Grab	2702489	SO4	mg/L	126	V	Note: Incorrect procedure used for
		Outlet 2 ft.									collecting blank.
3/14/2007	1906	Crk-Onondaga Lake	Onondaga Creeks	High Flow	Grab	2702489	SRP	mg/L	0.005	V	Note: Incorrect procedure used for
2/14/2007	1006	Outlet 2 ft.	Opendage Creeks	Lligh Flow	Orah	2702400	חחד		0.017	V	collecting blank.
3/14/2007	1906	Outlot 2 ft	Unondaga Creeks	High Flow	Grab	2702489	IDP	mg/L	0.017	v	Note: Incorrect procedure used for
3/14/2007	1906	Crk-Onondaga Lake	Onondaga Creeks	High Flow	Grah	2702489	TDS	ma/l	1088	V	Note: Incorrect procedure used for
5/14/2007	1000	Outlet 2 ft	Onondaga Orecka	riigittiow	Grab	2102400	100	iiig/L	1000	v	collecting blank
3/14/2007	1906	Crk-Onondaga Lake	Onondaga Creeks	High Flow	Grab	2702489	TIC	ma/L	51.2	V	Note: Incorrect procedure used for
		Outlet 2 ft.		5				5			collecting blank.
3/14/2007	1906	Crk-Onondaga Lake	Onondaga Creeks	High Flow	Grab	2702489	TKN	mg/L	0.71	V	Note: Incorrect procedure used for
		Outlet 2 ft.	_					-			collecting blank.
3/14/2007	1906	Crk-Onondaga Lake	Onondaga Creeks	High Flow	Grab	2702489	тос	mg/L	3.82	V	Note: Incorrect procedure used for
		Outlet 2 ft.									collecting blank.
3/14/2007	1906	Crk-Onondaga Lake	Onondaga Creeks	High Flow	Grab	2702489	ALK-T	mg/L	192	V	Note: Incorrect procedure used for
		Outlet 2 ft.									collecting blank.

					LAB_						
		SOURCE	CATEGORY	STUDY	SAMPLE_	SAMPLE_	Parameter	Unite		COMMENTS	REMARK CODE
3/14/2007	1006	Crk Opendaga Lake	Opondaga Crooks	High Flow	Grah	2702480	TD	mall	0.043	V	Note: Incorrect procedure used for
5/14/2007	1900	Outlet 2 ft	Onondaya Creeks	riigittiow	Giab	2102409	IF	IIIg/L	0.043	v	collecting blank
3/14/2007	1906	Crk-Onondaga Lake	Onondaga Creeks	High Flow	Grab	2702489	Turbidity	NTU	3.35	V	Note: Incorrect procedure used for
		Outlet 2 ft.	0	0							collecting blank.
3/14/2007	1906	Crk-Onondaga Lake Outlet 2 ft.	Onondaga Creeks	High Flow	Grab	2702489	Phaeophytin-a	mg/m3	<0.2	V	Note: Incorrect procedure used for collecting blank. 2L AMB bottle (Chlorophyll-a/Phaeophytin-a) collected on 3/14 but not received until 3/26/07.
3/14/2007	1906	Crk-Onondaga Lake Outlet 2 ft.	Onondaga Creeks	High Flow	Grab	2702489	NO2	mg/L	0.04	V	Note: Incorrect procedure used for collecting blank.
3/14/2007	1906	Crk-Onondaga Lake Outlet 2 ft.	Onondaga Creeks	High Flow	Grab	2702489	TOC-F	mg/L	3.79	V	Note: Incorrect procedure used for collecting blank.
3/14/2007	1906	Crk-Onondaga Lake Outlet 2 ft.	Onondaga Creeks	High Flow	Grab	2702489	Charge Balance	%	3.99	V	Note: Incorrect procedure used for collecting blank.
3/14/2007	1906	Crk-Onondaga Lake Outlet 2 ft.	Onondaga Creeks	High Flow	Grab	2702489	BOD5	mg/L	<2	V	Note: Incorrect procedure used for collecting blank.
3/14/2007	1906	Crk-Onondaga Lake Outlet 2 ft.	Onondaga Creeks	High Flow	Grab	2702489	ORG-N	mg/L	0.39	V	Note: Incorrect procedure used for collecting blank.
3/14/2007	1906	Crk-Onondaga Lake Outlet 2 ft.	Onondaga Creeks	High Flow	Grab	2702489	Са	mg/L	140	V	Note: Incorrect procedure used for collecting blank.
3/14/2007	1906	Crk-Onondaga Lake Outlet 2 ft.	Onondaga Creeks	High Flow	Grab	2702489	Chloride	mg/L	392	V	Note: Incorrect procedure used for collecting blank. 2L AMB bottle (Chlorophyll-a/Phaeophytin-a) collected on 3/14 but not received until 3/26/07.
3/14/2007	1906	Crk-Onondaga Lake Outlet 2 ft.	Onondaga Creeks	High Flow	Grab	2702489	Chlorophyll-a	mg/m3	4.81	V	Note: Incorrect procedure used for collecting blank. 2L AMB bottle (Chlorophyll-a/Phaeophytin-a) collected on 3/14 but not received until 3/26/07.
3/14/2007	1906	Crk-Onondaga Lake Outlet 2 ft.	Onondaga Creeks	High Flow	Grab	2702489	FCOLI-MF	count/100	20	V	Note: Incorrect procedure used for collecting blank.
3/14/2007	1906	Crk-Onondaga Lake Outlet 2 ft.	Onondaga Creeks	High Flow	Grab	2702489	Fe	mg/L	0.14	V	Note: Incorrect procedure used for collecting blank.
3/14/2007	1906	Crk-Onondaga Lake Outlet 2 ft.	Onondaga Creeks	High Flow	Grab	2702489	Mg	mg/L	23.6	V	Note: Incorrect procedure used for collecting blank.
3/14/2007	1906	Crk-Onondaga Lake Outlet 2 ft.	Onondaga Creeks	High Flow	Grab	2702489	Mn	mg/L	<0.025	V	Note: Incorrect procedure used for collecting blank.
3/14/2007	1906	Crk-Onondaga Lake Outlet 2 ft.	Onondaga Creeks	High Flow	Grab	2702489	Na	mg/L	214	V	Note: Incorrect procedure used for collecting blank.
3/14/2007	1906	Crk-Onondaga Lake Outlet 2 ft.	Onondaga Creeks	High Flow	Grab	2702489	NH3-N	mg/L	0.32	V	Note: Incorrect procedure used for collecting blank.
3/14/2007	1906	Crk-Onondaga Lake Outlet 2 ft.	Onondaga Creeks	High Flow	Grab	2702489	NO3	mg/L	1.59	V	Note: Incorrect procedure used for collecting blank.
3/14/2007	1906	Crk-Onondaga Lake Outlet 2 ft.	Onondaga Creeks	High Flow	Grab	2702489	Hardness	mg/L	447	V	Note: Incorrect procedure used for collecting blank.

					LAB_						
START_	IND_				SAMPLE_	SAMPLE_				LAB_	
DATE	CODE	SOURCE	CATEGORY	STUDY	TYPE	NO	Parameter	Units	SRESULT CO	DMMENTS	REMARK_CODE
3/14/2007	1907	Crk-Onondaga Lake	Onondaga Creeks	High Flow	Grab	2702490	TOC-F	mg/L	3.6	V	Note: Incorrect procedure used for collecting blank
3/14/2007	1907	Crk-Onondaga Lake Outlet 12 ft.	Onondaga Creeks	High Flow	Grab	2702490	Phaeophytin-a	mg/m3	<0.2	V	Note: Incorrect procedure used for collecting blank. 2L AMB bottle (Chlorophyll-a/Phaeophytin-a) collected on 3/14 but not received until 3/26/07.
3/14/2007	1907	Crk-Onondaga Lake Outlet 12 ft.	Onondaga Creeks	High Flow	Grab	2702490	SiO2	mg/L	4.68	V	Note: Incorrect procedure used for collecting blank.
3/14/2007	1907	Crk-Onondaga Lake Outlet 12 ft.	Onondaga Creeks	High Flow	Grab	2702490	SO4	mg/L	140	V	Note: Incorrect procedure used for collecting blank.
3/14/2007	1907	Crk-Onondaga Lake Outlet 12 ft.	Onondaga Creeks	High Flow	Grab	2702490	SRP	mg/L	0.007	V	Note: Incorrect procedure used for collecting blank.
3/14/2007	1907	Crk-Onondaga Lake Outlet 12 ft.	Onondaga Creeks	High Flow	Grab	2702490	TDP	mg/L	0.018	V	Note: Incorrect procedure used for collecting blank. 2L AMB bottle (Chlorophyll-a/Phaeophytin-a) collected on 3/14 but not received until 3/26/07.
3/14/2007	1907	Crk-Onondaga Lake Outlet 12 ft.	Onondaga Creeks	High Flow	Grab	2702490	TDS	mg/L	1194	V	Note: Incorrect procedure used for collecting blank.
3/14/2007	1907	Crk-Onondaga Lake Outlet 12 ft.	Onondaga Creeks	High Flow	Grab	2702490	TIC	mg/L	53.8	V	Note: Incorrect procedure used for collecting blank.
3/14/2007	1907	Crk-Onondaga Lake Outlet 12 ft.	Onondaga Creeks	High Flow	Grab	2702490	TSS	mg/L	<4	V	Note: Incorrect procedure used for collecting blank.
3/14/2007	1907	Crk-Onondaga Lake Outlet 12 ft.	Onondaga Creeks	High Flow	Grab	2702490	Turbidity	NTU	1.81	V	Note: Incorrect procedure used for collecting blank.
3/14/2007	1907	Crk-Onondaga Lake Outlet 12 ft.	Onondaga Creeks	High Flow	Grab	2702490	тос	mg/L	3.64	V	Note: Incorrect procedure used for collecting blank.
3/14/2007	1907	Crk-Onondaga Lake Outlet 12 ft.	Onondaga Creeks	High Flow	Grab	2702490	ORG-N	mg/L	0.38	V	Note: Incorrect procedure used for collecting blank.
3/14/2007	1907	Crk-Onondaga Lake Outlet 12 ft.	Onondaga Creeks	High Flow	Grab	2702490	TKN	mg/L	0.72	V	Note: Incorrect procedure used for collecting blank.
3/14/2007	1907	Crk-Onondaga Lake Outlet 12 ft.	Onondaga Creeks	High Flow	Grab	2702490	Charge Balance	%	1.32	V	Note: Incorrect procedure used for collecting blank.
3/14/2007	1907	Crk-Onondaga Lake Outlet 12 ft.	Onondaga Creeks	High Flow	Grab	2702490	NO3	mg/L	1.93	V	Note: Incorrect procedure used for collecting blank.
3/14/2007	1907	Crk-Onondaga Lake Outlet 12 ft.	Onondaga Creeks	High Flow	Grab	2702490	ALK-T	mg/L	204	V	Note: Incorrect procedure used for collecting blank.
3/14/2007	1907	Crk-Onondaga Lake Outlet 12 ft.	Onondaga Creeks	High Flow	Grab	2702490	TP	mg/L	0.051	V	Note: Incorrect procedure used for collecting blank.
3/14/2007	1907	Crk-Onondaga Lake Outlet 12 ft.	Onondaga Creeks	High Flow	Grab	2702490	Са	mg/L	150	V	Note: Incorrect procedure used for collecting blank.
3/14/2007	1907	Crk-Onondaga Lake Outlet 12 ft.	Onondaga Creeks	High Flow	Grab	2702490	Chloride	mg/L	429	V	Note: Incorrect procedure used for collecting blank.

					LAB_					
START_	IND_				SAMPLE_	SAMPLE_			LAB_	
DATE	CODE	SOURCE	CATEGORY	STUDY	TYPE	NO Parameter	Units	SRESULT	COMMENTS	REMARK_CODE
3/14/2007	1907	Crk-Onondaga Lake Outlet 12 ft.	Onondaga Creeks	High Flow	Grab	2702490 Chlorophyll-a	mg/m3	2.14	V	Note: Incorrect procedure used for collecting blank. 2L AMB bottle (Chlorophyll-a/Phaeophytin-a) collected on 3/14 but not received until 3/26/07
3/14/2007	1907	Crk-Onondaga Lake Outlet 12 ft.	Onondaga Creeks	High Flow	Grab	2702490 Fe	mg/L	0.0582	V	Note: Incorrect procedure used for collecting blank.
3/14/2007	1907	Crk-Onondaga Lake Outlet 12 ft.	Onondaga Creeks	High Flow	Grab	2702490 Hardness	mg/L	477	V	Note: Incorrect procedure used for collecting blank.
3/14/2007	1907	Crk-Onondaga Lake Outlet 12 ft.	Onondaga Creeks	High Flow	Grab	2702490 Mg	mg/L	24.9	V	Note: Incorrect procedure used for collecting blank.
3/14/2007	1907	Crk-Onondaga Lake Outlet 12 ft.	Onondaga Creeks	High Flow	Grab	2702490 Mn	mg/L	<0.025	V	Note: Incorrect procedure used for collecting blank.
3/14/2007	1907	Crk-Onondaga Lake Outlet 12 ft.	Onondaga Creeks	High Flow	Grab	2702490 Na	mg/L	226	V	Note: Incorrect procedure used for collecting blank.
3/14/2007	1907	Crk-Onondaga Lake Outlet 12 ft.	Onondaga Creeks	High Flow	Grab	2702490 NH3-N	mg/L	0.34	V	Note: Incorrect procedure used for collecting blank.
3/14/2007	1907	Crk-Onondaga Lake Outlet 12 ft.	Onondaga Creeks	High Flow	Grab	2702490 NO2	mg/L	0.05	V	Note: Incorrect procedure used for collecting blank.
3/14/2007	1907	Crk-Onondaga Lake Outlet 12 ft.	Onondaga Creeks	High Flow	Grab	2702490 BOD5	mg/L	<2	V	Note: Incorrect procedure used for collecting blank.
3/28/2007	630	Metro By-Pass Event #16	Treatment Plant		Grab	2703494 O&G (SPE)	mg/L	8	V	Grab 5; O&G: Telfon-coated stirbar in jar.
3/31/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2703645 BOD5	mg/L	4	V	BOD/CBOD:Incubator temperature is outside of acceptable limits.
3/31/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2703645 CBOD5	mg/L	2	V	BOD/CBOD:Incubator temperature is outside of acceptable limits.
4/1/2007	630	Metro By-Pass Event #19	Treatment Plant		Composite	2703769 CBOD5	mg/L	44	V	Consists of 3 grabs. BOD/CBOD:Incubator temperature is outside of acceptable limits.
4/1/2007	630	Metro By-Pass Event #19	Treatment Plant		Composite	2703769 BOD5	mg/L	71	V	Consists of 3 grabs. BOD/CBOD:Incubator temperature is outside of acceptable limits.
4/1/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2703659 CBOD5	mg/L	4	V	BOD/CBOD:Incubator temperature is outside of acceptable limits.
4/1/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2703659 BOD5	mg/L	7	V	BOD/CBOD:Incubator temperature is outside of acceptable limits.
4/2/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2703709 BOD5	mg/L	4	V	Split sample. BOD/CBOD:Incubator temperature is outside of acceptable limits.
4/2/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2703709 CBOD5	mg/L	<2	V	Split sample. BOD/CBOD:Incubator temperature is outside of acceptable limits.
4/3/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2703788 BOD5	mg/L	3	V	BOD/CBOD: Incubator temperature is outside of acceptable limits.

					LAB_					
START_	IND_				SAMPLE_	SAMPLE_		L	.AB_	
DATE	CODE	SOURCE	CATEGORY	STUDY	TYPE	NO Parameter	r Units	SRESULT CON	IMENTS	REMARK_CODE
4/3/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2703788 CBOD5	mg/L	<2	V	BOD/CBOD: Incubator temperature is
										outside of acceptable limits.
4/3/2007	789	Crk-Metro Effluent	Onondaga Creeks		Grab	2703752 BOD5	mg/L	<2	V	Concentration procedure used for some
										metals. BOD: Incubator temperature is
4/2/2007	002	Crk Onondogo Crook	Onondogo Crooko		Croh	2702742 0005	ma/l	~0	V	Concentration precedure used for some
4/3/2007	002	@ Kirkpatrick	Onondaga Creeks		Grab	2103/43 8005	mg/L	< <u>2</u>	v	motols. ROD: Incubator tomporature is
		W Rinkpatrick								outside of acceptable limits
4/3/2007	888	Crk-Blank Dunker	Quality Control		Grab	2703741 BOD5	ma/l	<2	V	Concentration procedure used for some
110/2001	000	Churn (Crew B)	Quality Control		Ciub	2100111 2020	iiig/E	-	•	metals. BOD:Incubator temperature is
		- ()								outside of acceptable limits.
4/3/2007	902	Crk-Harbour Brook @	Onondaga Creeks		Grab	2703742 BOD5	mg/L	<2	V	Concentration procedure used for some
		Hiawatha								metals. BOD:Incubator temperature is
										outside of acceptable limits.
4/3/2007	903	Crk-Allied East Flume	 Onondaga Creeks 		Grab	2703749 BOD5	mg/L	4	V	Concentration procedure used for some
		Over Weir								metals. BOD:Incubator temperature is
4/0/0007	004	Orly Tributery Fo	Onenders Creeks		Orah	0700740 DODE		<u></u>		outside of acceptable limits.
4/3/2007	904	State Eair Blud	Onondaga Creeks		Grab	2703748 BOD5	mg/L	3	v	motols. ROD: Incubator tomporature is
										outside of accentable limits
4/3/2007	905	Crk-Nine Mile Creek	Onondaga Creeks		Grab	2703747 BOD5	ma/l	<2	V	Concentration procedure used for some
		@ Lakeland Rt 48	enenaaga ereene		0.00	2.00 2020		-	•	metals. BOD:Incubator temperature is
		0								outside of acceptable limits.
4/3/2007	908	Crk-Ley Creek @	Onondaga Creeks		Grab	2703744 BOD5	mg/L	2	V	Concentration procedure used for some
		Park Street								metals. BOD:Incubator temperature is
										outside of acceptable limits.
4/3/2007	910	Crk-Onondaga Creek	Onondaga Creeks		Grab	2703751 BOD5	mg/L	<2	V	Concentration procedure used for some
		@ Dorwin Ave.								metals. BOD:Incubator temperature is
4/2/2007	011	Crk Harbar Draak @	Onondogo Crooko		Croh	27027E0 DODE		~0		outside of acceptable limits.
4/3/2007	911	Volasko Boad	Onondaga Creeks		Grab	2703750 BOD5	mg/L	< <u>2</u>	v	motols. ROD: Incubator tomporature is
		Velasko INdau								outside of accentable limits
4/3/2007	990	Crk-Blank Churn	Quality Control		Grab	2703740 BOD5	ma/L	<2	V	Concentration procedure used for some
		(Crew A)						_	-	metals. BOD:Incubator temperature is
										outside of acceptable limits.
4/3/2007	1906	Crk-Onondaga Lake	Quality Control		Grab	2703755 BOD5	mg/L	2	V	Sample is Duplicate of
		Outlet 2 ft Duplicate								#2703745.Concentration procedure used
										for some metals. BOD:Incubator
										temperature is outside of acceptable
4/0/000-	4000		Outradia of the		Quel	0700745 0005		^		limits. TDS: blank co
4/3/2007	1906	Urk-Unondaga Lake	Unondaga Creeks		Grab	2703745 BOD5	mg/L	2	V	Concentration procedure used for some
										outside of acceptable limits TDS: black
										corrected.

					LAB_					
START_	IND_				SAMPLE_	SAMPLE_			LAB_	
DATE	CODE	SOURCE	CATEGORY	STUDY	TYPE	NO Parameter	Units	SRESULT	COMMENTS	REMARK_CODE
4/3/2007	1907	Crk-Onondaga Lake Outlet 12 ft.	Onondaga Creeks		Grab	2703746 BOD5	mg/L	<2	V	Concentration procedure used for some metals. BOD:Incubator temperature is outside of acceptable limits.
4/3/2007	1939	Crk-Onondaga Creek @ Adams Street	Onondaga Creeks		Grab	2703754 BOD5	mg/L	<2	V	Concentration procedure used for some metals. BOD:Incubator temperature is outside of acceptable limits.
4/4/2007	630	Metro By-Pass Event #20	Treatment Plant		Grab	2703770 CBOD5	mg/L	29	V	One grab only. BOD/CBOD: Incubator temperature is outside of acceptable limits.
4/4/2007	630	Metro By-Pass Event #20	Treatment Plant		Grab	2703770 BOD5	mg/L	48	V	One grab only. BOD/CBOD: Incubator temperature is outside of acceptable limits.
4/4/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2703817 BOD5	mg/L	<2	V	BOD/CBOD: Incubator temperature is outside of acceptable limits.
4/4/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2703817 CBOD5	mg/L	<2	V	BOD/CBOD: Incubator temperature is outside of acceptable limits.
4/4/2007	789	Metro Final Effluent- Duplicate	Quality Control	HRFS Project	Composite	2703831 BOD5	mg/L	2	V	Duplicate of sample 2703817. BOD/CBOD: Incubator temperature is outside of acceptable limits.
4/4/2007	789	Metro Final Effluent- Duplicate	Quality Control	HRFS Project	Composite	2703831 CBOD5	mg/L	<2	V	Duplicate of sample 2703817. BOD/CBOD: Incubator temperature is outside of acceptable limits.
4/17/2007	630	Crk-Metro By Pass	Onondaga Creeks		Grab	2704340 TIC	mg/L	57	V	TDS: blank corrected. TIC:Past hold time
4/17/2007	789	Crk-Metro Effluent	Onondaga Creeks		Grab	2704231 TIC	mg/L	43.6	V	TDS: blank corrected. TIC:Past hold time
4/17/2007	905	Crk-Nine Mile Creek @ Lakeland Rt 48	Onondaga Creeks		Grab	2704226 TDP	mg/L	>0.3	V	TDS: blank corrected. TDP:Sample contaminated
5/25/2007	630	Metro By-Pass Event #31	Treatment Plant		Grab	2704778 FCOLI-MF	count/100	1800000	V	Grab 1. Ony grab taken during compositing period. FCOLI read outside of 4 hour read window.
5/30/2007	888	Crk-Blank Dunker Churn (Crew B)	Quality Control	Routine (Biweekly)	Grab	2705776 TIC	mg/L	<0.50	V	TIC:Past hold time
6/5/2007	917	Lake Equip. Blk (Pump)	Quality Control	Routine (Biweekly)	Grab	2705972 TIC	mg/L	<0.50	V	
6/12/2007	888	Crk-Blank Dunker Churn (Crew B)	Quality Control	Quarterly	Grab	2706294 ALK-T	mg/L	9	V	Air bubble is present in T-alk bottle upon receipt. ALK-T initial pH is 9.5.Concentration procedure used for some metals.
6/12/2007	990	Crk-Blank Churn (Crew A)	Quality Control	Quarterly	Grab	2706293 ALK-T	mg/L	1	V	Air bubble is present in t-alk bottle upon receipt.Concentration procedure used for some metals.
7/7/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2707343 TKN	mg/L	1.4	V	Invalid sample; no sample in bottles 16- 24; bottles 1-15 composited, but not flow composited.

CTADT										
DATE		SOURCE	CATEGORY	STUDY	SAMPLE_	NO Parameter	Units	SRESULT (LAB_	REMARK CODE
7/7/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2707343 TP	mg/L	0.12	V	Invalid sample; no sample in bottles 16- 24; bottles 1-15 composited, but not flow composited.
7/7/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2707343 CBOD5	mg/L	<2	V	Invalid sample; no sample in bottles 16- 24; bottles 1-15 composited, but not flow composited.
7/7/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2707343 BOD5	mg/L	3	V	Invalid sample; no sample in bottles 16- 24; bottles 1-15 composited, but not flow composited.
7/7/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2707343 TSS	mg/L	4	V	Invalid sample; no sample in bottles 16- 24; bottles 1-15 composited, but not flow composited.
7/7/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2707343 NH3-N	mg/L	0.24	V	Invalid sample; no sample in bottles 16- 24; bottles 1-15 composited, but not flow composited.
7/23/2007	630	Metro By-Pass Event #38	Treatment Plant		Grab	2707490 O&G	mg/L	16	V	Grab 1; one grab only, composite parameters added. O&G: improper container.
8/9/2007	1075	Anhueser-Busch Effluent Discharge	River Monitoring	Monthly River	Grab	2707932 TKN	mg/L	<1.5	V	Split Sample
8/9/2007	1075	Anhueser-Busch Effluent Discharge	River Monitoring	Monthly River	Grab	2707932 TKN-F	mg/L	<1.5	V	Split Sample TKN:matrix interference.
8/28/2007	918	Lake 0m South	Onondaga Lake	Routine (Biweekly)	Grab	2709382 SRP	mg/L	<0.001	V	Actual field measurement taken at depth of 0.1; SRP sample filtered from PC bottle by Wet Chem. SRP Bottle contaminated.
9/10/2007	630	Metro By-Pass Event #40	Treatment Plant		Grab	2707993 FCOLI-MF	count/100	250000	V	Grab 3
9/24/2007	990	Crk-Blank Churn (Crew A)	Quality Control	Midland RTF Dewater	Grab	2710478 SRP	mg/L	<0.001	V	TDS: blank corrected. SRP:Tested past hold time
9/26/2007	630	Metro By-Pass Event #41	Treatment Plant		Grab	2709409 O&G	mg/L	18	V	Grab 1; one grab only; composite parameters added. O&G: improper container
9/26/2007	974	River Buoy #240 Bottom	River Monitoring	Monthly River	Grab	2710609 SRP	mg/L	0.028	V	SRP: SRP>TDP (verified)
10/24/2007	918	Lake 0m South	Onondaga Lake	Routine/Turnover	Grab	2712057 COND-field	umHos/cm	1822	V	0 meter data flagged. Probe out of water.
10/24/2007	918	Lake 0m South	Onondaga Lake	Routine/Turnover	Grab	2712057 DO-field	mg/L	11.32	V	0 meter data flagged. Probe out of water.
10/24/2007	918	Lake 0m South	Onondaga Lake	Routine/Turnover	Grab	2712057 pH-field	Std Units	7.62	V	0 meter data flagged. Probe out of water.
10/24/2007	918	Lake 0m South	Onondaga Lake	Routine/Turnover	Grab	2712057 Salinity-field	ppt	0.93	V	0 meter data flagged. Probe out of water.
10/24/2007	918	Lake 0m South	Onondaga Lake	Routine/Turnover	Grab	2712057 Temp-field	°C	16.03	V	0 meter data flagged. Probe out of water.

START_	IND_				LAB_ SAMPLE_	SAMPLE_			LAB_	
DATE	CODE	SOURCE	CATEGORY	STUDY	TYPE	NO Parameter	Units	SRESULT	COMMENTS	REMARK_CODE
11/14/2007	910	Crk-Onondaga Creek	Onondaga Creeks	Quarterly	Grab	2712741 ALK-T	mg/L	244	V	Air bubble is present in the Alkalinity
		@ Dorwin Ave.								bottle upon receipt.
11/20/2007	630	Metro By-Pass Event	Treatment Plant		Grab	2712274 O&G	mg/L	13	V	Grab 1. O&G container cover did not have
		#48								a teflon liner.
11/20/2007	929	Lake 6m North-	Quality Control	Quarterly	Grab	2712966 SiO2	mg/L	4.15	V	Sample is duplicate of #2712961
		Duplicate								SiO2:Estimate due to varience from
										QA/QC criteria
12/3/2007	630	Metro By-Pass Event	Treatment Plant		Grab	2713046 Phenol	mg/L	0.014	V	Grab 4; Phenol bottle: Sample
		#50								acceptance criteria not met.

					LAB_						
START_	IND_				SAMPLE_	SAMPLE_				LAB_	
DATE	CODE	SOURCE	CATEGORY	STUDY	TYPE	NO	Parameter	Units	SRESULT	COMMENTS	REMARK_CODE
1/3/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2700080	CBOD5	mg/L	4	N	
1/5/2007	630	Metro By-Pass Event	Treatment Plant		Composite	2700114	BOD5	mg/L	32	Ν	Composite consists of 4 grab samples.
		#1									
1/5/2007	630	Metro By-Pass Event	Treatment Plant		Composite	2700114	CBOD5	mg/L	28	N	Composite consists of 4 grab samples.
		#1									
1/5/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2700164	BOD5	mg/L	5	N	
1/5/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2700164	CBOD5	mg/L	2	N	
1/6/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2700167	BOD5	mg/L	4	N	
1/6/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2700167	CBOD5	mg/L	<2	N	
1/7/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2700180	CBOD5	mg/L	3	N	BOD exhibited toxic tendencies.
1/13/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2700515	CBOD5	mg/L	<2	N	
1/26/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2701003	CBOD5	mg/L	2	N	
2/2/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2701221	TP	mg/L	0.18	N	
2/3/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2701224	BOD5	mg/L	10	N	
2/3/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2701224	CBOD5	mg/L	4	N	
2/7/2007	911	Crk-Harbor Brook @	Onondaga Creeks		Grab	2701339	SRP	mg/L	0.004	N	TDS: Blank corrected.
		Velasko Road									SRP: > TDP
2/13/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2701600	BOD5	mg/L	9	N	
2/13/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2701600	CBOD5	mg/L	4	N	
2/23/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2702103	BOD5	mg/L	7	N	
2/23/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2702103	CBOD5	mg/L	3	N	
2/26/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2702187	Cd	mg/L	<0.00080	N	
2/27/2007	1939	Crk-Onondaga Creek	Onondaga Creeks		Grab	2701855	NH3-N	mg/L	0.12	N	
		@ Adams Street			-						
2/28/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2702275	BOD5	mg/L	8	N	Split with LSL for TP.
3/3/2007	630	Metro By-Pass Event	Treatment Plant		Grab	2702527	Hg	mg/L	<0.000020	N	Grab 1. Composite parameters added;
		#6									one grab taken.
3/12/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2702877	BOD5	mg/L	6	N	Split with S & W
3/12/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2702877	CBOD5	mg/L	3	N	Split with S & W
3/13/2007	630	Metro By-Pass Event	I reatment Plant		Composite	2702540	CBOD5	mg/L	51	N	Consists of 6 grab samples
0/40/0007		#/	0 11 0 1 1		~ ·	0700040	0005				
3/13/2007	916	Lake Equip. Bik	Quality Control	Winter Lake	Grab	2703019	BOD2	mg/L	<2	N	
0/40/0007	000	(Dunker Churn)	Quality Quarterl		Orah	0700000	DODE		-0		
3/13/2007	999	Lake Upper Mixed	Quality Control	Winter Lake	Grab	2703030	BOD2	mg/L	<2	N	DGPS Coordinates: 43°06.117'N
		Layer North-Duplicate									76°13.316 W. Duplicate of sample
0/40/0007	000	Labe Llesses Missed			Overh	0700000	DODE		-0	NI	
3/13/2007	999	Lake Upper Mixed	Onondaga Lake	WINTER Lake	Grab	2703028	BOD2	mg/L	<2	N	DGPS Coordinates: 43°06.117 N
0/40/0007	000	Layer North			Overh	0700000	DODE		-0	NI	76°13.316'W.
3/13/2007	999	Lake Lower Water	Onondaga Lake	WINTER Lake	Grab	2703029	BOD2	mg/L	<2	N	DGPS Coordinates: 43°06.117 N
2/14/2007	620	Layer North	Tractment Diant		Composite	2702005	CRODE	ma/l	00	NI	/0 13.310 W.
3/14/2007	030	went By-Pass Event	rreatment Plant		Composite	2/02865	CBOD2	mg/L	26	IN	
2/14/2007	620	#0 Motro By Doop Event	Trootmont Diant		Composite	2702005	PODE	mal	24	NI	
3/14/2007	030	went By-Pass Event	rreatment Plant		Composite	2/02865	вора	mg/L	31	IN	
2/14/2007	700	#0 Motro Final Effluent	Tractment Diant		Composite	0702044	DODE			NI	
3/14/2007	189	wetro Final Emuent	meatment Plant	RES PIOJECI	Composite	2703044	вора	mg/L	8	N	Shir Mill 2010

					LAB_					
START_	IND_				SAMPLE_	SAMPLE_			LAB_	
DATE	CODE	SOURCE	CATEGORY	STUDY	TYPE	NO Parameter	Units	SRESULT	COMMENTS	REMARK_CODE
3/14/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2703044 CBOD5	mg/L	3	N	Split with S&W
3/15/2007	630	Metro By-Pass Event #9	Treatment Plant		Composite	2702872 BOD5	mg/L	40	Ν	consists of 6 grabs
3/15/2007	630	Metro By-Pass Event	Treatment Plant		Composite	2702872 CBOD5	mg/L	34	Ν	consists of 6 grabs
3/15/2007	789	Metro Final Effluent	Treatment Plant	HRFS Proiect	Composite	2703099 BOD5	ma/L	7	N	Split with S&W
3/15/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2703099 CBOD5	ma/L	4	N	Split with S&W
3/16/2007	630	Metro By-Pass Event #10	Treatment Plant	, 	Composite	2703187 CBOD5	mg/L	45	Ν	Composite consists of 6 grabs.
3/16/2007	789	Metro Final Effluent	Treatment Plant	HRFS Proiect	Composite	2703130 CBOD5	ma/L	6	Ν	
3/20/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2703289 BOD5	ma/L	26	N	
3/26/2007	630	Metro By-Pass Event #15	Treatment Plant		Composite	2703489 CBOD5	mg/L	25	Ν	Composite consists of 6 grabs.
3/26/2007	630	Metro By-Pass Event #15	Treatment Plant		Composite	2703489 BOD5	mg/L	47	N	Composite consists of 6 grabs.
3/26/2007	789	Metro Final Effluent	Treatment Plant	HRFS Proiect	Composite	2703457 BOD5	ma/L	4	N	
3/26/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2703457 CBOD5	ma/L	<2	N	
3/28/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2703539 NH3-N	mg/L	0.52	N	
3/28/2007	794	Crk-Bloody Brk @	Onondaga Creeks	High Flow	Grab	2703586 Pb	mg/L	<0.0020	Ν	Concentration procedure used for some
		Onondaga Lake Parkway	5	0			0			metals.
4/3/2007	789	Crk-Metro Effluent	Onondaga Creeks		Grab	2703752 Ni	mg/L	<0.0038	N	Concentration procedure used for some metals. BOD:Incubator temperature is outside of acceptable limits.
4/3/2007	789	Crk-Metro Effluent	Onondaga Creeks		Grab	2703752 Zn	mg/L	0.0148	N	Concentration procedure used for some metals. BOD:Incubator temperature is outside of acceptable limits.
4/3/2007	911	Crk-Harbor Brook @ Velasko Road	Onondaga Creeks		Grab	2703750 TIC	mg/L	67.6	N	Concentration procedure used for some metals. BOD:Incubator temperature is outside of acceptable limits.
4/10/2007	935	Lake Lower Water Layer North	Onondaga Lake		Grab	2703997 Pb	mg/L	<0.0020	Ν	Concentration procedure used for some metals.
4/19/2007	630	Metro By-Pass Event #26	Treatment Plant		Composite	2704440 BOD5	mg/L	61	Ν	Consists of 4 grabs
4/19/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2704351 BOD5	mg/L	5	N	
4/22/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2704405 CBOD5	mg/L	3	Ν	
4/24/2007	918	Lake 0m South	Onondaga Lake	•	Grab	2704479 DO-field	mg/L	10.61	Ν	
4/24/2007	919	Lake 3m South	Onondaga Lake		Grab	2704480 DO-field	mg/L	11.55	N	
4/24/2007	920	Lake 6m South	Onondaga Lake		Grab	2704481 DO-field	mg/L	8.78	N	
4/24/2007	921	Lake 9m South	Onondaga Lake		Grab	2704482 DO-field	mg/L	9.78	N	
4/24/2007	922	Lake 12m South	Onondaga Lake		Grab	2704483 DO-field	mg/L	11.31	N	Actual field measurement taken at depth of 11.9
4/24/2007	923	Lake 15m South	Onondaga Lake		Grab	2704484 DO-field	mg/L	10.67	N	
4/24/2007	924	Lake 18m South	Onondaga Lake		Grab	2704485 DO-field	mg/L	8.39	N	
4/25/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2704574 CBOD5	mg/L	<2	N	

					LAB_					
START_	IND_				SAMPLE_	SAMPLE_			LAB_	
DATE	CODE	SOURCE	CATEGORY	STUDY	ТҮРЕ	NO Parameter	Units	SRESULT	COMMENTS	REMARK_CODE
4/25/2007	789	Metro Final Effluent-	Quality Control	HRFS Project	Composite	2704576 CBOD5	mg/L	2	N	Sample is Duplicate of #2704574
		Duplicate	<u></u>							
4/29/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2704659 BOD5	mg/L	4	N	
5/3/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2704874 CBOD5	mg/L	2	N	
5/4/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2704911 BOD5	mg/L	3	<u>N</u>	
5/5/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2704924 CBOD5	mg/L	2	<u>N</u>	
5/9/2007	789		Preatment Plant	HRFS Project	Composite	2705062 BOD5	mg/L	3	N	Complete of #2705002
5/9/2007	109	Nietro Enituent -	Quality Control		Composite	2705086 BOD5	mg/L	3	IN	Sample is Duplicate of #2705062
5/12/2007	780	Motro Final Effluent	Trootmont Plant	HRES Project	Composito	2705185 CROD5	ma/l	2	N	
5/12/2007	709	Metro Final Effluent	Treatment Plant		Composite	2705185 CBOD5	mg/L	2	N	split sample. TDS blank corrected
5/14/2007	780	Crk Motro Effluent	Opondaga Crooks	HRFS Flojeci	Grab	2705247 BOD5	mg/L	-2	N	TDS black corrected
5/15/2007	203	Crk Opondaga Crook	Onondaga Crooks		Grab	2705267 BOD5	mg/L	~2	N	TDS-blank corrected
5/15/2007	002	Kirknatrick	Ononuaya Creeks		Grab	2705207 8085	ilig/L	~2	IN	TDS-blank corrected.
5/15/2007	888	Crk-Blank Dunker	Quality Control		Grah	2705265 BOD5	ma/l	<2	N	Turbidity: Blanks taken before DI system
5/15/2007	000	Churn (Crow B)			Grab	2703203 0003	ilig/L	~2		change TDS-blank corrected ALK-T
										initial nH is 9.80
5/15/2007	902	Crk-Harbour Brook	Onondaga Creeks		Grah	2705266 BOD5	ma/l	<2	N	TDS-blank corrected
0/10/2001	002	Hiawatha	Chondaga Creeks		Club	2100200 0000	iiig/E	-2		
5/15/2007	903	Crk-Allied Fast Flume-	Onondaga Creeks		Grab	2705273 BOD5	ma/l	6	N	TDS-blank corrected
0/10/2001		Over Weir	enendagu ereene		0.00			Ū.		
5/15/2007	904	Crk-Tributary 5a @	Onondaga Creeks		Grab	2705272 BOD5	mg/L	<2	N	TDS-blank corrected.
		State Fair Blvd	-				5			
5/15/2007	905	Crk-Nine Mile Creek	Onondaga Creeks		Grab	2705271 BOD5	mg/L	<2	N	Split with USGS #2705282. TDS-blank
		@ Lakeland Rt 48	-				-			corrected.
5/15/2007	908	Crk-Ley Creek @	Quality Control		Grab	2705279 BOD5	mg/L	<2	N	Sample is Duplicate of #2705268. TDS-
		Park Street -								blank corrected.
		Duplicate								
5/15/2007	908	Crk-Ley Creek @	Onondaga Creeks		Grab	2705268 BOD5	mg/L	<2	N	TDS-blank corrected.
		Park Street								
5/15/2007	910	Crk-Onondaga Creek	Onondaga Creeks		Grab	2705275 BOD5	mg/L	<2	N	Split with USGS #2705281. TDS-blank
		@ Dorwin Ave.								corrected.
5/15/2007	911	Crk-Harbor Brook @	Onondaga Creeks		Grab	2705274 BOD5	mg/L	<2	N	TDS-blank corrected.
		Velasko Road								
5/15/2007	990	Crk-Blank Churn	Quality Control		Grab	2705264 BOD5	mg/L	<2	N	Turbidity:Blanks taken before DI system
E/4E/0007	1000	(Crew A)	Onendere Creeke		Orah	2705200 0005		~0	NI	change. IDS-blank corrected.
5/15/2007	1906	Crk-Onondaga Lake	Unondaga Creeks		Grab	2705269 BOD5	mg/L	<2	IN	TDS-blank corrected.
E/4E/0007	1007	Outlet 2 ft.	Onendere Creeke		Orah	2705270 0005		~0	NI	TDC blank compated
5/15/2007	1907	Crk-Onondaga Lake	Unondaga Creeks		Grab	2705270 BOD5	mg/L	<2	IN	TDS-blank corrected.
5/15/2007	1020	Crk Opendage Creek	Onondogo Crooko		Croh	2705279 0005	ma/l	-0	NI	TDS blank corrected
5/15/2007	1929	Adams Street	Ununuaga Creeks		Grab	2109210 0009	ilig/L	<2	IN	
5/17/2007	780	Metro Final Effluent	Treatment Plant	HRES Project	Composite	2705415 TKN	ma/l	1 28	N	
5/18/2007	789	Metro Final Effluent	Treatment Plant	HRES Project	Composite	2705445 TKN	ma/l	1 15	N	
5/19/2007	780	Metro Final Effluent	Treatment Plant	HRES Project	Composite	2705448 BOD5	ma/l	2	N	
0/10/2007	100		incathent i lant		Joinposite			۷	۲۹.	

OTADT										
START_		SOURCE	CATECODY	CTUDY	SAMPLE_	SAMPLE_	Deremeter	Unito	edeelii T	LAB_ COMMENTS DEMARK CODE
DATE	700	SOURCE			Composite	0705440	Parameter	Units	SRESULI	COMMENTS REMARK_CODE
5/19/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2705448	CBOD5	mg/L	<2	N
5/19/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2705448		mg/L	1.20	N
5/20/2007	709	Metro Final Effluent	Treatment Plant		Composite	2705452		mg/L	0.71	IN N
5/20/2007	709	Metro Final Effluent	Treatment Plant	HRFS Ploject	Composite	2705511		mg/L	1.04	N
5/21/2007	709	Metro Final Effluent	Treatment Plant		Composite	2705511		mg/L	1.04	N
5/21/2007	789	Metro Final Emuent	Treatment Plant	HRFS Project	Composite	2705511	PD	mg/L	<0.0020	N
5/21/2007	910	Crk-Onondaga Creek	Unondaga Creeks	wildiand RTF Dewater	Grab	2705493	IKN	mg/L	0.28	N
E/01/0007	000	Crk Dionk Churn	Quality Control	Midland DTC Downton	Orah	2705402			<0 1E	Ν
5/21/2007	990			wildiand RTF Dewaler	Grab	2705492	INN	mg/L	<0.15	IN
E/00/007	017		Quality Control		Croh	0705544			<0.15	Ν
5/22/2007	917				Grab	2705541	INN	mg/L	<0.15	IN
E/00/0007	017	(Pump)	Quality Control		Orah	0705544			<0 1E	Ν
5/22/2007	917		Quality Control		Grab	2705541	IKN-F	mg/L	<0.15	N
F/00/0007	010	(Pump)			Orah	0705540			0 50	N
5/22/2007	918	Lake om South	Onondaga Lake		Grab	2705542		mg/∟	0.53	N
5/22/2007	918	Lake Um South	Onondaga Lake		Grab	2705542		mg/L	0.34	N
5/22/2007	919	Lake 3m South	Onondaga Lake		Grab	2705543		mg/L	0.41	N
5/22/2007	919	Lake 3m South	Onondaga Lake		Grab	2705543	IKN	mg/L	0.6	N
5/22/2007	920	Lake 6m South	Onondaga Lake		Grab	2705544		mg/L	0.61	N
5/22/2007	920	Lake 6m South	Onondaga Lake		Grab	2705544	IKN-F	mg/L	0.41	<u>N</u>
5/28/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2705726	CBOD2	mg/L	<2	N
5/28/2007	789	Metro Final Effluent	Treatment Plant	HRES Project	Composite	2705726	Ca	mg/L	<0.00080	N
5/29/2007	789	Metro Final Effluent	Treatment Plant	HRES Project	Composite	2705740	CBOD5	mg/L	<2	N
5/29/2007	789	Metro Final Effluent	Treatment Plant	HRES Project	Composite	2705740	BOD5	mg/L	2	N
5/30/2007	/89	Crk-Metro Effluent	Onondaga Creeks	Routine (Biweekly)	Grab	2/05/8/	BOD5	mg/L	<2	N
5/30/2007	882	Crk-Onondaga Creek	Onondaga Creeks	Routine (Biweekly)	Grab	2705778	BOD5	mg/L	<2	Ν
		@ Kirkpatrick								
5/30/2007	888	Crk-Blank Dunker	Quality Control	Routine (Biweekly)	Grab	2705776	BOD5	mg/L	<2	Ν
E /00 /0007		Churn (Crew B)	<u> </u>	D	~ ·		0005			
5/30/2007	902	Crk-Harbour Brook @	Onondaga Creeks	Routine (Biweekly)	Grab	2705777	BOD5	mg/L	<2	Ν
		Hiawatha								
5/30/2007	903	Crk-Allied East Flume-	- Onondaga Creeks	Routine (Biweekly)	Grab	2705784	BOD5	mg/L	3	Ν
		Over Weir								
5/30/2007	904	Crk-Tributary 5a @	Onondaga Creeks	Routine (Biweekly)	Grab	2705783	BOD5	mg/L	2	Ν
		State Fair Blvd								
5/30/2007	905	Crk-Nine Mile Creek	Onondaga Creeks	Routine (Biweekly)	Grab	2705782	BOD5	mg/L	<2	Ν
		@ Lakeland Rt 48								
5/30/2007	908	Crk-Ley Creek @	Onondaga Creeks	Routine (Biweekly)	Grab	2705779	BOD5	mg/L	<2	Ν
		Park Street								
5/30/2007	910	Crk-Onondaga Creek	Onondaga Creeks	Routine (Biweekly)	Grab	2705786	BOD5	mg/L	<2	Ν
		@ Dorwin Ave.								
5/30/2007	911	Crk-Harbor Brook @	Onondaga Creeks	Routine (Biweekly)	Grab	2705785	BOD5	mg/L	<2	N
		Velasko Road								
5/30/2007	990	Crk-Blank Churn	Quality Control	Routine (Biweekly)	Grab	2705775	BOD5	mg/L	<2	Ν
		(Crew A)								

					LAB_						
START_	IND_				SAMPLE_	SAMPLE_				LAB_	
DATE	CODE	SOURCE	CATEGORY	STUDY	TYPE	NO	Parameter	Units	SRESULT	COMMENTS	REMARK_CODE
5/30/2007	1906	Crk-Onondaga Lake	Onondaga Creeks	Routine (Biweekly)	Grab	2705780	BOD5	mg/L	<2	N	
5/30/2007	1907	Crk-Onondaga Lake	Onondaga Creeks	Routine (Biweekly)	Grab	2705781	BOD5	mg/L	<2	N	
5/30/2007	1907	Crk-Onondaga Lake	Quality Control	Routine (Biweekly)	Grab	2705790	BOD5	mg/L	<2	Ν	Sample is Duplicate of #2705781
		Duplicate									
5/30/2007	1939	Crk-Onondaga Creek	Onondaga Creeks	Routine (Biweekly)	Grab	2705789	BOD5	mg/L	<2	N	
6/3/2007	789	Metro Final Effluent	Treatment Plant	HRES Project	Composite	2705855	CBOD5	ma/l	3	N	
6/12/2007	789	Metro Final Effluent	Treatment Plant	Excursion	Composite	2706331	CBOD5	ma/l	<2	N	NH3:Reprepped 6/15/07
6/14/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2706445	CBOD5	ma/L	2	N	TKN:Reprepped 6/20/07
6/16/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2706495	BOD5	ma/L	4	N	NH3:Reprepped 6/21/07
7/10/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2707439	BOD5	ma/L	4	N	
7/11/2007	630	Metro By-Pass Event	Treatment Plant		Grab	2706868	BOD5	ma/L	90	N	1 grab only, composite parameters added.
7/44/0007	700	#36	The stars and Direct		Ormanita	0707505	DODE	····g· =			· 3
7/11/2007	789	Metro Final Effluent	Treatment Plant	HRES Project	Composite	2707505	BOD5	mg/L	4	N	
//12/2007	1025	Composite	River Monitoring	Monthly River	Composite	2707576	BOD2	mg/L	<2	N	
7/23/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2707938	TKN	mg/L	1.17	Ν	TKN:Reprepped 08/09/07 from PC bottle
8/9/2007	1059	River Lake Outlet #1 Bottom	River Monitoring	Monthly River	Grab	2707923	NH3-N	mg/L	0.12	Ν	Split Sample
8/23/2007	630	Metro By-Pass Event #39	Treatment Plant		Grab	2707984	BOD5	mg/L	96	Ν	One grab only.
8/23/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2709192	BOD5	mg/L	4	Ν	
8/28/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2709417	BOD5	mg/L	3	Ν	Metals added.
8/28/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2709417	Pb	mg/L	<0.00200	N	Metals added.
8/28/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2709417	TSS	mg/L	3	N	Metals added.
9/2/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2709646	CBOD5	mg/L	<2	N	
9/5/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2709819	BOD5	mg/L	5	Ν	NH3:Reprepped 9/17/07
9/6/2007	789	Crk-Metro Effluent	Onondaga Creeks	Routine (Biweekly)	Grab	2709766	BOD5	mg/L	2	N	TDS: blank corrected.
9/6/2007	882	Crk-Onondaga Creek @ Kirkpatrick	Onondaga Creeks	Routine (Biweekly)	Grab	2709757	BOD5	mg/L	<2	Ν	TDS: blank corrected.
9/6/2007	888	Crk-Blank Dunker Churn (Crew B)	Quality Control	Routine (Biweekly)	Grab	2709755	BOD5	mg/L	<2	N	TDS: blank corrected.
9/6/2007	902	Crk-Harbour Brook @ Hiawatha-Duplicate	Quality Control	Routine (Biweekly)	Grab	2709770	BOD5	mg/L	<2	N	Duplicate of sample # 2709756
9/6/2007	902	Crk-Harbour Brook @ Hiawatha	Onondaga Creeks	Routine (Biweekly)	Grab	2709756	BOD5	mg/L	<2	Ν	TDS: blank corrected. SO4:Retested 9/17/07
9/6/2007	903	Crk-Allied East Flume- Over Weir	- Onondaga Creeks	Routine (Biweekly)	Grab	2709763	BOD5	mg/L	5	N	TDS: blank corrected.
9/6/2007	903	Crk-Allied East Flume- Over Weir	- Onondaga Creeks	Routine (Biweekly)	Grab	2709763	NO2	mg/L	0.43	N	TDS: blank corrected.

						0.000 F				
START_		COUDOE	0.175000	071101/	SAMPLE_	SAMPLE_				
DATE	CODE	SOURCE	CATEGORY	STUDY	ITPE	NO Parameter	Units	SRESULT	COMMENTS	REMARK_CODE
9/6/2007	904	Crk-Tributary 5a @ State Fair Blvd	Onondaga Creeks	Routine (Biweekly)	Grab	2709762 BOD5	mg/L	<2	N	TDS: blank corrected.
9/6/2007	905	Crk-Nine Mile Creek @ Lakeland Rt 48	Onondaga Creeks	Routine (Biweekly)	Grab	2709761 BOD5	mg/L	<2	N	TDS: blank corrected.
9/6/2007	908	Crk-Ley Creek @ Park Street	Onondaga Creeks	Routine (Biweekly)	Grab	2709758 BOD5	mg/L	<2	N	TDS: blank corrected.
9/6/2007	910	Crk-Onondaga Creek @ Dorwin Ave.	Onondaga Creeks	Routine (Biweekly)	Grab	2709765 BOD5	mg/L	<2	N	TDS: blank corrected.
9/6/2007	911	Crk-Harbor Brook @ Velasko Road	Onondaga Creeks	Routine (Biweekly)	Grab	2709764 BOD5	mg/L	<2	N	TDS: blank corrected.
9/6/2007	990	Crk-Blank Churn (Crew A)	Quality Control	Routine (Biweekly)	Grab	2709754 BOD5	mg/L	<2	N	TDS: blank corrected. TKN:Reprepped 9/17/07
9/6/2007	1906	Crk-Onondaga Lake Outlet 2 ft.	Onondaga Creeks	Routine (Biweekly)	Grab	2709759 BOD5	mg/L	4	N	TDS: blank corrected.
9/6/2007	1907	Crk-Onondaga Lake Outlet 12 ft.	Onondaga Creeks	Routine (Biweekly)	Grab	2709760 BOD5	mg/L	<2	N	TDS: blank corrected.
9/6/2007	1939	Crk-Onondaga Creek @ Adams Street	Onondaga Creeks	Routine (Biweekly)	Grab	2709769 BOD5	mg/L	<2	N	TDS: blank corrected.
9/8/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2709973 BOD5	mg/L	3	Ν	
9/8/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2709973 CBOD5	mg/L	2	Ν	
9/10/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2710037 Cd	mg/L	<0.0008	Ν	
9/10/2007	910	Crk-Onondaga Creek @ Dorwin Ave.	Onondaga Creeks	Midland RTF Dewater	Grab	2710013 TDS	mg/L	906	Ν	
9/11/2007	918	Lake 0m South	Onondaga Lake	Routine (Biweekly)	Grab	2710055 TDS	mg/L	1126	Ν	Actual field measurement taken at depth of 0.1
9/11/2007	920	Lake 6m South- Duplicate	Quality Control	Routine (Biweekly)	Grab	2710058 TDS	mg/L	1202	N	Sample is duplicate of #2710057 TS: blank corrected.
9/11/2007	924	Lake 18m South	Onondaga Lake	Routine (Biweekly)	Grab	2710062 TDS	mg/L	1066	N	Actual field measurement taken at depth of 18.1
9/15/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2710271 CBOD5	mg/L	<2	N	
9/17/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2710343 Pb	mg/L	<0.002	N	
9/17/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2710343 As	mg/L	<0.00200	N	
9/17/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2710343 Cd	mg/L	<0.0008	N	
9/19/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2710462 BOD5	mg/L	4	N	
9/19/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2710462 CBOD5	mg/L	2	N	
9/19/2007	789	Metro Effluent - Duplicate	Quality Control		Composite	2710488 BOD5	mg/L	3	N	Sample is duplicate of #2710462
9/19/2007	789	Metro Effluent - Duplicate	Quality Control		Composite	2710488 CBOD5	mg/L	<2	N	Sample is duplicate of #2710462
9/20/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2710492 BOD5	mg/L	4	Ν	TP:Reprepped 9/26/07
9/21/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2710534 TKN	mg/L	1.07	Ν	
9/26/2007	611	Wetzel Rd Effluent	River Monitoring	Monthly River	Grab	2710628 TKN	mg/L	8.54	Ν	Spilt Sample
9/26/2007	616	Oak Orchard Effluent	River Monitoring	Monthly River	Grab	2710629 NO2	mg/L	2.43	Ν	Spilt Sample
9/27/2007	630	Metro By-Pass Event #42	Treatment Plant		Grab	2710099 CBOD5	mg/L	70	N	1 grab only.

					LAB_					
START_	IND_				SAMPLE_	SAMPLE_			LAB_	
DATE	CODE	SOURCE	CATEGORY	STUDY	TYPE	NO Parameter	Units	SRESULT	COMMENTS	REMARK_CODE
9/28/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2710902 CBOD5	mg/L	<2	Ν	
10/1/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2710978 BOD5	mg/L	3	N	Split sample.
10/2/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2711102 BOD5	mg/L	8	N	
10/2/2007	789	Crk-Metro Effluent	Onondaga Creeks	Quarterly	Grab	2711055 BOD5	mg/L	3	N	Concentration procedure used for some
			-	•			-			metals.
10/2/2007	882	Crk-Onondaga Creek	Onondaga Creeks	Quarterly	Grab	2711046 BOD5	mg/L	<2	N	Concentration procedure used for some
		@ Kirkpatrick	-				-			metals.
10/2/2007	888	Crk-Blank Dunker	Quality Control	Quarterly	Grab	2711044 BOD5	mg/L	<2	N	Concentration procedure used for some
		Churn (Crew B)								metals.
10/2/2007	902	Crk-Harbour Brook @	Onondaga Creeks	Quarterly	Grab	2711045 BOD5	mg/L	<2	N	Concentration procedure used for some
		Hiawatha								metals.
10/2/2007	903	Crk-Allied East Flume-	Onondaga Creeks	Quarterly	Grab	2711052 BOD5	mg/L	8	N	Concentration procedure used for some
		Over Weir								metals.
10/2/2007	904	Crk-Tributary 5a @	Onondaga Creeks	Quarterly	Grab	2711051 BOD5	mg/L	2	N	Concentration procedure used for some
		State Fair Blvd	-	•			-			metals.
10/2/2007	905	Crk-Nine Mile Creek	Onondaga Creeks	Quarterly	Grab	2711050 BOD5	mg/L	<2	N	Concentration procedure used for some
		@ Lakeland Rt 48	-	•			-			metals.
10/2/2007	908	Crk-Ley Creek @	Onondaga Creeks	Quarterly	Grab	2711047 BOD5	mg/L	<2	N	Concentration procedure used for some
		Park Street	-				-			metals.
10/2/2007	910	Crk-Onondaga Creek	Onondaga Creeks	Quarterly	Grab	2711054 BOD5	mg/L	<2	N	Concentration procedure used for some
		@ Dorwin Ave.	-				-			metals.
10/2/2007	911	Crk-Harbor Brook @	Onondaga Creeks	Quarterly	Grab	2711053 BOD5	mg/L	<2	N	Concentration procedure used for some
		Velasko Road								metals.
10/2/2007	911	Crk-Harbor Brook @	Quality Control	Quarterly	Grab	2711064 BOD5	mg/L	<2	Ν	Sample is duplicate of
		Velasko Road -								#2711053.Concentration procedure used
		Duplicate								for some metals.
10/2/2007	911	Crk-Harbor Brook @	Quality Control	Quarterly	Grab	2711064 Cd	mg/L	<0.0008	N	Sample is duplicate of
		Velasko Road -								#2711053.Concentration procedure used
		Duplicate								for some metals.
10/2/2007	990	Crk-Blank Churn	Quality Control	Quarterly	Grab	2711043 BOD5	mg/L	<2	N	Concentration procedure used for some
		(Crew A)								metals.
10/2/2007	1906	Crk-Onondaga Lake	Onondaga Creeks	Quarterly	Grab	2711048 BOD5	mg/L	3	Ν	Concentration procedure used for some
		Outlet 2 ft.								metals.
10/2/2007	1907	Crk-Onondaga Lake	Onondaga Creeks	Quarterly	Grab	2711049 BOD5	mg/L	<2	N	Concentration procedure used for some
		Outlet 12 ft.								metals.
10/2/2007	1939	Crk-Onondaga Creek	Onondaga Creeks	Quarterly	Grab	2711065 BOD5	mg/L	<2	N	Concentration procedure used for some
		@ Adams Street	-				-			metals.
10/3/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2711159 BOD5	mg/L	5	N	
10/3/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2711159 CBOD5	mg/L	<2	Ν	
10/4/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2711215 BOD5	mg/L	3	N	
10/4/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2711215 CBOD5	mg/L	<2	N	
10/5/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2711267 BOD5	mg/L	3	N	
10/5/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2711267 CBOD5	mg/L	<2	N	
10/6/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2711273 CBOD5	mg/L	<2	N	
10/6/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2711273 BOD5	mg/L	3	Ν	

					LAB_					
START_	IND_				SAMPLE_	SAMPLE_				
DATE	CODE	SOURCE	CATEGORY	STUDY	TYPE	NO Parameter	Units	SRESULT	COMMENTS	REMARK_CODE
10/7/2007	630	Metro By-Pass Event #43	Treatment Plant		Grab	2711056 BOD5	mg/L	186	Ν	Grab 1; one grab only, composite parameters added
10/7/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2711279 BOD5	mg/L	4	Ν	
10/8/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2711332 BOD5	mg/L	4	Ν	
10/9/2007	916	Lake Equip. Blk	Quality Control	Quarterly	Grab	2711379 BOD5	mg/L	<2	N	Concentration procedure used for some
		(Dunker Churn)					Ū			metals.
10/9/2007	925	Lake Upper Mixed	Onondaga Lake	Quarterly	Grab	2711389 BOD5	mg/L	<2	N	Concentration procedure used for some
		Layer South								metals.
10/9/2007	925	Lake Upper Mixed	Quality Control	Quarterly	Grab	2711391 BOD5	mg/L	<2	N	Sample is duplicate of
		Layer South -								#2711389.Concentration procedure used
		Duplicate								for some metals.
10/9/2007	926	Lake Lower Water	Onondaga Lake	Quarterly	Grab	2711390 BOD5	mg/L	6	N	Concentration procedure used for some
		Layer South								metals.
10/9/2007	934	Lake Upper Mixed	Onondaga Lake	Quarterly	Grab	2711405 BOD5	mg/L	<2	N	Concentration procedure used for some
		Layer North								metals.
10/9/2007	934	Lake Upper Mixed	Quality Control	Quarterly	Grab	2711407 BOD5	mg/L	4	N	Sample is duplicate of
		Layer North -								#2711405.Concentration procedure used
		Duplicate								for some metals.
10/9/2007	935	Lake Lower Water	Onondaga Lake	Quarterly	Grab	2711406 BOD5	mg/L	4	N	Concentration procedure used for some
		Layer North								metals.
10/12/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2711561 BOD5	mg/L	4	N	
10/19/2007	630	Metro By-Pass Event	Treatment Plant		Grab	2711073 BOD5	mg/L	124	N	Grab 1; one grab only; composite
		#45								parameters added.
10/20/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2711861 BOD5	mg/L	4	N	
11/12/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2712708 TSS	mg/L	7	N	
11/14/2007	902	Crk-Harbour Brook @	Onondaga Creeks	Quarterly	Grab	2712732 Ca	mg/L	275	N	Concentration procedure used for some
		Hiawatha								metals.
11/27/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2713213 BOD5	mg/L	3	<u>N</u>	
11/27/2007	794	Crk-Bloody Brk @	Onondaga Creeks	High Flow	Grab	2713289 BOD5	mg/L	<2	N	Concentration procedure used for some
		Onondaga Lake								metals.
		Parkway								
11/27/2007	796	Crk-Sawmill Crk @	Onondaga Creeks	High Flow	Grab	2713290 BOD5	mg/L	<2	N	Concentration procedure used for some
		Onondaga Lake Rec.								metals.
		Trail								
11/27/2007	903	Crk-Allied East Flume-	- Onondaga Creeks	High Flow	Grab	2713149 BOD5	mg/L	3	N	
		Over Weir								
11/27/2007	905	Crk-Nine Mile Creek	Onondaga Creeks	High Flow	Grab	2713147 BOD5	mg/L	4	N	ALK-T exhibited buffering capacity that
		@ Lakeland Rt 48								precludes obtaining a definitive endpoint.
12/1/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2713372 BOD5	mg/L	4	N	
12/3/2007	630	Metro By-Pass Event	Treatment Plant		Composite	2713049 BOD5	mg/L	85	N	Composite consists of 5 grabs.
		#50								
12/3/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2713424 BOD5	mg/L	4	<u>N</u>	Split sample
12/3/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2713424 Pb	mg/L	<0.002	N	Split sample
12/4/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2713473 CBOD5	mg/L	<2	N	

START	IND				LAB_ SAMPLE	SAMPLE				LAB	
DATE	CODE	SOURCE	CATEGORY	STUDY	TYPE	NO	Parameter	Units	SRESULT C	OMMENTS	REMARK_CODE
12/7/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2713599	BOD5	mg/L	3	Ν	
12/8/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2713604	CBOD5	mg/L	<2	Ν	
12/8/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2713604	I BOD5	mg/L	2	N	
12/10/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2713640) BOD5	mg/L	6	N	
12/11/2007	630	Metro By-Pass Event #51	Treatment Plant		Composite	2713056	BOD5	mg/L	44	N	composite consists of 5 grabs
12/11/2007	630	Metro By-Pass Event #51	Treatment Plant		Composite	2713056	CBOD5	mg/L	35	N	composite consists of 5 grabs
12/11/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2713673	BOD5	mg/L	6	N	
12/12/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2713702	2 BOD5	mg/L	4	N	
12/12/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2713702	2 CBOD5	mg/L	2	N	
12/12/2007	789	Metro Effluent - Duplicate	Quality Control		Composite	2713733	BOD5	mg/L	3	N	Sample is duplicate of #2713702
12/12/2007	789	Metro Effluent - Duplicate	Quality Control		Composite	2713733	3 CBOD5	mg/L	3	N	Sample is duplicate of #2713702
12/13/2007	916	Lake Equip. Blk (Dunker Churn)	Quality Control	Routine (Biweekly)	Grab	2713451	BOD5	mg/L	<2	Ν	Chloride: result verified.
12/13/2007	925	Lake Upper Mixed Layer South - Duplicate	Quality Control	Routine (Biweekly)	Grab	2713463	BOD5	mg/L	<2	N	Sample is duplicate of #2713461
12/13/2007	925	Lake Upper Mixed Layer South	Onondaga Lake	Routine (Biweekly)	Grab	2713461	BOD5	mg/L	<2	N	
12/13/2007	926	Lake Lower Water Layer South	Onondaga Lake	Routine (Biweekly)	Grab	2713462	2 BOD5	mg/L	<2	N	
12/26/2007	902	Crk-Harbour Brook @ Hiawatha	Onondaga Creeks	Routine(Biweekly)	Grab	2714088	3 NO3	mg/L	1.91	N	
12/29/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2714186	CBOD5	mg/L	3	Ν	
12/29/2007	789	Metro Final Effluent	Treatment Plant	HRFS Project	Composite	2714186	BOD5	mg/L	5	N	
2007 Data Qualified "B" = The contract laboratory Brooks Rand qualified with "B" mercury analytical results that were detected between the MDL and the PQL. Measured result is reported and considered an estimate.

START_	IND_				LAB_ SAMPLE_	SAMPLE_				LAB_	
DATE	CODE	SOURCE	CATEGORY	STUDY	ТҮРЕ	NO	Parameter	Units	SRESULT (COMMENTS	REMARK_CODE
4/10/2007	919 l	_ake 3m South	Onondaga Lake		Grab	2704006	Hg-methyl	ng/l	0.047	В	Seals on teflon dunker leaked during collection KOB 5/11/07
4/10/2007	928 l	_ake 3m North	Onondaga Lake		Grab	2704010	Hg-methyl	ng/l	0.04	В	Seals on teflon dunker leaked during collection KOB 5/11/07
4/10/2007	933 l	_ake 18m North	Onondaga Lake		Grab	2704011	Hg-methyl	ng/l	0.036	В	Seals on teflon dunker leaked during collection KOB 5/11/07
6/5/2007	924 l	_ake 18m South	Quality Control		Grab	2706044	Hg-methyl	ng/l	0.036	В	Sample is duplicate of #2706043
6/5/2007	924 l	_ake 18m South	Onondaga Lake		Grab	2706043	Hg-methyl	ng/l	0.036	В	
6/5/2007	928 l	_ake 3m North	Onondaga Lake		Grab	2706045	Hg-methyl	ng/l	0.074	В	
6/5/2007	933 I	.ake 18m North	Onondaga Lake		Grab	2706046	Hg-methyl	ng/l	0.03	В	Note: bottles labeled field were used for sample; one field bottle not double bagged, used inner bag of reagent water.

Note: MDL = method detection limit; PQL = practical quantitation limit

2007 Data Qualified "U" = The laboratories qualified results that were not detected above the method detection limit with "U".

					LAB_						
START_	IND_				SAMPLE_	SAMPLE_				LAB_	
DATE	CODE	SOURCE	CATEGORY	STUDY	ТҮРЕ	NO F	Parameter	Units	SRESULT C	COMMENTS	REMARK_CODE
4/10/2007	780	Lake Field Blk (Teflon	Quality Control		Grab	2704005 H	-Ig-methyl	ng/l	0.02	U	Seals on teflon dunker leaked during
4/40/0007	045	Dunker)	Quality Quatast		Quel	0704004	Les une etter d		0.00		collection KOB 5/11/07
4/10/2007	915	Lake Equip. Bik	Quality Control		Grab	2704004 F	-Ig-metnyi	ng/i	0.02	U	Seals on terion dunker leaked during
		(Tellon Dunker-Glass)									
4/10/2007	924	Lake 18m South -	Quality Control		Grab	2704009 H	-Ig-methyl	ng/l	0.115	U	Sample is Duplicate of #2704008 Seals
		Duplicate					0	0			on teflon dunker leaked during collection
											KOB 5/11/07
4/10/2007	924	Lake 18m South	Onondaga Lake		Grab	2704008 H	-Ig-methyl	ng/l	0.098	U	Seals on teflon dunker leaked during
6/5/2007	700	Laka Field Plk (Taflan	Quality Control		Crah	2706041	la mothul	ng/l	0.02	11	collection KOB 5/11/07
0/5/2007	760	Dunker)			Grab	2700041 F	пд-шешуі	ng/i	0.02	0	
6/5/2007	780	Lake Field Blk (Teflon	Quality Control		Grab	2706041 H	Ha	na/l	0.15	U	
		Dunker)					5	5			
6/5/2007	915	Lake Equip. Blk	Quality Control		Grab	2706040 H	-Ig-methyl	ng/l	0.02	U	
		(Teflon Dunker-Glass)									
6/5/2007	015	Laka Equip . Plk	Quality Control		Croh	2706040	Ja	ng/l	0.15		
0/5/2007	910	(Teflon Dunker-Glass)			Grab	2700040 F	чy	ng/i	0.15	0	
7/12/2007	789	Metro Final Effluent	River Monitoring	Monthly River	Grab	2706778 F	POC	mg/L	<0.0620	U	Split Sample
											TKN:Reprepped 07/24/07
10/24/2007	780	Lake Field Blk (Teflon	Quality Control		Grab	2712074 H	-Ig-methyl	ng/l	<0.05	U	
10/04/0007	700	Dunker)	Quality Control		Orah	0740074 1	le.		-0.00		
10/24/2007	100				Grab	2/120/4 6	чy	ng/i	<0.96	U	
10/24/2007	915	Lake Equip Blk	Quality Control		Grab	2712073 H	-la-methyl	na/l	<0.05	U	
	010	(Teflon Dunker-Glass)							0.00	-	
		. ,									

APPENDIX 3: ASSESSING COMMUNITY STRUCTURE OF LOWER TROPHIC LEVELS IN ONONDAGA LAKE, NEW YORK IN 2007

Assessing Community Structure of Lower Trophic Levels In Onondaga Lake, New York in 2007

2007 Annual Report

Prepared by

Edward L. Mills, Sarah H. McConnachie, Jonathan W. Swan

Department of Natural Resources Cornell Biological Field Station 900 Shackelton Point Rd. Bridgeport, NY 13030

Introduction

Onondaga Lake is a well-studied urban lake in which detailed limnological investigations have documented water quality changes over the past several decades (Murphy 1978; Effler 1996; Stearns and Wheler 1996, Stearns and Wheler 1997). The lake (20.5 m maximum depth) is a highly eutrophic body of water located at the northern edge of the city of Syracuse in central New York State. Onondaga Lake is a relatively steep sided lake with two basins - a northern one at 18 m in depth and a southern one at 19 m in depth - that are separated by a slightly shallower 17 m deep "saddle". Since the 1960's, summer blooms of planktonic algae have been associated with the hyper-eutrophic conditions of the lake. Recent studies have shown that overall phytoplankton abundance has been low compared to values prior to 1988, and that there has been a change in the composition of the algal community (Stearns and Wheler 1996). The contributions to the phytoplankton community made by cyanobacteria, commonly known as blue green algae, decreased in the mid-1970's, associated with a state-wide ban of phosphates in detergents (Effler 1996). Prior to the phosphorus ban (1968 - 1971), Aphanizomenon flos-aquae formed dense summer blooms in Onondaga Lake. From 1972 - 1989, A. flos-aquae was only sporadically detected, but made a substantial reappearance in the 1990s (Effler 1996). A. flos-aquae typically dominated cyanobacteria blooms from 1996 through 1998, although the duration of the blooms declined each year (Mills and Keats 1998). Interestingly, in 1999 the dominant cyanobacteria in algal blooms shifted to Oscillatoria limnetica (biomass) and Microcystis aeruginosa (density) (Mills et al. 1999). In more recent years (2000 – 2003) Aphanizomenon flos-aquae was again the most prevalent

cyanophyte in terms of density and biomass. In 2002 and 2003, *A. flos-aquae* remained the dominant species in terms of biomass (2002) and density (2003). However, *Oscillatoria amphibia* reached the greatest density for cyanophytes in 2002 and *Aphanizomenon issatschenkoi* the greatest biomass in 2003. Cyanobacterial blooms were reduced in 2005 compared to 2003 and 2004. In 2006 cyanobacterial blooms increased in biomass (although still far less than 2002-2004 values) while decreasing in density. 2006 cyanobacterial blooms were dominated by *Aphanizomenon issatschenkoi* (density) and *Plankothrix* (= *Oscillatoria*) *agardhii* (biomass). In 2007, cyanobacterial blooms decreased once again in biomass and density. Blooms in 2007 were dominated by *Synechocystis* sp. (density) and *Aphanizomenon issatschenkoi* (biomass).

The composition of the zooplankton community has been documented since the late 1960's (Waterman 1971; Auer et al. 1990; Siegfried et al. 1994; Makarewicz et al. 1995; Hairston et al. 1999). *Daphnia* were present in 1969, very rare in 1978, absent 1979-1981 and appeared again in 1986-1989. The exotic *Daphnia exilis* invaded the lake in the 1920's and 1930's and persisted until the late 1970's. *Daphnia exilis* has not been observed in Onondaga Lake since the early 1980's (Hairston et al. 1999). The introduction of this species, its successful colonization, and subsequent disappearance corresponded with distinct events in the history of industrial activity in Onondaga Lake. The return of large numbers of *Daphnia pulicaria* and *Daphnia mendotae* in the late 1980's has been accompanied by substantial increases in water clarity (Auer et al. 1990) in accordance with the "trophic cascade" hypothesis (e.g. Carpenter and Kitchell 1993; Gulati et al. 1990). After initial appearance in 2000, the exotic zooplankter *Cercopagis*

pengoi has again been detected in Onondaga Lake in 2003 through 2007. This Ponto-Caspian invader has been established in Lake Ontario since 1998 and has subsequently spread to several of the Finger Lakes (Makarewicz et al. 2001). Other temporal patterns in Onondaga Lake zooplankton have been the continued presence of the cladocerans *Ceriodaphnia quadrangula* and *Bosmina longirostris*, the copepods *Acanthocyclops vernalis* and *Diacyclops thomasi* and a variety of rotifers. A few zooplankton species have only appeared recently: *Diaphanosoma birgei* and *Chydorus sphaericus*. *Diaptomus sicilis* had appeared in the mid-1990's, but has only been seen in one sample since 2003 (Siegfried et al. 1994). This has been accompanied by a decline of all diaptomids over the same time period.

The objective of this report is to present data on phytoplankton community structure, biomass, and abundance in Onondaga Lake in 2007 and to make comparisons with the data from previous years. We also present 2007 data on species composition, biomass, and size structure of the crustacean zooplankton community.

Methods

Phytoplankton samples were collected January through December in 2007 and preserved in Lugol's Iodine solution. The phytoplankton sample for each date and sampling site is comprised of an integrated sample of the upper mixed layer (UML) of the water column, The UML depth is the same depth as the epilimnion depth when a thermocline is present, or is a default of six meters when there is no thermocline. All integrated water samples for phytoplankton analysis were collected using a 2 cm i.d. Tygon tube.

Phytoplankton samples were processed by Ann St. Amand at PhycoTech, Inc. (620 Broad St., Ste. 100, St. Joseph, MI 49085). Raw water samples were run through filtration towers and the filters from these towers were then made into slides. The method used in counting the phytoplankton depended on the relative importance of soft algae and diatoms in the samples as well as alga size. Phytoplankton were identified to species when possible and density and biovolume estimates were made. Individual phytoplankton species were converted to biomass, based on estimates of biovolume and density. In this study, biomass is reported in $\mu g/L$. PhycoTech reported biomass as total biovolume ($\mu m^3/mL$). Total biovolume ($\mu m^3/mL$) was converted to total biomass ($\mu g/L$) by multiplying total biovolume by 1 x 10⁻³.

Calculations of zooplankton density, species composition, size structure, and biomass were based on vertical hauls using a 0.50 m diameter net with 80 micron nylon mesh. Vertical tows were taken from the UML when the lake was thermally stratified or from a depth of three or six meters when no thermocline was present. In addition, a second sample was collected with a vertical tow to a depth of 15 meters. Zooplankton samples were collected at the South Deep site throughout the year and at the North Deep site on several dates. Samples were preserved in 190-proof ethyl alcohol, this preservative comprising at least 70% of each final sample volume. Flowmeter readings were taken on the zooplankton net tows to determine the volume of water strained in each haul.

However, in 2007 the flowmeter was thought to be malfunctioning, so the length of tow line was used to determine the volume of water strained in each haul.

A compound microscope (40X-200X magnification) was used to identify zooplankton to species when possible and a dry weight conversion was used to estimate biomass. For each sample, one to three 1-mL subsamples were withdrawn with a Henson-Stemple pipette from a known volume of sample, until at least 100 individual zooplankton were counted. Zooplankton length was measured using a compound scope equipped with a drawing tube and a digitizing pad interfaced with a computer.

Results and Discussion

Phytoplankton Community Structure. The raw phytoplankton data from the analyses done by PhycoTech, Inc. for 2007 is presented in Appendix A. The phytoplankton community of Onondaga Lake is comprised of Bacillariophyta, Chlorophyta, Chlorophyta, Cryptophyta, Cyanophyta, Pyrrhophyta, Euglenophyta, and "miscellaneous microflagellates". Euglenophyta and Xanthophyta were present briefly in June 2002 but Xanthophyta has not been seen since 2002, and Euglenophyta was absent in 2003 and 2004 but present briefly in the spring of 2005, 2006 and 2007. The two dominant cyanophytes found in the 2007 algal blooms were *Synechocystis* sp. (density) and *Aphanizomenon issatschenkoi* (biomass). The most frequently occurring algal species of other taxonomic groups, determined by the highest average abundance and/or biomass

were: *Stephanodiscus parvus* (density) and *Asterionella fermosa* (biomass) (Bacillariophyta); Unknown species from the Chlorococcaceae family (density and biomass) (Chlorophyta); *Erkenia subaequiciliata* (density and biomass) (Chrysophyta); *Rhodomonas minuta* (density) and *Cryptomonas erosa* (biomass) (Cryptophyta); and a species from the genus Gymnodinium (density) and *Peridinium umbonatum* (biomass) (Pyrrhophyta).

Phytoplankton Abundance and Biomass. The abundance and biomass of phytoplankton in Onondaga Lake for 2007 are summarized in Appendix B. Seasonal trends in abundance of algal groups in 2006 and 2007 are presented in Figures 1 and 2, respectively. In 2007, algal abundance peaked in early July (dominated by chlororphytes). Algal abundance exhibited lesser peaks in May (dominated by chrysophytes), early August (dominated by chlorophytes), and in September (also dominated by chlorophytes). The 2007 summer peak in algal abundance $(4.02 \times 10^7 \text{ per})$ liter) occurred later in the season (early July) than the first peak (2.97 x 10^7 per liter) seen in 2006 (Mid-April). While the 2006 early summer peak was nearly three times the corresponding 2007 peak, both the 2006 and 2007 peaks were less than one quarter of the early summer peak in 2003 (1.27 x 10^8 per liter). The 2007 mid-July to early August peak occurred earlier than the corresponding peak in 2005. The July algal abundance peak for 2007 was of greater magnitude (4.02×10^7 per liter) than the corresponding peak in 2006 (1.61 x 10^7 per liter). The late August peak seen in 2006 occurred again in 2007 approximately two weeks earlier with similar magnitude. $(1.28 \times 10^7 \text{ per liter and}, 1.10 \times 10^7 \text{ per liter and}, 1.1$ 10^7 per liter respectively).

Overall, algal abundance in 2007 (yearly average 7.23×10^6 per liter) was lower than in 2006 (yearly average 9.11×10^6 per liter). Both year's averages were significantly less than the 2003 average (1.13×10^7 per liter), but densities remained higher than in either the 2001 or 2002 season (yearly averages of 2.9×10^6 per liter and 4.42×10^6 per liter, respectively).

The comparison of 2006 and 2007 algal biomass data shows similar temporal patterns in peak algal biomass (Figures 3 and 4, respectively). In both 2006 and 2007, spring blooms in Onondaga Lake were dominated by bacillariophytes. The spring biomass peak in 2006 (9,783 µg/L) and 2007 peak (2,644 µg/L) occurred in early April and in both years bacillariophyte biomass remained high through May. Overall algal biomass in 2007 (26,625 μ g/L) was a large decrease over 2006 biomass (42,369 μ g/L), and was still less than the values in 2003 or 2002 (78,135 μ g/L and 76,083 μ g/L, respectively). We compared the overall seasonal biomass of each division of phytoplankton observed in Onondaga Lake in 2006 and 2007 temporally for the integrated upper mixed layer samples (Figure 5A – 5I). Maximum biomass of Bacillariophyta was much greater in 2006 than in 2007 with values of 2644 μ g/L and 8,926 μ g/L, respectively. Overall seasonal biomass showed an even greater difference between years with 2006 having almost twice the bacillariophyte biomass of 2007 (yearly averages, 22,174 µg/L and 11,791 µg/L, respectively) (Figure 5A). Again both maximum biomass and overall seasonal biomass were higher for Chlorophyta in 2006 than in 2007. In 2006 Chlorophyta biomass peaked in mid-July, at 2,517 μ g/L and late September at 1024 μ g/L in 2007. Total Chlorophyta biomass decreased from 9,324µg/L in 2006 to 3999µg/L in

2007 (Figure 5B). In 2006, Chrysophyta biomass reached its peak in early June and in 2007 the peak was in late October. Peak Chrysophyta biomass was greater in 2007 than in 2006, with values of 725μ g/L and 371μ g/L, respectively. However, in 2007 biomass was steady up until the peak, leading to an overall seasonal biomass similar to that in 2006 (Figure 5C).

The Cryptophyta biomass peak in late June 2006 (1,666 μ g/L) was very similar to the 2007 peak in late September (1974 μ g/L). Overall biomass was simlar as well (6459 μ g/L in 2006 and 6775 μ g/L in 2007) (Figure 5D). Overall 2007 Cyanophyta annual biomass was 188 μ g/L, which was an eleven fold decrease from 2006 (842 μ g/L). Cyanophyta biomass peaked in September/October of both years; in late September of 2006 at 331 μ g/L and in early October of 2007 at 61 μ g/L. In 2006 "Miscellaneous flagellates" had a biomass peak of 22 μ g/L in late May, and total seasonal biomass 49 μ g/L. In 2007, there was a peak of "Miscellaneous flagellates" in late February at 26 μ g/L and a total seasonal biomass of 76 μ g/L (Figure 6G). Overall Pyrrhophyta biomass in 2007 was 1,956 μ g/L compared to 2,326 μ g/L in 2006 and exhibited similar seasonal trends (Figure 5H). Euglenophytes were present in late March 2006 with a biomass of 3 μ g/L and to a lesser extent in late December 2006 with a biomass of 9 μ g/L (figure 5H).

Seasonal changes in phytoplankton size were examined by dividing the phytoplankton into two functional groups based on cell or colony size. Netplankton were categorized as phytoplankton greater than 50 μ m in length and nannoplankton were less than 50 μ m in length. Nannoplankton abundance reached a much greater maximum (4.02 x 10⁷ per

liter) than that seen for netplankton (5.02×10^6 per liter). The greatest peaks in nannoplankton and netplankton abundance occurred in early July and late May respectively (Figure 6A). Overall nannoplankton biomass ($24052\mu g/L$) was nine times the overall biomass of the netplankton ($2644\mu g/L$), the difference being much greater than in 2005 and 2006. Nannoplankton biomass had only two peaks during 2007 that exceeded 3,000 $\mu g/L$ (late April, 3,360 $\mu g/L$ and early September 3,068 $\mu g/L$) and netplankton biomass had only one peak exceeding 700 $\mu g/L$ (late April, 713 $\mu g/L$) (Figure 6A).

Zooplankton Community Structure. A summary of the zooplankton community in Onondaga Lake from December 29, 2006 to December 13, 2007 is presented in Appendix C. A total of 12 species, as well as nauplii and copepodites, were identified in Onondaga Lake in 2007. The dominant cladoceran was *Bosmina longirostris*. Other cladocerans present included *Diaphanosoma birgei*, *Ceriodaphnia quadrangula*, *Eubosmina coregoni*, *Daphnia mendotae*, *Daphnia retrocurva*, *Daphnia ambigua*, *Daphnia sp.*, *Leptodora kindtii*, and *Cercopagis pengoi*. The dominant copepods during the year were *Diacyclops thomasi*, *Acanthocyclops vernalis*, and nauplii. No calanoid copepods were detected throughout the 2007 season.

Zooplankton Abundance and Biomass. A summary of seasonal changes in the biomass, average size and abundance of the total zooplankton community, cladocerans, copepods, and individual species is presented in Table 1. Seasonally, total zooplankton density and

biomass were highest during spring 2007 (Table 1). Zooplankton density and biomass were lowest in mid-March (0.33/L and 0.45 μ g/L, respectively) (Table 1, Figure 7A, 7B). Zooplankton density and biomass peaked in mid-June (707.3/L and 485.1 μ g/L, respectively) (Figure 7A, 7B). While zooplankton density and biomass were generally high from early June to early July (>143.0/L and >90.9 μ g/L, respectively), during the rest of the season they remained relatively low ranging from 0.33/L to 95.1/L and 0.45 μ g/L to 87.5 μ g/L, respectively (Figure 7A, 7B).

We analyzed the zooplankton community by assessing the relative proportion in density and biomass by taxa and by species. By taxa, cladoceran proportion abundance was high from early June through November, with copepod proportion abundance dominating in February through May, and in December (Figure 8A). The proportion of zooplankton biomass occupied by cladocerans and copepods mirrored their relative abundance (Figure 8B). The cladoceran zooplankton community was proportionally dominated by Bosmina longirostris throughout the season (Figure 9A). Cercopagis pengoi was a significant contributor to cladoceran biomass with a peak contribution of 40.6% in mid-July. During the August through October reduction in *B. longirostris* proportion of biomass, Diaphanosoma birgei, C. pengoi, Ceriodaphnia sp., and D. retrocurva rounded out the cladoceran biomass contribution. The prevalence of Bosmina longirostris was consistent with our observations from 1996 through 2006. In 2006, D. mendotae was a significant contributor to cladoceran biomass; however, in 2007 it was a minor contributor to cladoceran biomass. D. mendotae was detected in January, May-July and September 2006, and only in mid to late September 2007. D. retrocurva, however, was a significant

contributor to cladoceran biomass from mid-August to late October 2006, and from mid-July to late October in 2007. The copepod community was largely dominated by *D*. *thomasi* throughout the season except mid-August which Acanthocyclops vernalis predominated (Figure 9B). *Bosmina longirostris, D. thomasi,* and *D. retrocurva* were the dominant species in the zooplankton community throughout the year (Figure 10).

Zooplankton Community Size Structure. A summary of mean size of the crustacean zooplankton community is shown in Table 1. The mean size of the crustacean community was 0.32 mm in winter, 0.28 mm in the spring, 0.29 mm in the summer, and 0.36 mm in the fall, with an average for the entire sampling season (January - December) of 0.29 mm. The highest mean size of zooplankton (0.56 mm) was observed in mid-April, while average body lengths ranged from 0.26 to 0.51 mm for the remainder of 2007.

We compared mean zooplankton size found at the Shackelton Point site of Oneida Lake (March - November 2007) with mean adjusted zooplankton size for the entire season in Onondaga Lake. The 80-micron mesh net used to collect zooplankton samples in Onondaga Lake is nearly half the mesh size (153 micron) Mills and Schiavone (1982) used in their studies and in Oneida Lake. Consequently, the average size of Onondaga Lake zooplankton would be expected to be lower compared to samples collected with a 153 micron net because of the likelihood of retaining higher numbers of small zooplankton such as nauplii. To compensate for the differing mesh sizes, we adjusted the mean zooplankton size by excluding nauplii from the average zooplankton lengths that

were calculated after analyzing samples from Onondaga Lake. Our results indicated that temporal patterns in zooplankton size were dissimilar between the two lakes, with average adjusted zooplankton size in Oneida being larger than in Onondaga for corresponding dates for the entire season, and by a large margin from May to November (Figure 11). In Oneida Lake, average zooplankton size was largest in early June (1.14 mm) and smallest in late September (0.56 mm). In Onondaga Lake, average adjusted zooplankton size was largest in mid-April (0.89 mm), and then declined to its smallest value in early July (0.27 mm), remaining low for the duration of the year (Figure 11).

Cercopagis pengoi. The exotic zooplanktor *Cercopagis pengoi* was observed in 2007 as it has been in 2000 and 2002-2006. It was found in samples collected on 10 dates (7/3, 7/17, 7/31, 8/14, 8/28, 9/11, 9/25, 10/9, 10/24 and 11/8), spanning from early summer to mid-fall. The biomass of the species was relatively small throughout most of the season (maximum value of 8.25 μ g/L), however, reaching a proportion of 35.9% of the total biomass in the mid-summer of 2007, thus possessing some potential to impact the zooplankton community through predation (Ojaveer et al. 2000).

Significant Findings

Onondaga Lake remains a productive aquatic system as evidenced by its high levels of algal biomass. The duration of the cyanobacteria blooms in Onondaga Lake declined from 1996-2000. For example, cyanobacteria blooms (typically dominated by *Aphanizomenon flos-aquae*) that historically occurred July through October (1996) decreased in duration (middle to late July through August) from 1997 to 2000. In 2001

there was no significant cyanobacteria bloom documented. The 2002 sampling season saw a reversal of this declining trend however, with cyanobacteria blooms of greater magnitude, lasting from late June through mid-September. A similar resurgence of cyanobacteria was again seen in 2003, but the onset of the bloom did not occur until mid-August, but remained in significant quantity through the end of October. The 2004 and 2005 seasons had no lengthy period of late season dominance like that seen in either 2002 or 2003. During the 2004 sampling season only one minor peak was seen in early August $(1,741\mu g/L)$ and in 2005 no significant cyanobacterial bloom was seen, with biomass reaching a peak of only 170µg/L in mid-September. Although 2006 cyanobacterial biomass increased slightly from 2005, the trend of low cyanobacterial biomass continued. Cyanobacterial biomass reached a late September peak of 331µg/L and remained near peak values into early October. In 2007, cyanobacterial biomass decreased from 2006, and even from 2005 values. No significant cyanobacterial bloom was seen in 2007 and biomass reached a peak in early October with a value of only $61.5\mu g/L$. The resurgence of cyanobacteria seen in 2002 and 2003 may still reflect changes in the food web that favor blooms of cyanobacteria, but the limited cyanobacterial productivity observed from 2004 through 2007 appears to signal an overall improvement of water quality.

Average total zooplankton biomass in nearby Oneida Lake (Cornell Biological Field Station unpublished data) was 179 μ g/L for a single deep site (March - November 2007), while it averaged 79 μ g/L in all of Onondaga Lake for the same time period. As in 2006, but unlike prior years from 1997-2003, average total zooplankton biomass was greater in

Oneida Lake than Onondaga Lake. During 1996, and 2004-2007 small zooplankton dominated Onondaga Lake while larger species, especially Daphnia pulicaria and Daphnia mendotae, led to high average total zooplankton biomass in Oneida Lake. In 2007, Onondaga Lake zooplankton biomass peaked at a higher value (485.1 μ g/L) than Oneida Lake biomass (447.3 µg/L), but Onondaga Lake biomass was more variable, less than 90.9 μ g/L during the majority of the season except the peak in mid-June to early July (Figure 7B). In contrast, Oneida Lake zooplankton biomass was more consistent, remaining above 92 µg/L on all sampling dates between mid-May and mid-October. Temporal patterns in average zooplankton size showed little similarity between the two lakes (Figure 11). The consistently small average size of the total zooplankton community in Onondaga Lake throughout the seasons in 2007 (0.29 mm year-round) is a bit smaller than values observed in 2006 (0.38 mm). In contrast, during 2002 average size showed more variation, declining from 0.92 mm during the winter (January – March) to 0.27 mm in fall (October – December). Associated with this change in size structure is the dominance of the small cladoceran *B. longirostris*, but also a reduced *Daphnia* population and near lack of calanoid copepods throughout the 2004 and 2005 seasons, with no observations in 2006 or 2007. These findings suggest intense planktivory by plankton-eating fish in 2006 and 2007. Populations of *Daphnia* have a tremendous capability to exert strong influence on the phytoplankton community (Mills et al. 1987). The low number of *Daphnia* individuals in Onondaga Lake in 2007 was likely linked to heavy predation by planktivorous fish, namely alewife (Alosa pseudoharengus). *Cercopagis pengoi* again appeared in the lake in the 2007 season. Interestingly, the periods of Cercopagis detection in the lake also represent periods of decreased

dominance by *Bosmina longirostris* (Figure 10) suggesting possible predatory impacts by *Cercopagis* leading to a structuring of the zooplankton community.

Literature Cited

- Auer, M.T., M.L. Storey, S.W. Effler, N.A. Auer, and P. Sze. 1990. Zooplankton impacts on chlorophyll and transparency in Onondaga Lake, NY, USA. Hydrobiologia 200:603-617.
- Carpenter, S.R. and J.F. Kitchell. 1993. The trophic cascade in lakes. Cambridge University Press, Cambridge, UK. 358pp.
- Effler, S.W. 1996. Limnological and engineering analysis of a polluted urban lake. Springer, New York, New York. 832 p.
- Gulati, R.D., E.H.R.R. Lammens, M.L. Meijer, and E. van Donk (eds.). 1990 Biomanipulation-Tool for water management. Kluwer Academic publishers, Belgium.
- Hairston, N.G., L.J. Perry, A.J. Bohonak, M.Q. Fellows, and C.M. Kearns. 1999. Population biology of a failed invasion: Paleolimnology of Daphnia exilis in upstate New York. Limnol. Oceangr. 44(3):477-486.
- Makarewicz, J.C., B. Cady, T. Lewis, J. Buttner, and J. Haynes. 1995. Phytoplankton, zooplankton, macrobenthos, and ichthyoplankton abundance, biomass, and species composition in Onondaga Lake, 1994. Onondaga Management Conference, Syracuse, New York.
- Makarewicz, J.C., I.A. Grigorovich, E.L. Mills, E. Damaske, M.E. Cristescu, W. Pearsall,
 M.J. LaVoie, R.A. Keats, L.G. Rudstam, P. Hebert, H. Halbritter, T. Kely, C.
 Matkovich, and H.J. MacIsaac. 2001. Distribution, Fecundity, and Genetics of
 Cercopagis pengoi (Ostroumov) (Crustacea, Cladocera) in Lake Ontario. J. Great
 Lakes Res. 27(1):19-32
- Mills, E.L. and A. Schiavone. 1982. Evaluation of fish communities through assessment of zooplankton populations and measurement of lake productivity. North American Journal of Fisheries Management. 2:14-27.
- Mills, E.L., J.L. Forney, and K.J. Wagner. 1987. Fish predation and its cascading effect on the Oneida Lake food chain. In Predation: direct and indirect impacts on aquatic communities. Edited by W.C. Kerfoot and A. Sih. University Press of New England, Hanover, N.H. pp. 118-131.
- Mills, E.L. and R.A. Keats. 1998. Assessing Community Structure of Lower Trophic Levels in Onondaga Lake, New York in 1998. Onondaga Lake Monitoring Program 1998 Annual Report: Report and Appendix A. (Chapter 5).

- Mills, E.L., C.C. Wafer, and M.J. LaVoie. 1999. Assessing Community Structure of Lower Trophic Levels in Onondaga Lake, New York in 1999. Onondaga Lake Monitoring Program 1999 Annual Report: Report and Appendix A.
- Murphy, C.B. 1978. Onondaga Lake. In: J.A. Bloomfield (ed.). Lakes of New York State, Vol. II. John Wiley & Sons, New York, p. 223-363.
- Ojaveer, H., Simm, M., Lankov, A., and Lumberg, A. 2000. Consequences of invasion of a predatory cladoceran. ICES C.M. 2000:16
- Siegfried, C.A., N.A. Auer, and S.W. Effler. 1994. Zooplankton (Chapter 6) Biology. In S.W. Effler (ed.), Onondaga Lake: Lessons in limnology and engineering analysis for a polluted system. Springer-Verlag., NY.
- Stearns & Wheler. 1996. Onondaga Lake monitoring program 1995 annual report. Report and Appendix A. July 1996. Prepared for Onondaga County.
- Stearns & Wheler. 1997. Onondaga Lake monitoring program 1996 annual report. Report and Appendix A. July 1997. Prepared for Onondaga County.
- Waterman, G. 1971. Onondaga Lake zooplankton. P. 361-384. In Onondaga Lake Study, project No. 1106, FAE4/71. Water Quality Office, Environmental Protection Agency, Onondaga County, Syracuse, NY.

TABLES

Table 1. Density (animals/L), average size (mm), and biomass (μ g/L) of the total zooplankton community, cladocerans, copepods, and individual taxa collected from Onondaga Lake, NY, 12/29/06-12/13/07. Data are grouped by season into Winter (n = 6), Spring (n=6), Summer (n=6), and Fall (n=6). Yearly averages (n=24) are also listed. An asterisk ("*") indicates that the sample is an average of "North" and "South" site collections. All averages are generated from epilimnion and 15m tows, except 2/13, 2/21, 2/28, 3/7, 3/13 which are North epilimnetic tows only. Data are mean and standard errors (SE). Total Community = Cladocerans + Copepods. Cladocerans = Individually listed species + Other Cladocerans. Copepods = Individually listed species + Nauplii + Cyclopoid Copepods + Calanoid Copepods.

Taxon	V 12/29	Vinter (n = 6 , 2/13, 2/21, 3/7, 3/13	6) 2/28,	4/10	Spring (n =6))*, 4/24, 5/8, 5 6/5, 6/19*) 5/22,	Summer (n = 6) 7/3, 7/17, 7/31, 8/14, 8/28, 9/11			
		Density	Ave. Size	Biomass	Density	Ave. Size	Biomass	Density	Ave. Size	Biomass
Total Community	mean	(animals/L)	(mm) 0.32	(µg/L)	(animals/L)	(mm) 0.28	(µg/L)	(animals/L)	(mm) 0.29	(µg/L)
Total Community	SE	4.67	0.03	4.07	110.60	0.05	74.84	106.41	0.04	66.28
Cladocerans	mean SE	3.40 3.25		3.28 3.10	127.36 109.55		87.97 75.59	136.63 99.52		95.69 62.08
Copepods	mean SE	2.58 1.43		1.77 0.97	35.11 6.63		26.65 2.74	8.50 6.95		6.47 4.29
Bosmina longirostris	mean SE	3.38 3.24	0.31 0.01	3.26 3.10	127.31 109.50	0.27 0.02	87.94 75.57	129.26 99.74	0.27 0.00	84.70 63.25
Diacyclops thomasi	mean SE	0.96 0.57	0.58 0.01	1.64 0.93	12.06 2.37	0.63 0.06	25.08 2.75	3.99 3.16	0.54 0.03	5.78 4.13
Daphnia mendotae	mean SE	0.02 0.02	0.45	0.01 0.01	0.00 0.00		$0.00 \\ 0.00$	0.09 0.09	0.78	0.25 0.25
Daphnia retrocurva	mean SE	0.00 0.00		$0.00 \\ 0.00$	0.05 0.05	0.46	0.03 0.03	3.82 1.28	0.52 0.03	3.73 1.55
Daphnia ambigua	mean SE	0.00 0.00		$0.00 \\ 0.00$	0.00 0.00		0.00 0.00	0.09 0.06	0.44 0.04	0.05 0.03
Daphnia sp.	mean SE	0.00 0.00		$0.00 \\ 0.00$	0.00 0.00		$0.00 \\ 0.00$	0.14 0.08	0.62 0.05	0.17 0.10
Nauplii	mean SE	1.62 0.88	0.18 0.01	0.11 0.05	23.05 5.16	0.18 0.01	1.57 0.41	4.40 3.81	0.19 0.01	0.28 0.25
Acanthocyclops vernalis	mean SE	0.00 0.00	0.80	0.01 0.01	0.00 0.00		$0.00 \\ 0.00$	0.09 0.08	0.89 0.11	0.39 0.30
Diaphanosoma sp.	mean SE	0.00 0.00		$0.00 \\ 0.00$	0.00 0.00		$0.00 \\ 0.00$	1.54 0.65	0.50 0.02	1.28 0.62
Ceriodaphnia quadrangula	mean SE	0.00 0.00	0.93	0.01 0.01	0.00 0.00		$0.00 \\ 0.00$	1.13 0.70	0.38 0.02	1.27 0.74
Cercopagis pengoi	mean SE	0.00 0.00		$0.00 \\ 0.00$	0.00 0.00		0.00 0.00	0.56 0.19	1.11 0.02	4.25 1.40
Tropocyclops prasinus	mean SE	0.00 0.00		$0.00 \\ 0.00$	0.00 0.00		$0.00 \\ 0.00$	0.01 0.01	0.52	0.01 0.01
Other Cladocerans	mean SE	0.00 0.00		$0.00 \\ 0.00$	0.00 0.00		0.00 0.00	0.00 0.00		$0.00 \\ 0.00$
Cyclopoid Copepods	mean SE	0.00 0.00		$0.00 \\ 0.00$	0.00 0.00		$0.00 \\ 0.00$	0.00 0.00		0.00 0.00
Calanoid Copepods	mean SE	0.00 0.00		$0.00 \\ 0.00$	0.00 0.00		$0.00 \\ 0.00$	0.00 0.00		0.00 0.00

Table 1 (continued).

Taxon		Fall (n = 6)		Year (n = 24)				
		9/25,	10/9*, 10/24,	, 11/8,				
		1	11/20*, 12/13	3				
		Density	Ave. Size	Biomass	Density	Ave. Size	Biomass	
T + 1.0		(animals/L)	(mm)	(µg/L)	(animals/L)	(mm)	(μg/L)	
Total Community	mean	40.35	0.36	39.21	88.48	0.29	65.26	
	SE	11.09	0.02	10.04	58.50	0.02	23.20	
Cladocerans	mean	35.13		33.81	75.63		55 19	
	SE	12.42		11.30	36.65		24.32	
	52	12112		1100	20102		21102	
Copepods	mean	5.21		5.40	12.85		10.07	
	SE	2.34		2.95	3.58		2.46	
Bosmina longirostris	mean	27.62	0.30	24.59	71.89	0.27	50.12	
	SE	9.50	0.00	7.67	36.60	0.01	24.31	
Diacyclops thomasi	mean	2.22	0.64	4.76	4.81	0.61	9.31	
	SE	1.16	0.02	2.93	1.32	0.02	2.36	
Danhnia mandotaa	maan	0.03	0.62	0.04	0.03	0.70	0.07	
Daphnia menaolae	SE	0.03	0.02	0.04	0.03	0.70	0.07	
	SL	0.05		0.04	0.02	0.10	0.00	
Daphnia retrocurva	mean	6.14	0.57	7.10	2.50	0.55	2.71	
	SE	3.21	0.03	3.60	0.97	0.02	1.10	
Daphnia ambigua	mean	0.00		0.00	0.02	0.44	0.01	
	SE	0.00		0.00	0.02	0.04	0.01	
Daphnia sp.	mean	0.05	0.78	0.12	0.05	0.66	0.07	
	SE	0.03	0.08	0.09	0.02	0.05	0.04	
NT1''		2.00	0.19	0.21	7.00	0.10	0.54	
Naupin	mean SE	2.90	0.18	0.21	7.99	0.18	0.54	
	SE	1.50	0.01	0.11	2.39	0.00	0.17	
Acanthocyclops vernalis	mean	0.09	0.91	0.42	0.05	0.90	0.21	
	SE	0.06	0.04	0.28	0.02	0.04	0.10	
Diaphanosoma sp.	mean	0.53	0.57	0.61	0.52	0.52	0.47	
	SE	0.44	0.06	0.51	0.23	0.03	0.22	
Ceriodaphnia quadrangula	mean	0.67	0.36	0.71	0.45	0.37	0.50	
	SE	0.39	0.04	0.42	0.21	0.05	0.23	
C		0.08	1 1 2	0.62	0.16	1 1 1	1.00	
Cercopagis pengoi	mean SE	0.08	1.12	0.62	0.16	1.11	1.22	
	SE	0.04	0.04	0.30	0.07	0.02	0.50	
Tropocyclops prasinus	mean	0.00	0.62	0.01	0.00	0.54	0.00	
110000000000000000000000000000000000000	SE	0.00	0.02	0.01	0.00	0.05	0.00	
Other Cladocerans	mean	0.01		0.01	0.00		0.00	
	SE	0.01		0.01	0.00		0.00	
Cyclopoid Copepods	mean	0.00		0.00	0.00		0.00	
	SE	0.00		0.00	0.00		0.00	
		0.00		0.00	0.00		0.00	
Calanoid Copepods	mean	0.00		0.00	0.00		0.00	
	SE	0.00		0.00	0.00		0.00	
		1			1			

FIGURES

Figure 1. Abundance (#/L) x 10-6 of eight major groups of phytoplankton collected from Onondaga Lake, 1/12/06 - 12/15/06. Data are averages of integrated upper mixed layer samples (UML). An asterisk indicates "North" station samples were taken in addition to "South" station samples

Figure 2. Abundance (#/L) x 10-6 of eight major groups of phytoplankton collected from Onondaga Lake, 12/29/06 - 12/13/07. Data are averages of integrated upper mixed layer samples (UML). An asterisk indicates "North" station samples were taken in addition to "South" station samples

Figure 3. Biomass (ug/L) of eight major groups of phytoplankton collected from Onondaga Lake, 1/12/06 - 12/15/06. Data are averages of integrated upper mixed layer samples (UML). An asterisk indicates "North" station samples were taken in addition to "South" station samples.

Figure 4. Biomass (ug/L) of eight major groups of phytoplankton collected from Onondaga Lake, 12/29/06 - 12/13/07. Data are averages of integrated upper mixed layer samples (UML). An asterisk indicates "North" station samples were taken in addition to "South" station samples.

Figure 5A-H. Biomass (µg/L) of (A) Bacillariophyta, (B) Chlorophyta, (C) Chrysophyta, (D) Cryptophyta, (E) Cyanophyta, (F) Miscellaneous Microflagellates, (G) Pyrrhophyta and (H) Euglenophyta in the years 2006 and 2007; from integrated upper mixed layer (UML) samples from Onondaga Lake "South" sampling station. The dates with an asterisk ("*") indicates that the sample is an average of "North" and "South" site collections.

Figure 5A-H. (*continued*) Biomass (µg/L) of (A) Bacillariophyta, (B) Chlorophyta, (C) Chrysophyta, (D) Cryptophyta, (E) Cyanophyta, (F) Miscellaneous Microflagellates, (G) Pyrrhophyta and (H) Euglenophyta in the years 2006 and 2007; from integrated upper mixed layer (UML) samples from Onondaga Lake "South" sampling station. The dates with an asterisk ("*") indicates that the sample is an average of "North" and "South" site collections.

Figure 5A-H. (*continued*) Biomass (µg/L) of (A) Bacillariophyta, (B) Chlorophyta, (C) Chrysophyta, (D) Cryptophyta, (E) Cyanophyta, (F) Miscellaneous Microflagellates, (G) Pyrrhophyta and (H) Euglenophyta in the years 2006 and 2007; from integrated upper mixed layer (UML) samples from Onondaga Lake "South" sampling station. The dates with an asterisk ("*") indicates that the sample is an average of "North" and "South" site collections.

Figure 5A-H. (*continued*) Biomass (µg/L) of (A) Bacillariophyta, (B) Chlorophyta, (C) Chrysophyta, (D) Cryptophyta, (E) Cyanophyta, (F) Miscellaneous Microflagellates, (G) Pyrrhophyta and (H) Euglenophyta in the years 2006 and 2007; from integrated upper mixed layer (UML) samples from Onondaga Lake "South" sampling station. The dates with an asterisk ("*") indicates that the sample is an average of "North" and "South" site collections.

Figure 5A-H. (*continued*) Biomass (µg/L) of (A) Bacillariophyta, (B) Chlorophyta, (C) Chrysophyta, (D) Cryptophyta, (E) Cyanophyta, (F) Miscellaneous Microflagellates, (G) Pyrrhophyta and (H) Euglenophyta in the years 2006 and 2007; from integrated upper mixed layer (UML) samples from Onondaga Lake "South" sampling station. The dates with an asterisk ("*") indicates that the sample is an average of "North" and "South" site collections.

Figure 5A-H. (*continued*) Biomass (µg/L) of (A) Bacillariophyta, (B) Chlorophyta, (C) Chrysophyta, (D) Cryptophyta, (E) Cyanophyta, (F) Miscellaneous Microflagellates, (G) Pyrrhophyta and (H) Euglenophyta in the years 2006 and 2007; from integrated upper mixed layer (UML) samples from Onondaga Lake "South" sampling station. The dates with an asterisk ("*") indicates that the sample is an average of "North" and "South" site collections.

Figure 5A-H. (*continued*) Biomass (µg/L) of (A) Bacillariophyta, (B) Chlorophyta, (C) Chrysophyta, (D) Cryptophyta, (E) Cyanophyta, (F) Miscellaneous Microflagellates, (G) Pyrrhophyta and (H) Euglenophyta in the years 2006 and 2007; from integrated upper mixed layer (UML) samples from Onondaga Lake "South" sampling station. The dates with an asterisk ("*") indicates that the sample is an average of "North" and "South" site collections.

Figure 5A-H. (*continued*) Biomass (µg/L) of (A) Bacillariophyta, (B) Chlorophyta, (C) Chrysophyta, (D) Cryptophyta, (E) Cyanophyta, (F) Miscellaneous Microflagellates, (G) Pyrrhophyta and (H) Euglenophyta in the years 2006 and 2007; from integrated upper mixed layer (UML) samples from Onondaga Lake "South" sampling station. The dates with an asterisk ("*") indicates that the sample is an average of "North" and "South" site collections.

Figure 6A. Abundance (#/L) x 10-6 of nannoplankton (<50µm) and netplankton (>50µm) collected from Onondage Lake during 2007. Data are averages of integrated upper mixed layer samples 12/29/06 - 12/13/07. An asterisk indicates "North" station samples were taken in addition to "South" station samples.

Figure 6B. Biomass (ug/L) of nannoplankton ($<50\mu$ m) and netplankton ($>50\mu$ m) collected from Onondage Lake during 2007. Data are averages of integrated upper mixed layer samples 12/29/06 - 12/13/07. An asterisk indicates "North" station samples were taken in addition to "South" station samples.

Figure 7. (A) Density (animals/L) and (B) dry weight biomass (μ g/L) of crustacean zooplankton community in Onondaga Lake, late December 2006 and February-December 2007.

Figure 8. (A) Proportion of abundance and (B) proportion of biomass of cladocerans and copepods in Onondaga Lake during 2007.

Figure 9. (A) Contributions to the total cladoceran biomass by each species in the Onondaga Lake cladoceran community from late December 2006 to December 2007. (B) Proportion of total copepod biomass contributed by each copepod species during this same time period in Onondaga Lake.

Figure 10. Major zooplankton species proportions of total biomass in Onondaga Lake in 2007.

Figure 11. Average zooplankton lengths (mm) in Oneida (April - November 2007) and adjusted average zooplankton (excluding nauplii) lengths in Onondaga Lake (December 2006, and February - December 2007). Averages represent a composite of all samples for each date. Trend lines reflect averages between two adjacent data

APPENDICES

					Sample		Depth						Concentration	Relative	Biovolume	Total Biovolume	Relative Total
Job ID	Lake	Site	Date	Station	Туре	Depth	Note	Taxa Code	Division	Genus	Species	GALD	(natural unit/ml)	Concentration (%)	(um3/unit)	(um3/ml)	Biovolume (%)
060	Onondaga Lake	2616358	12/29/2006	South	Grab	Upper Mixed	0-6m	1021	Bacillariophyta	Asterionella	formosa	66.667	34.0789	0.01533621	869.3333	29625.885	0.08725786
060	Onondaga Lake	2616358	12/29/2006	South	Grah	Upper Mixed	0-6m	1076	Bacillariophyta	Cyclotella	meneghiniana	24	5 6798	0.00219082	5428 6721	30833 8231	0.09081563
060	Onondaga Lake	2616358	12/29/2006	South	Grah	Upper Mixed	0-6m	1106	Bacillariophyta	Diatoma	vulgaris	24	5 6798	0.00219082	471 2389	2676 5472	0.0078833
060	Onondaga Lake	2616358	12/29/2006	South	Grab	Upper Mixed	0.6m	1210	Bacillariophyta	Navicula	vargaris	24	5 6798	0.00219082	28 27/3	160 5026	0.000473
000	Onondaga Lake	2616358	12/29/2006	South	Grab	Upper Mixed	0.6m	1210	Bacillariophyta	Navicula	ammta aan bala	40	2 7/21	0.00219082	20.2745	6204 7108	0.000473
000		2010338	12/29/2000	South	Giab		0-011	1214	D ill i l i	Navicula	cryptocephata	40	2.7431	0.00103807	2201.9407	0204.7108	0.01245417
060	Onondaga Lake	2616358	12/29/2006	South	Grab	Upper Mixed	0-6m	1298	Bacillariophyta	Stephanodiscus	parvus	8	22.7192	0.00876329	201.0619	4567.9751	0.01345417
060	Onondaga Lake	2616358	12/29/2006	South	Grab	Upper Mixed	0-6m	1315	Bacillariophyta	Synedra	ulna	300	2.7431	0.00105807	19200	52667.221	0.15512208
060	Onondaga Lake	2616358	12/29/2006	South	Grab	Upper Mixed	0-6m	2683	Chlorophyta			3.7143	39.7587	0.01533579	29.7703	1183.6274	0.00348617
060	Onondaga Lake	2616358	12/29/2006	South	Grab	Upper Mixed	0-6m	2080	Chlorophyta	Chlamydomonas	•	5	17.0394	0.00657246	41.8879	713.7459	0.00210221
060	Onondaga Lake	2616358	12/29/2006	South	Grab	Upper Mixed	0-6m	2195	Chlorophyta	Crucigenia	quadrata	10	5.6798	0.01314497	96	545.2617	0.00160597
060	Onondaga Lake	2616358	12/29/2006	South	Grab	Upper Mixed	0-6m	2193	Chlorophyta	Crucigenia	tetrapedia	7.5	22.7192	0.05257979	45	1022.3657	0.0030112
060	Onondaga Lake	2616358	12/29/2006	South	Grab	Upper Mixed	0-6m	1000538	Chlorophyta	Monomastix	minuta	4	17.0394	0.00657246	9.4248	160.5932	0.000473
060	Onondaga Lake	2616358	12/29/2006	South	Grab	Upper Mixed	0-6m	8041	Chlorophyta	Monoraphidium	capricornutum	4	5.6798	0.00219082	7.8108	44.3639	0.00013067
060	Onondaga Lake	2616358	12/29/2006	South	Grab	Upper Mixed	0-6m	8226	Chlorophyta	Scenedesmus	intermedius	18	11.3596	0.01752661	75.3982	856.4948	0.00252266
060	Onondaga Lake	2616358	12/29/2006	South	Grab	Upper Mixed	0-6m	2884	Chlorophyta	Scenedesmus	quadricauda	20	5.6798	0.00876329	167.5516	951.6612	0.00280295
060	Onondaga Lake	2616358	12/29/2006	South	Grab	Upper Mixed	0-6m	2561	Chlorophyta	Tetrastrum	staurogeniaeforme	8	39.7587	0.06134311	63.6696	2531.4184	0.00745585
060	Onondaga Lake	2616358	12/29/2006	South	Grab	Upper Mixed	0-6m	1731	Chrysophyta	Erkenia	subaequiciliata	4	647.4983	0.24975405	30.2431	19582.3552	0.0576764
060	Onondaga Lake	2616358	12/29/2006	South	Grab	Upper Mixed	0-6m	9511	Chrysophyta	Polygoniochloris	circularis	8	5.6798	0.00219082	144.6557	821.6168	0.00241993
060	Onondaga Lake	2616358	12/29/2006	South	Grah	Upper Mixed	0-6m	3015	Cryptophyta	Cryptomonas	erosa	16 889	68 1577	0.02628989	479 3838	32673 7037	0.09623467
060	Onondaga Lake	2616358	12/29/2006	South	Grah	Upper Mixed	0-6m	3069	Cryptophyta	Cryptomonas	rostratiformis	56	5 6798	0.00219082	5864 3063	33308 1424	0.0981033
060	Onondaga Lake	2616358	12/29/2006	South	Grah	Upper Mixed	0-6m	3041	Cryptophyta	Rhodomonas	minuta	12 667	596 38	0.23003662	106 7269	63649 7879	0.18746931
060	Onondaga Lake	2616358	12/29/2006	South	Grab	Upper Mixed	0-0m	3043	Cryptophyta	Phodomonas	minuta	12.007	477 104	0.25005002	61.0865	20144 6132	0.08584036
000	Onondaga Lake	2010358	12/29/2000	South	Crah	Upper Mixed	0.6-	5022	Evaluation	England	mmuta	120	477.104	0.1040293	2120.0262	25144.0132	0.03538036
060	Onondaga Lake	2010338	12/29/2006	South	Grab	Upper Mixed	0-611	5025	Euglenophyta	Euglena	acus	120	2.7451	0.00105807	3129.0203	6363.1833	0.02528026
060	Onondaga Lake	2616358	12/29/2006	South	Grab	Upper Mixed	0-6m	/140	Miscellaneous	C		4	204.4731	0.07886968	30.2431	6185.9016	0.0182136
060	Onondaga Lake	2616358	12/29/2006	South	Grab	Upper Mixed	0-6m	6033	Pyrrnopnyta	Gymnodinium	sp. 2	16	5.6/98	0.00219082	603.1858	3425.9804	0.01009063
060	Onondaga Lake	2616358	12/29/2006	South	Grab	Upper Mixed	0-6m	6034	Pyrrhophyta	Gymnodinium	sp. 3	8	5.6798	0.00219082	96.7611	549.5846	0.00161871
060	Onondaga Lake	2616358	12/29/2006	South	Grab	Upper Mixed	0-6m	6044	Pyrrhophyta	Peridinium	umbonatum	16	11.3596	0.00438164	603.1858	6851.9608	0.02018125
060	Onondaga Lake	2701489	2/13/2007	North	Grab	Upper Mixed	0-6m	1021	Bacillariophyta	Asterionella	formosa	67	477.104	0.17236269	853.8	407351.3905	0.52044958
060	Onondaga Lake	2701489	2/13/2007	North	Grab	Upper Mixed	0-6m	1523	Bacillariophyta	Cyclostephanos	damasii	20	18.1754	0.00596927	4183.0306	76028.2137	0.0971369
060	Onondaga Lake	2701489	2/13/2007	North	Grab	Upper Mixed	0-6m	1298	Bacillariophyta	Stephanodiscus	parvus	7.5	333.9728	0.10968535	172.0022	57444.0557	0.07339299
060	Onondaga Lake	2701489	2/13/2007	North	Grab	Upper Mixed	0-6m	1315	Bacillariophyta	Synedra	ulna	100	4.5438	0.0014923	3600	16357.8512	0.02089949
060	Onondaga Lake	2701489	2/13/2007	North	Grab	Upper Mixed	0-6m	2683	Chlorophyta			3.5	68.1577	0.02238476	23.8237	1623.7689	0.0020746
060	Onondaga Lake	2701489	2/13/2007	North	Grab	Upper Mixed	0-6m	2080	Chlorophyta	Chlamydomonas		5	9.0877	0.00298464	67.9631	617.6279	0.00078911
060	Onondaga Lake	2701489	2/13/2007	North	Grab	Upper Mixed	0-6m	2193	Chlorophyta	Crucigenia	tetrapedia	10	4.5438	0.00596927	80	363.5078	0.00046443
060	Onondaga Lake	2701489	2/13/2007	North	Grab	Upper Mixed	0-6m	1000538	Chlorophyta	Monomastix	minuta	4	4.5438	0.0014923	9.4248	42.8249	0.00005471
060	Onondaga Lake	2701489	2/13/2007	North	Grab	Upper Mixed	0-6m	2363	Chlorophyta	Oocystis	parva	7	13.6315	0.00895391	37.6991	513.8969	0.00065658
060	Onondaga Lake	2701489	2/13/2007	North	Grab	Upper Mixed	0-6m	2884	Chlorophyta	Scenedesmus	quadricauda	32	2.1945	0.00288289	272.2714	597,4908	0.00076338
060	Onondaga Lake	2701489	2/13/2007	North	Grab	Upper Mixed	0-6m	2492	Chlorophyta	Schroederia	setigera	50	9.0877	0.00298464	67.0206	609.0628	0.00077816
060	Onondaga Lake	2701489	2/13/2007	North	Grab	Upper Mixed	0-6m	2561	Chlorophyta	Tetrastrum	staurogeniaeforme	8.4	36.3508	0.04775416	70.8115	2574.0533	0.00328872
060	Onondaga Lake	2701489	2/13/2007	North	Grah	Upper Mixed	0-6m	1731	Chrysophyta	Frkenia	subaequiciliata	4	272 6309	0.08953908	30 2431	8245 2022	0.01053442
060	Onondaga Lake	2701489	2/13/2007	North	Grah	Upper Mixed	0-6m	3015	Cryptophyta	Cryptomonas	erosa	21.8	81 7893	0.02686173	1316 5368	107678 5656	0.13757475
060	Onondaga Lake	2701489	2/13/2007	North	Grab	Upper Mixed	0-6m	3041	Cryptophyta	Rhodomonas	minuta	13	272 6309	0.02000175	132 6668	36169.063	0.04621114
000	Onondaga Lake	2701489	2/13/2007	North	Grab	Upper Mixed	0.6m	2042	Cryptophyta	Rhodomonas	minuta	15	272.0309	0.03933908	58 0040	14051 9915	0.04021114
000	Onondaga Lake	2701469	2/13/2007	North	Grab	Upper Mixed	0.6	3043	Cryptophyta	Ambanasaan	dali antinainan	0.5	19 1754	0.07634006	7 1559	14031.0013	0.01793329
060	Onondaga Lake	2701489	2/13/2007	North	Grab	Upper Mixed	0-611	4034	Cyanophyta	Aphanocapsa	dencaussima	12.007	18.1734	0.08138023	7.1558	130.0393	0.00010017
060	Onondaga Lake	2701489	2/13/2007	North	Grab	Upper Mixed	0-6m	4285	Cyanophyta	Synechocystis	•	1.5	463.4725	0.15221642	1.7671	819.0022	0.00104639
060	Onondaga Lake	2701489	2/13/2007	North	Grab	Upper Mixed	0-6m	/140	Miscellaneous	·	•	6	245.3678	0.08058516	105.6832	25931.251	0.03313088
060	Onondaga Lake	2701489	2/13/2007	North	Grab	Upper Mixed	0-6m	6033	Pyrrhophyta	Gymnodinium	sp. 2	14	36.3508	0.01193855	458.6725	16673.1034	0.02130227
060	Onondaga Lake	2701489	2/13/2007	North	Grab	Upper Mixed	0-6m	6040	Pyrrhophyta	Peridinium	•	15	9.0877	0.00298464	565.4867	5138.9707	0.00656577
060	Onondaga Lake	2701489	2/13/2007	North	Grab	Upper Mixed	0-6m	6044	Pyrrhophyta	Peridinium	umbonatum	16	4.5438	0.0014923	821.0029	3730.512	0.00476626
060	Onondaga Lake	2701787	2/21/2007	North	Grab	Upper Mixed	0-6m	1021	Bacillariophyta	Asterionella	formosa	64.6	413.4901	0.19554659	802.6	331867.1772	0.56142103
060	Onondaga Lake	2701787	2/21/2007	North	Grab	Upper Mixed	0-6m	1523	Bacillariophyta	Cyclostephanos	damasii	24	18.1754	0.00859546	5485.2208	99696.0287	0.16865617
060	Onondaga Lake	2701787	2/21/2007	North	Grab	Upper Mixed	0-6m	1298	Bacillariophyta	Stephanodiscus	parvus	7.6	204.4731	0.09669885	177.8141	36358.2075	0.06150733
060	Onondaga Lake	2701787	2/21/2007	North	Grab	Upper Mixed	0-6m	1315	Bacillariophyta	Synedra	ulna	112	1.6459	0.00077837	4032	6636.0698	0.01122627
060	Onondaga Lake	2701787	2/21/2007	North	Grab	Upper Mixed	0-6m	2683	Chlorophyta			5	31.8069	0.01504203	70.6858	2248.2985	0.00380346
060	Onondaga Lake	2701787	2/21/2007	North	Grab	Upper Mixed	0-6m	2080	Chlorophyta	Chlamydomonas		6	4.5438	0.00214884	105.6832	480.2084	0.00081237
060	Onondaga Lake	2701787	2/21/2007	North	Grab	Upper Mixed	0-6m	2193	Chlorophyta	Crucigenia	tetrapedia	8	4,5438	0.00644657	45.6	207,1994	0.00035052
060	Onondaga Lake	2701787	2/21/2007	North	Grab	Upper Mixed	0-6m	1000538	Chlorophyta	Monomastix	minuta	5	9.0877	0.00429773	20.944	190.3327	0.00032199
						- 1 F			····/···/···			0			=,		

\sim
-
_

					Sample		Depth						Concentration	Relative	Biovolume	Total Biovolume	Relative Total
Job II	D Lake	Site	Date	Station	Туре	Depth	Note	Taxa Code	Division	Genus	Species	GALD	(natural unit/ml)	Concentration (%)	(um3/unit)	(um3/ml)	Biovolume (%)
060	Onondaga Lake	2701787	2/21/2007	North	Grab	Upper Mixed	0-6m	8041	Chlorophyta	Monoraphidium	capricornutum	4	9.0877	0.00429773	7.8108	70,9822	0.00012008
060	Onondaga Lake	2701787	2/21/2007	North	Grah	Upper Mixed	0-6m	2363	Chlorophyta	Oocystis	narva	55	27 2631	0.01289319	29 6161	807 4263	0.00136593
060	Onondaga Lake	2701787	2/21/2007	North	Grab	Upper Mixed	0-6m	2367	Chlorophyta	Occystis	pusilla	4	9 0877	0.00429773	8 3776	76 1331	0.00012879
060	Onondaga Lake	2701787	2/21/2007	North	Grab	Upper Mixed	0-6m	2561	Chlorophyta	Tetrastrum	staurogeniaeforme	- 0	13 6315	0.02578638	45 8777	625 3838	0.000120796
060	Onondaga Lake	2701787	2/21/2007	North	Grab	Upper Mixed	0-0m	1731	Chrysophyta	Frkenia	subaquiciliata	1	100.8416	0.02078038	30 2431	5771 6415	0.00105790
000	Onondaga Lake	2701787	2/21/2007	North	Grab	Upper Mixed	0.6m	2015	Cruptophyta	Cruptomonos	subacquicinata		26 2509	0.09023228	1276 0826	46410 2142	0.00970391
000	Onondaga Lake	2701787	2/21/2007	North	Grab	Upper Mixed	0.6m	2061	Cryptophyta	Cryptonionas	erosa	22	30.3308	0.01719092	1270.9820	40419.3142	0.07652774
060	Onondaga Lake	2701787	2/21/2007	North	Grab	Upper Mixed	0-6m	3061	Cryptopnyta	Cryptomonas	ovata	24	4.5438	0.00214884	904.7787	4111.1765	0.00695489
060	Onondaga Lake	2701787	2/21/2007	North	Grab	Upper Mixed	0-6m	3043	Cryptopnyta	Rhodomonas	minuta	8	154.4908	0.07306136	33.5103	51/7.0336	0.008/5801
060	Onondaga Lake	2/01/8/	2/21/2007	North	Grab	Upper Mixed	0-6m	3041	Cryptophyta	Rhodomonas	minuta	12	186.2978	0.08810344	117.6788	21923.2957	0.03/08//3
060	Onondaga Lake	2701787	2/21/2007	North	Grab	Upper Mixed	0-6m	4054	Cyanophyta	Aphanocapsa	delicatissima	9	9.0877	0.02148865	2.618	23.7916	0.00004025
060	Onondaga Lake	2701787	2/21/2007	North	Grab	Upper Mixed	0-6m	4285	Cyanophyta	Synechocystis		1.5	627.051	0.29654322	1.7671	1108.0618	0.00187451
060	Onondaga Lake	2701787	2/21/2007	North	Grab	Upper Mixed	0-6m	7140	Miscellaneous			6	27.2631	0.01289319	50.2655	1370.3926	0.0023183
060	Onondaga Lake	2701787	2/21/2007	North	Grab	Upper Mixed	0-6m	6033	Pyrrhophyta	Gymnodinium	sp. 2	14	40.8946	0.01933976	567.5811	23211.018	0.03926617
060	Onondaga Lake	2701787	2/21/2007	North	Grab	Upper Mixed	0-6m	6044	Pyrrhophyta	Peridinium	umbonatum	16	4.5438	0.00214884	603.1858	2740.7843	0.0046366
060	Onondaga Lake	2702230	2/28/2007	North	Grab	Upper Mixed	0-6m	1021	Bacillariophyta	Asterionella	formosa	65	408.9463	0.17493292	627	256409.3182	0.46859619
060	Onondaga Lake	2702230	2/28/2007	North	Grab	Upper Mixed	0-6m	1523	Bacillariophyta	Cyclostephanos	damasii	20	4.5438	0.00194368	3141.5927	14274.9183	0.02608787
060	Onondaga Lake	2702230	2/28/2007	North	Grab	Upper Mixed	0-6m	1152	Bacillariophyta	Fragilaria	crotonensis	72	4.5438	0.0038874	1809.5574	8222.353	0.01502661
060	Onondaga Lake	2702230	2/28/2007	North	Grab	Upper Mixed	0-6m	1468	Bacillariophyta	Stephanodiscus	alpinus	24	4.5438	0.00194368	5428.6721	24667.0585	0.04507983
060	Onondaga Lake	2702230	2/28/2007	North	Grab	Upper Mixed	0-6m	1298	Bacillariophyta	Stephanodiscus	parvus	8.5	363.5078	0.15549592	251.728	91505.0928	0.16722847
060	Onondaga Lake	2702230	2/28/2007	North	Grab	Upper Mixed	0-6m	2683	Chlorophyta			3.4	72,7016	0.0310992	21.8864	1591.1754	0.00290792
060	Onondaga Lake	2702230	2/28/2007	North	Grab	Upper Mixed	0-6m	2080	Chlorophyta	Chlamydomonas		6	18,1754	0.0077748	87.2106	1585.0867	0.0028968
060	Onondaga Lake	2702230	2/28/2007	North	Grab	Upper Mixed	0-6m	2193	Chlorophyta	Crucigenia	tetrapedia	8	4.5438	0.0077748	64	290.8062	0.00053146
060	Onondaga Lake	2702230	2/28/2007	North	Grab	Upper Mixed	0-6m	2363	Chlorophyta	Oocystis	narva	13.2	22 7192	0.038874	86 6032	1967 5587	0.00359578
060	Onondaga Lake	2702230	2/28/2007	North	Grab	Upper Mixed	0-6m	2641	Chlorophyta	Sphaerocystis	schroeteri	10	4 5438	0.0077748	134 0413	609.0632	0.00111308
060	Onondaga Lake	2702230	2/28/2007	North	Grab	Upper Mixed	0-6m	2561	Chlorophyta	Tetrastrum	staurogeniaeforme	8 6667	31 8069	0.05442356	54 5346	1734 5784	0.00111300
060	Onondaga Lake	2702230	2/28/2007	North	Grab	Upper Mixed	0-6m	1591	Chrysophyta	Chromulina	stautogemactornie	1 3333	40.8946	0.01749328	14.1568	1805 7759	0.00330011
060	Onondaga Lake	2702230	2/28/2007	North	Grab	Upper Mixed	0-0m	1731	Chrysophyta	Erkenia	subaequiciliata	4.5555	163 5785	0.06007316	30 2431	4947 1213	0.00000011
000	Onondaga Lake	2702230	2/28/2007	North	Grab	Upper Mixed	0.6m	2015	Cruptophyta	Cruptomonos	subacquicinata	10 222	21 2040	0.00997510	977 0006	27022 2255	0.00904102
060	Onondaga Lake	2702250	2/28/2007	North	Grab	Upper Mixed	0.6m	3015	Cryptophyta	Cryptomonas	erosa	18.333	51.8009	0.01500588	877.9000	27925.5255	0.03105077
060	Onondaga Lake	2702230	2/28/2007	North	Grab	Upper Mixed	0-611	3069	Cryptophyta	Cryptomonas	rostratiformis	0.0000	4.5458	0.00194568	5/09.9112	7061 22	0.05150544
060	Onondaga Lake	2702230	2/28/2007	North	Grab	Upper Mixed	0-6m	3043	Cryptopnyta	Rhodomonas	minuta	8.3333	95.4208	0.04081768	74.002	/061.33	0.01290481
060	Onondaga Lake	2702230	2/28/2007	North	Grab	Upper Mixed	0-6m	3041	Cryptophyta	Rhodomonas	minuta	14.5	249.9116	0.10690344	115.3226	28820.4573	0.0526703
060	Onondaga Lake	2702230	2/28/2007	North	Grab	Upper Mixed	0-6m	4285	Cyanophyta	Synechocystis	•	1.5	218.1047	0.09329756	1./6/1	385.4128	0.00070435
060	Onondaga Lake	2702230	2/28/2007	North	Grab	Upper Mixed	0-6m	7140	Miscellaneous		•	5	381.6832	0.16327072	67.9631	25940.3732	0.04740686
060	Onondaga Lake	2702230	2/28/2007	North	Grab	Upper Mixed	0-6m	6032	Pyrrhophyta	Gymnodinium	sp. 1	40	2.1945	0.00093873	10723.3029	23531.9402	0.04300537
060	Onondaga Lake	2702230	2/28/2007	North	Grab	Upper Mixed	0-6m	6033	Pyrrhophyta	Gymnodinium	sp. 2	12	9.0877	0.0038874	444.8495	4042.6566	0.00738808
060	Onondaga Lake	2702230	2/28/2007	North	Grab	Upper Mixed	0-6m	6040	Pyrrhophyta	Peridinium		16	4.5438	0.00194368	603.1858	2740.7843	0.00500887
060	Onondaga Lake	2702621	3/7/2007	North	Grab	Upper Mixed	0-6m	1021	Bacillariophyta	Asterionella	formosa	59.2	1011.0061	0.17218864	532.8	538664.0413	0.45170745
060	Onondaga Lake	2702621	3/7/2007	North	Grab	Upper Mixed	0-6m	1523	Bacillariophyta	Cyclostephanos	damasii	20	11.3596	0.0019347	3141.5927	35687.2959	0.02992629
060	Onondaga Lake	2702621	3/7/2007	North	Grab	Upper Mixed	0-6m	4272	Bacillariophyta	Diatoma	vulgaris	24	11.3596	0.0019347	678.584	7708.4556	0.00646408
060	Onondaga Lake	2702621	3/7/2007	North	Grab	Upper Mixed	0-6m	1210	Bacillariophyta	Navicula		52	1.9363	0.00032978	2940.5307	5693.7346	0.00477459
060	Onondaga Lake	2702621	3/7/2007	North	Grab	Upper Mixed	0-6m	1298	Bacillariophyta	Stephanodiscus	parvus	8	2658.1508	0.45272068	201.0619	534452.8557	0.44817608
060	Onondaga Lake	2702621	3/7/2007	North	Grab	Upper Mixed	0-6m	1000481	Bacillariophyta	Synedra	radians	52	11.3596	0.0038694	936	10632.6033	0.00891618
060	Onondaga Lake	2702621	3/7/2007	North	Grab	Upper Mixed	0-6m	2683	Chlorophyta			3	136.3154	0.02321644	14.1372	1927.1185	0.00161602
060	Onondaga Lake	2702621	3/7/2007	North	Grab	Upper Mixed	0-6m	2080	Chlorophyta	Chlamydomonas		10	1.9363	0.00032978	519.4184	1005.7472	0.00084339
060	Onondaga Lake	2702621	3/7/2007	North	Grab	Upper Mixed	0-6m	2682	Chlorophyta	Colonial		20	11.3596	0.02321644	402.1239	4567.9743	0.00383057
060	Onondaga Lake	2702621	3/7/2007	North	Grab	Upper Mixed	0-6m	2195	Chlorophyta	Crucigenia	quadrata	10	11.3596	0.00773882	80	908.7695	0.00076207
060	Onondaga Lake	2702621	3/7/2007	North	Grab	Upper Mixed	0-6m	2363	Chlorophyta	Oocvstis	parva	6	34.0789	0.00580412	28.2743	963,5558	0.00080801
060	Onondaga Lake	2702621	3/7/2007	North	Grab	Upper Mixed	0-6m	2910	Chlorophyta	Stichococcus	1	3	56,7981	0.00967352	9.4248	535,3107	0.0004489
060	Onondaga Lake	2702621	3/7/2007	North	Grah	Upper Mixed	0-6m	1591	Chrysophyta	Chromulina		35	113 5962	0.01934704	23 8237	2706 2815	0.00226941
060	Onondaga Lake	2702621	3/7/2007	North	Grab	Upper Mixed	0-6m	3015	Cryptophyta	Cryptomonas	erosa	25 143	15 4904	0.00263823	1182 4356	18316 3521	0.01535954
060	Onondaga Lake	2702621	3/7/2007	North	Grab	Upper Mixed	0-6m	3061	Cryptophyta	Cryptomonas	ovata	23.143	1 9363	0.000203025	1876 578	3633 6084	0.00304703
060	Onondaga Lake	2702621	3/7/2007	North	Grab	Upper Mixed	0-6m	3041	Cryptophyta	Rhodomonas	minuta	12	181 7520	0.00032576	109 8685	19969 0287	0.01674543
060	Onondaga Lake	2702621	3/1/2007	North	Grab	Upper Mixed	0-6m	30/13	Cryptophyta	Rhodomonas	minuta	12	22 7102	0.03073320	33 5102	761 2295	0.01074545
000	Onondaga Lake	2702021	3/1/2007	North	Grab	Upper Mixed	0-6m	1285	Cyanophyta	Synechocystic	minuta	15	1307 2221	0.0036094	17671	2460 0507	0.00003843
060	Onondaga Lake	2702021	3/7/2007	North	Grab	Upper Mixed	0.6m		Durrhophyta	Gymnodinium	sp. 2	1.5	11 2504	0.0010247	167 5514	1003 3222	0.00207047
060	Ononda I -l	2702021	3/1/2007	North	Grab	Upper Mixed	0.6	1021	Popillori	Astorionalla	sp. 2	10	617.0622	0.0019347	107.5510	527751 6267	0.00139007
000	Onondaga Lake	2703034	5/15/2007	INOLUI	Grad	opper wixed	0-011	1021	Бастапорпута	Asterionena	tormosa	03.0	017.9033	0.21023862	870.2	33//31.030/	0.07394115

	2
	×
•	J

				Sample		Depth						Concentration	Relative	Biovolume	Total Biovolume	Relative Total
Job II	D Lake	Site	Date Statio	n Type	Depth	Note	Taxa Code	Division	Genus	Species	GALD	(natural unit/ml)	Concentration (%)	(um3/unit)	(um3/ml)	Biovolume (%)
060	Onondaga Lake	2703034	3/13/2007 North	Grab	Upper Mixed	0-6m	4272	Bacillariophyta	Diatoma	vulgaris	20	18.1754	0.00475653	392.6991	7137.4594	0.00897162
060	Onondaga Lake	2703034	3/13/2007 North	Grab	Upper Mixed	0-6m	1468	Bacillariophyta	Stephanodiscus	alpinus	24	9.0877	0.00237827	5428.6721	49334.117	0.06201182
060	Onondaga Lake	2703034	3/13/2007 North	Grah	Upper Mixed	0-6m	9818	Bacillariophyta	Stephanodiscus	medius	16	2 1945	0.0005743	1608 4954	3529 7909	0.00443686
060	Onondaga Lake	2703034	3/13/2007 North	Grah	Upper Mixed	0-6m	1298	Bacillariophyta	Stephanodiscus	narvus	8 1818	672 4894	0.1759916	216 5557	145631 4214	0.18305527
060	Onondaga Lake	2703034	3/13/2007 North	Grab	Upper Mixed	0-6m	2683	Chlorophyta	biephanouiseus	parvas	0.1010	72.7016	0.01902613	33 5103	2/36 2511	0.00306231
060	Onondaga Lake	2703034	2/12/2007 North	Grab	Upper Mixed	0.6m	2685	Chlorophyta		•		126 2154	0.02567207	18 8406	2560 4012	0.00300251
000		2703034	3/13/2007 North	Grab	Upper Mixed	0-011	2087	Chlorophyta		•	4	130.3134	0.05507597	10.0490	2309.4913	0.00322979
060	Onondaga Lake	2703034	3/13/2007 North	Grab	Upper Mixed	0-6m	2080	Chlorophyta	Chiamydomonas		20	27.2631	0.0071348	206.019	5616./156	0.00706008
060	Onondaga Lake	2703034	3/13/2007 North	Grab	Upper Mixed	0-6m	2682	Chlorophyta	Colonial	· .	20	9.08/7	0.02378266	335.1032	3045.3157	0.00382789
060	Onondaga Lake	2703034	3/13/2007 North	Grab	Upper Mixed	0-6m	2861	Chlorophyta	Monomastix	astigmata	4	36.3508	0.00951307	9.4248	342.5988	0.00043064
060	Onondaga Lake	2703034	3/13/2007 North	Grab	Upper Mixed	0-6m	2363	Chlorophyta	Oocystis	parva	5.3333	27.2631	0.0071348	38.5718	1051.5863	0.00132182
060	Onondaga Lake	2703034	3/13/2007 North	Grab	Upper Mixed	0-6m	1000229	Chlorophyta	Spermatozopsis	exsultans	5	9.0877	0.00237827	33.5103	304.5314	0.00038279
060	Onondaga Lake	2703034	3/13/2007 North	Grab	Upper Mixed	0-6m	2910	Chlorophyta	Stichococcus		3	136.3154	0.03567397	9.4248	1284.7456	0.00161489
060	Onondaga Lake	2703034	3/13/2007 North	Grab	Upper Mixed	0-6m	2561	Chlorophyta	Tetrastrum	staurogeniaeforme	8.6667	63.6139	0.06381622	61.7881	3930.5799	0.00494065
060	Onondaga Lake	2703034	3/13/2007 North	Grab	Upper Mixed	0-6m	1590	Chrysophyta	Chromulina		4	190.8416	0.04994357	37.6991	7194.5565	0.00904339
060	Onondaga Lake	2703034	3/13/2007 North	Grab	Upper Mixed	0-6m	3015	Cryptophyta	Cryptomonas	erosa	16	9.0877	0.00237827	603.1858	5481.5687	0.0068902
060	Onondaga Lake	2703034	3/13/2007 North	Grab	Upper Mixed	0-6m	3041	Cryptophyta	Rhodomonas	minuta	11.333	36.3508	0.00951307	113.7082	4133.3818	0.00519556
060	Onondaga Lake	2703034	3/13/2007 North	Grab	Upper Mixed	0-6m	3043	Cryptophyta	Rhodomonas	minuta	7.3333	81.7893	0.0214044	40.5789	3318.918	0.0041718
060	Onondaga Lake	2703034	3/13/2007 North	Grab	Upper Mixed	0-6m	4054	Cyanophyta	Aphanocapsa	delicatissima	8	9.0877	0.01664786	3.6652	33.3082	0.00004187
060	Onondaga Lake	2703034	3/13/2007 North	Grab	Upper Mixed	0-6m	4285	Cvanophyta	Synechocystis		1.5	1090.5234	0.2853918	1.7671	1927.0639	0.00242227
060	Onondaga Lake	2703034	3/13/2007 North	Grah	Upper Mixed	0-6m	7140	Miscellaneous	~		5 5	54 5262	0.0142696	73 7855	4023 2408	0.00505712
060	Onondaga Lake	2703034	3/13/2007 North	Grab	Upper Mixed	0-6m	6033	Pyrrhonhyta	Gymnodinium	sn 2	16	9 0877	0.00237827	603 1858	5481 5687	0.0068902
060	Onondaga Lake	2700234	4/10/2007 South	Grab	Upper Mixed	0-6m	9141	Bacillariophyta	Anomoeoneis	sp. 2 vitrea	20	6.4912	0.00237627	282 7433	1835 3464	0.00184572
060	Onondaga Lake	2700234	4/10/2007 South	Grab	Upper Mixed	0.6m	1021	Bacillariophyta	Astarionalla	formoso	20 60	522 2702	0.16667822	202.7433	212512 4007	0.21528525
000	Onondaga Lake	2700234	4/10/2007 South	Grab	Upper Mixed	0.6	1021	Dacillariarheta	Cycletelle	ionnosa	00	552.2793	0.10007822	209	515512.4997	0.01026323
060	Onondaga Lake	2700234	4/10/2007 South	Grab	Upper Mixed	0-611	10/1	Bacillariophyta	Cyclotella	sp. 1	0	0.4912	0.00203200	84.823	2462 1869	0.00055572
060	Onondaga Lake	2700234	4/10/2007 South	Grab	Upper Mixed	0-6m	1109	Bacillariophyta	Diatoma	tenuis	40	5.155	0.0009817	/85.3982	2462.1869	0.00247611
060	Onondaga Lake	2700234	4/10/2007 South	Grab	Upper Mixed	0-6m	9286	Bacillariophyta	Gomphonema	olivaceum	20	6.4912	0.00203266	291.292	1890.8378	0.00190153
060	Onondaga Lake	2700234	4/10/2007 South	Grab	Upper Mixed	0-6m	1210	Bacillariophyta	Navicula		40	6.4912	0.00203266	4021.2386	26102.7075	0.0262503
060	Onondaga Lake	2700234	4/10/2007 South	Grab	Upper Mixed	0-6m	1216	Bacillariophyta	Navicula	halophila	24	6.4912	0.00203266	603.1858	3915.4062	0.00393755
060	Onondaga Lake	2700234	4/10/2007 South	Grab	Upper Mixed	0-6m	9818	Bacillariophyta	Stephanodiscus	medius	16	6.4912	0.00203266	1608.4954	10441.0827	0.01050012
060	Onondaga Lake	2700234	4/10/2007 South	Grab	Upper Mixed	0-6m	1298	Bacillariophyta	Stephanodiscus	parvus	7.6	77.8945	0.02439192	177.8141	13850.7457	0.01392906
060	Onondaga Lake	2700234	4/10/2007 South	Grab	Upper Mixed	0-6m	1315	Bacillariophyta	Synedra	ulna	76	3.135	0.0009817	2736	8577.2331	0.00862573
060	Onondaga Lake	2700234	4/10/2007 South	Grab	Upper Mixed	0-6m	2683	Chlorophyta			8	253.1572	0.07927378	268.0826	67867.0462	0.0682508
060	Onondaga Lake	2700234	4/10/2007 South	Grab	Upper Mixed	0-6m	2687	Chlorophyta			6	12.9824	0.00406532	28.2743	367.0689	0.00036914
060	Onondaga Lake	2700234	4/10/2007 South	Grab	Upper Mixed	0-6m	2080	Chlorophyta	Chlamydomonas		6.6667	25.9648	0.00813063	155.4041	4035.0431	0.00405786
060	Onondaga Lake	2700234	4/10/2007 South	Grab	Upper Mixed	0-6m	2861	Chlorophyta	Monomastix	astigmata	4	6.4912	0.00203266	9.4248	61.1784	0.00006152
060	Onondaga Lake	2700234	4/10/2007 South	Grab	Upper Mixed	0-6m	2363	Chlorophyta	Oocystis	parva	5	12.9824	0.00406532	23.5619	305.8905	0.00030762
060	Onondaga Lake	2700234	4/10/2007 South	Grab	Upper Mixed	0-6m	2641	Chlorophyta	Sphaerocystis	schroeteri	20	6.4912	0.01626129	268.0826	1740.1807	0.00175002
060	Onondaga Lake	2700234	4/10/2007 South	Grab	Upper Mixed	0-6m	2910	Chlorophyta	Stichococcus		4	25,9648	0.00813063	12.5664	326.2846	0.00032813
060	Onondaga Lake	2700234	4/10/2007 South	Grah	Upper Mixed	0-6m	2561	Chlorophyta	Tetrastrum	staurogeniaeforme	8	38 9473	0.04878388	49 4361	1925 4009	0.00193629
060	Onondaga Lake	2700234	4/10/2007 South	Grab	Upper Mixed	0-6m	1653	Chrysophyta			6	6 4912	0.00203266	105 6832	686 0119	0.00068989
060	Onondaga Lake	2700234	4/10/2007 South	Grab	Upper Mixed	0-6m	1590	Chrysophyta	Chromulina	·	4	12 9824	0.00406532	33 5103	435 0448	0.0004375
060	Onondaga Lake	2700234	4/10/2007 South	Grab	Upper Mixed	0.6m	3015	Cryptophyta	Cryptomonas	arosa	22	270 1221	0.08740444	1208 6754	337367 0733	0 33027562
000	Onondaga Lake	2700234	4/10/2007 South	Grab	Upper Mixed	0-0111 0.6m	3069	Cryptophyta	Cryptomonas	rostratiformis	40	6 4012	0.00740444	2680 8257	17401 8048	0.0175002
000	Onondaga Lake	2700234	4/10/2007 South	Grab	Upper Mixed	0.6	2041	Cryptophyta	Dhadamanaa		40	191 7520	0.00203200	2080.8237	17401.8048	0.0173002
000		2700234	4/10/2007 South	Grab	Upper Mixed	0-011	3041	Cryptophyta	NIIOdoffioffas	iiiiiuta	12	101./339	0.05091451	94.2478	17129.9033	0.01722077
060	Onondaga Lake	2700234	4/10/2007 South	Grab	Upper Mixed	0-6m	3043	Cryptopnyta	Rhodomonas	minuta	8	636.1387	0.19920081	58.9049	3/4/1.6841	0.03/6835/
060	Onondaga Lake	2700234	4/10/2007 South	Grab	Upper Mixed	0-6m	4062	Cyanophyta	Aphanothece	nidulans	20	6.4912	0.03252259	16.7552	108.7615	0.00010938
060	Onondaga Lake	2700234	4/10/2007 South	Grab	Upper Mixed	0-6m	4285	Cyanophyta	Synechocystis	•	1.5	/01.0508	0.21952742	1.7671	1238.8268	0.00124583
060	Onondaga Lake	2700234	4/10/2007 South	Grab	Upper Mixed	0-6m	7140	Miscellaneous			6	6.4912	0.00203266	105.6832	686.0119	0.00068989
060	Onondaga Lake	2700234	4/10/2007 South	Grab	Upper Mixed	0-6m	6032	Pyrrhophyta	Gymnodinium	sp. 1	24	6.4912	0.00203266	2513.2741	16314.192	0.01640644
060	Onondaga Lake	2700234	4/10/2007 South	Grab	Upper Mixed	0-6m	6033	Pyrrhophyta	Gymnodinium	sp. 2	14	25.9648	0.00813063	458.6725	11909.3596	0.0119767
060	Onondaga Lake	2700234	4/10/2007 South	Grab	Upper Mixed	0-6m	6045	Pyrrhophyta	Peridinium	polonicum	29	19.4736	0.00609797	4373.097	85160.0836	0.08564162
060	Onondaga Lake	2700234	4/10/2007 South	Grab	Upper Mixed	0-6m	6044	Pyrrhophyta	Peridinium	umbonatum	20	6.4912	0.00203266	1340.4129	8700.9027	0.0087501
060	Onondaga Lake	2704003	4/10/2007 North	Grab	Upper Mixed	0-6m	1343	Bacillariophyta	Amphora	pediculus	12	3.7865	0.00229237	218.6548	827.9451	0.00093035
060	Onondaga Lake	2704003	4/10/2007 North	Grab	Upper Mixed	0-6m	9141	Bacillariophyta	Anomoeoneis	vitrea	20	7.5731	0.00458481	502.6548	3806.6446	0.00427746
060	Onondaga Lake	2704003	4/10/2007 North	Grab	Upper Mixed	0-6m	1021	Bacillariophyta	Asterionella	formosa	62.8	471.4242	0.28540356	696.8	328488.3721	0.36911706
060	Onondaga Lake	2704003	4/10/2007 North	Grab	Upper Mixed	0-6m	1076	Bacillariophyta	Cyclotella	meneghiniana	12	3.7865	0.00229237	678.584	2569.4852	0.00288729
	~									-						

21
_

				Sample		Depth						Concentration	Relative	Biovolume	Total Biovolume	Relative Total
Job ID	Lake	Site	Date Station	Type	Depth	Note	Taxa Code	Division	Genus	Species	GALD	(natural unit/ml)	Concentration (%)	(um3/unit)	(um3/ml)	Biovolume (%)
060	Onondaga Lake	2704003	4/10/2007 North	Grab	Upper Mixed	0-6m	9131	Bacillariophyta	Entomoneis	cf ornata	64	3,7865	0.00229237	24127.4316	91359.4761	0.10265916
060	Onondaga Lake	2704003	4/10/2007 North	Grab	Upper Mixed	0-6m	1214	Bacillariophyta	Navicula	cryptocephala	40	3 7865	0.00229237	1570 7963	5947 8825	0.00668354
060	Onondaga Lake	2704003	4/10/2007 North	Grah	Upper Mixed	0-6m	9102	Bacillariophyta	Navicula	tripunctata	44	2 7431	0.00166069	2488 1414	6825 1819	0.00766935
060	Onondaga Lake	2704003	4/10/2007 North	Grab	Upper Mixed	0-6m	9687	Bacillariophyta	Navicula	viridula	50	3 7865	0.00229237	1963 4954	7434 8532	0.00835442
060	Onondaga Lake	2704003	4/10/2007 North	Grab	Upper Mixed	0-6m	1468	Bacillariophyta	Stephanodiscus	alninus	24	15 1462	0.00225257	5428 6721	82223 5284	0.00035442
060	Onondaga Lake	2704003	4/10/2007 North	Grab	Upper Mixed	0-0m	1208	Bacillariophyta	Stephanodiscus	normus	27	140 102	0.08481875	172 0022	24007 8465	0.07257525
000	Onondaga Lake	2704003	4/10/2007 North	Grab	Upper Mixed	0.6m	1290	Chlorophyta	Stephanouiseus	parvus	1.5	22 7102	0.00401075	172.0022	24097.8403	0.02707830
060	Onondaga Lake	2704003	4/10/2007 North	Grab	Upper Mixed	0.6m	2085	Chlorophyta	Chlamudamanas	•	6 2 2 2 2	22.7192	0.01373430	130.7904	5425.9795	0.00364972
000	Onondaga Lake	2704003	4/10/2007 North	Crab	Upper Mixed	0.6m	2080	Chlorophyta	Labamanaa	•	0.3333	2 7965	0.02292398	141.0100	3570.0231	0.00003421
060	Onondaga Lake	2704003	4/10/2007 North	Grab	Upper Mixed	0-6m	2840	Chiorophyta	Lobomonas	· ·	8	3.7865	0.00229237	130.6903	494.864	0.00055607
060	Onondaga Lake	2704003	4/10/2007 North	Grab	Upper Mixed	0-6m	2861	Chlorophyta	Monomastix	astigmata	4	3.7865	0.00229237	9.4248	35.68/4	0.0000401
060	Onondaga Lake	2704003	4/10/2007 North	Grab	Upper Mixed	0-6m	2363	Chlorophyta	Oocystis	parva	5.5	7.5731	0.00458481	36.9137	279.5504	0.00031413
060	Onondaga Lake	2704003	4/10/2007 North	Grab	Upper Mixed	0-6m	2488	Chlorophyta	Scenedesmus	denticulatus	32	3.7865	0.00916962	1340.4129	5075.5266	0.00570329
060	Onondaga Lake	2704003	4/10/2007 North	Grab	Upper Mixed	0-6m	2561	Chlorophyta	Tetrastrum	staurogeniaeforme	9	7.5731	0.01833917	73.7227	558.3079	0.00062736
060	Onondaga Lake	2704003	4/10/2007 North	Grab	Upper Mixed	0-6m	1731	Chrysophyta	Erkenia	subaequiciliata	4	30.2923	0.01833917	30.2431	916.1336	0.00102944
060	Onondaga Lake	2704003	4/10/2007 North	Grab	Upper Mixed	0-6m	3015	Cryptophyta	Cryptomonas	erosa	23	159.0347	0.09628074	861.4945	137007.4891	0.1539531
060	Onondaga Lake	2704003	4/10/2007 North	Grab	Upper Mixed	0-6m	3041	Cryptophyta	Rhodomonas	minuta	11	159.0347	0.09628074	94.2478	14988.6673	0.01684252
060	Onondaga Lake	2704003	4/10/2007 North	Grab	Upper Mixed	0-6m	3043	Cryptophyta	Rhodomonas	minuta	8	477.104	0.28884215	58.9049	28103.7631	0.03157974
060	Onondaga Lake	2704003	4/10/2007 North	Grab	Upper Mixed	0-6m	4166	Cyanophyta	Merismopedia	warmingiana	6	3.7865	0.00916962	0.5236	1.9826	0.00000223
060	Onondaga Lake	2704003	4/10/2007 North	Grab	Upper Mixed	0-6m	7140	Miscellaneous			5	3.7865	0.00229237	41.8879	158.6102	0.00017823
060	Onondaga Lake	2704003	4/10/2007 North	Grab	Upper Mixed	0-6m	6032	Pyrrhophyta	Gymnodinium	sp. 1	20	3.7865	0.00229237	2073.4512	7851.2052	0.00882227
060	Onondaga Lake	2704003	4/10/2007 North	Grab	Upper Mixed	0-6m	6033	Pyrrhophyta	Gymnodinium	sp. 2	12	7.5731	0.00458481	444.8495	3368.8805	0.00378556
060	Onondaga Lake	2704003	4/10/2007 North	Grab	Upper Mixed	0-6m	6045	Pyrrhophyta	Peridinium	polonicum	38	18.9327	0.01146199	6798.4065	128712.1785	0.14463179
060	Onondaga Lake	2704495	4/24/2007 South	Grab	Upper Mixed	0-6m	1021	Bacillariophyta	Asterionella	formosa	64.2	3317.0087	0.46335834	631.8	2095686.112	0.51449784
060	Onondaga Lake	2704495	4/24/2007 South	Grab	Upper Mixed	0-6m	1109	Bacillariophyta	Diatoma	tenuis	53	30.2923	0.00577034	596.9026	18081.5628	0.00443908
060	Onondaga Lake	2704495	4/24/2007 South	Grab	Upper Mixed	0-6m	1160	Bacillariophyta	Gomphonema		24	30.2923	0.00384689	356.3893	10795.8577	0.00265042
060	Onondaga Lake	2704495	4/24/2007 South	Grab	Upper Mixed	0-6m	1210	Bacillariophyta	Navicula		12	15.1462	0.00192345	75.3982	1141.9931	0.00028036
060	Onondaga Lake	2704495	4/24/2007 South	Grab	Upper Mixed	0-6m	1468	Bacillariophyta	Stephanodiscus	alpinus	26	60.5846	0.00769378	6983.7605	423108.5754	0.10387455
060	Onondaga Lake	2704495	4/24/2007 South	Grab	Upper Mixed	0-6m	1298	Bacillariophyta	Stephanodiscus	parvus	7.2	575.554	0.07309098	154.5664	88961.3137	0.0218403
060	Onondaga Lake	2704495	4/24/2007 South	Grab	Upper Mixed	0-6m	1477	Bacillariophyta	Synedra	filiformis	75	30.2923	0.00384689	412.5	12495.5808	0.00306771
060	Onondaga Lake	2704495	4/24/2007 South	Grab	Upper Mixed	0-6m	9504	Bacillariophyta	Synedra	tenera	50	15.1462	0.00192345	312.5	4733.1745	0.00116201
060	Onondaga Lake	2704495	4/24/2007 South	Grab	Upper Mixed	0-6m	2683	Chlorophyta			10	60.5846	0.00769378	900.5899	54561.9097	0.01339513
060	Onondaga Lake	2704495	4/24/2007 South	Grab	Upper Mixed	0-6m	2080	Chlorophyta	Chlamvdomonas		5.1667	106.0231	0.01346413	72,7319	7711.2622	0.00189314
060	Onondaga Lake	2704495	4/24/2007 South	Grab	Upper Mixed	0-6m	2082	Chlorophyta	Chlamydomonas	globosa	5	30.2923	0.00384689	65,4498	1982.6261	0.00048674
060	Onondaga Lake	2704495	4/24/2007 South	Grab	Upper Mixed	0-6m	2861	Chlorophyta	Monomastix	astigmata	4	15.1462	0.00192345	9.4248	142.7495	0.00003505
060	Onondaga Lake	2704495	4/24/2007 South	Grab	Upper Mixed	0-6m	8041	Chlorophyta	Monoraphidium	capricornutum	6	30.2923	0.00384689	12.2741	371.8109	0.00009128
060	Onondaga Lake	2704495	4/24/2007 South	Grab	Upper Mixed	0-6m	2363	Chlorophyta	Oocystis	parva	5.75	106.0231	0.01346413	39.9244	4232.909	0.00103919
060	Onondaga Lake	2704495	4/24/2007 South	Grab	Upper Mixed	0-6m	8399	Chlorophyta	Scenedesmus	acutus	16	15,1462	0.00769378	166.6308	2523.8165	0.00061961
060	Onondaga Lake	2704495	4/24/2007 South	Grab	Upper Mixed	0-6m	2561	Chlorophyta	Tetrastrum	staurogeniaeforme	8	15 1462	0.00769378	28 0858	425 392	0.00010444
060	Onondaga Lake	2704495	4/24/2007 South	Grab	Upper Mixed	0-6m	1590	Chrysophyta	Chromulina		4	30 2923	0.00384689	33 5103	1015 1046	0.00024921
060	Onondaga Lake	2704495	4/24/2007 South	Grab	Upper Mixed	0-6m	1630	Chrysophyta	Uroglena	•	5	15 1462	0.00192345	23 5619	356 8723	0.000021921
060	Onondaga Lake	2704495	4/24/2007 South	Grah	Upper Mixed	0-6m	3015	Cryptophyta	Cryptomonas	erosa	24.2	393 8001	0.05000961	1175 3745	462862 622	0 1136343
060	Onondaga Lake	2704495	4/24/2007 South	Grah	Upper Mixed	0-6m	3069	Cryptophyta	Cryptomonas	rostratiformis	44	15 1462	0.00192345	4607 6692	69788 4883	0.0171333
060	Onondaga Lake	2704495	4/24/2007 South	Grab	Upper Mixed	0-6m	3043	Cryptophyta	Rhodomonas	minuta	7.5	1908 416	0 2423543	29 6357	56557 2434	0.01388499
060	Onondaga Lake	2704495	4/24/2007 South	Grab	Upper Mixed	0-6m	3041	Cryptophyta	Rhodomonas	minuta	12	154 3848	0.05770341	94 2478	42824 7637	0.01051362
060	Onondaga Lake	2704495	4/24/2007 South	Grab	Upper Mixed	0-0m	7140	Miscellaneous	Kilodomonas	mmuta	12	15 1462	0.00102345	30 2431	458 0668	0.00011246
000	Onondaga Lake	2704495	4/24/2007 South	Grab	Upper Mixed	0.6m	6022	Burrhophuto	Cumnodinium	m 1	20	15.1402	0.00192345	2072 4512	21404 9206	0.00011240
060	Onondaga Lake	2704495	4/24/2007 South	Grab	Upper Mixed	0.6m	6034	Purrhophyta	Gymnodinium	sp. 1	20	15.1402	0.00192343	52 2500	702.0512	0.00770999
000	Onondaga Lake	2704495	4/24/2007 South	Crab	Upper Mixed	0.6m	6044	Pyrnopnyta Dymbarbata	Denidinium	sp. 5	20	13.1402	0.00192343	5614 0261	(90)47 4256	0.0001947
060	Onondaga Lake	2704495	4/24/2007 South	Grab	Upper Mixed	0-611	1021	Pyrnopnyta	Periamum	umbonatum	32 CO 090	121.1093	0.01558/58	3014.0201	080247.4550	0.16700299
060	Onondaga Lake	2705015	5/8/2007 South	Grab	Upper Mixed	0-611	1021	Bacillariophyta	Asterionena	Iormosa	60.889	272.0309	0.04296282	000.0007	180118.1200	0.11820142
060	Onondaga Lake	2705015	5/8/2007 South	Grab	Upper Mixed	0-6m	1109	Басшагюрнуta	Diatoma	tenuis	54.727	151.4616	0.02148163	100 521	1003/8.6364	0.0658/28/
060	Onondaga Lake	2705015	5/8/2007 South	Grab	Upper Mixed	0-6m	9045	Басшагюрнуta	Fragilaria	construens	8	15.1462	0.00429632	100.531	1522.6585	0.00099924
060	Onondaga Lake	2/05015	5/8/2007 South	Grab	Upper Mixed	0-6m	1152	Bacillariophyta	Fragilaria	crotonensis	108	2.1945	0.00062247	6107.2561	13402.1753	0.008/951
060	Unondaga Lake	2705015	5/8/2007 South	Grab	Upper Mixed	0-6m	9687	васшагюрнуta	Navicula	viridula	50	2.1945	0.00031124	2827.4334	6204.7108	0.0040718
060	Unondaga Lake	2705015	5/8/2007 South	Grab	Upper Mixed	0-6m	1468	васшагюрнуta	Stephanodiscus	alpinus	24	15.1462	0.00214817	5428.6721	82223.5284	0.05395869
060	Onondaga Lake	2/05015	5/8/2007 South	Grab	Upper Mixed	0-6m	1296	Bacıllarıophyta	Stephanodiscus	hantzschu	10	30.2923	0.00429632	392.6991	11895.7657	0.007/80652
060	Onondaga Lake	2705015	5/8/2007 South	Grab	∪pper Mixed	0-6m	1298	Bacıllariophyta	Stephanodiscus	parvus	7.7	2022.0122	0.28677972	186.3357	3/6773.0526	0.24725502

_	
-	
-	
•	
-	

					Sample		Depth						Concentration	Relative	Biovolume	Total Biovolume	Relative Total
Job IE	Lake	Site	Date	Station	Туре	Depth	Note	Taxa Code	Division	Genus	Species	GALD	(natural unit/ml)	Concentration (%)	(um3/unit)	(um3/ml)	Biovolume (%)
060	Onondaga Lake	2705015	5/8/2007	South	Grab	Upper Mixed	0-6m	1477	Bacillariophyta	Svnedra	filiformis	71	90.877	0.01288898	341.1875	31006.0798	0.02034755
060	Onondaga Lake	2705015	5/8/2007	South	Grah	Upper Mixed	0-6m	9504	Bacillariophyta	Synedra	tenera	80	60 5846	0.00859265	953 3333	57757 3493	0.03790291
060	Onondaga Lake	2705015	5/8/2007	South	Grah	Upper Mixed	0-6m	9776	Bacillariophyta	Synedra	ulna	240	15 1462	0.00214817	3840	58161 2489	0.03816796
060	Onondaga Lake	2705015	5/8/2007	South	Grab	Upper Mixed	0-6m	1315	Bacillariophyta	Synedra	ulna	240	15 1462	0.00214817	17920	271419 1613	0.17811717
060	Onondaga Lake	2705015	5/8/2007	South	Grab	Upper Mixed	0-6m	2683	Chlorophyta	Synedia	unia	200	15 1462	0.00214817	33 5103	507 5523	0.00033308
060	Onondaga Lake	2705015	5/8/2007	South	Grab	Upper Mixed	0-0m	1000031	Chlorophyta	Ankistrodesmus	falcatus	80	15 1462	0.00214817	75 3082	11/1 0031	0.00033308
000	Onondaga Lake	2705015	5/8/2007	South	Crah	Upper Mixed	0.6	2080	Chlananhuta	Chlamadamanaa	Talcatus	80	20.2022	0.00214817	105 6922	2201 220	0.00074943
060	Onondaga Lake	2705015	5/8/2007	South	Grab	Upper Mixed	0-611	2080	Chlorophyta	Calarial	•	20	50.2925	0.00429652	105.0852	3201.389	0.00210089
060	Onondaga Lake	2705015	5/8/2007	South	Grab	Upper Mixed	0-611	2082	Chlorophyta	Colonial	•	52	45.4585	0.09451957	491.4847	22552.5150	0.01465545
060	Onondaga Lake	2705015	5/8/2007	South	Grab	Upper Mixed	0-6m	8041	Chlorophyta	Monoraphidium	capricornutum	4	15.1462	0.00214817	/.8108	118.3036	0.00007764
060	Onondaga Lake	2705015	5/8/2007	South	Grab	Upper Mixed	0-6m	2340	Chlorophyta	Mougeotia	•	160	2.1945	0.00062247	4523.8934	9927.5372	0.00651489
060	Onondaga Lake	2705015	5/8/2007	South	Grab	Upper Mixed	0-6m	2363	Chlorophyta	Oocystis	parva	4	15.1462	0.00214817	18.8496	285.499	0.00018/36
060	Onondaga Lake	2705015	5/8/2007	South	Grab	Upper Mixed	0-6m	2484	Chlorophyta	Scenedesmus	abundans	16	15.1462	0.00859265	56.5487	856.4956	0.00056207
060	Onondaga Lake	2705015	5/8/2007	South	Grab	Upper Mixed	0-6m	2483	Chlorophyta	Scenedesmus	bijuga	5	15.1462	0.00429632	17.017	257.7422	0.00016914
060	Onondaga Lake	2705015	5/8/2007	South	Grab	Upper Mixed	0-6m	2884	Chlorophyta	Scenedesmus	quadricauda	20	15.1462	0.00859265	54.4543	824.7735	0.00054125
060	Onondaga Lake	2705015	5/8/2007	South	Grab	Upper Mixed	0-6m	2561	Chlorophyta	Tetrastrum	staurogeniaeforme	9.3333	45.4385	0.02577795	51.8084	2354.0947	0.00154486
060	Onondaga Lake	2705015	5/8/2007	South	Grab	Upper Mixed	0-6m	1653	Chrysophyta	•	•	6	15.1462	0.00214817	105.6832	1600.6945	0.00105045
060	Onondaga Lake	2705015	5/8/2007	South	Grab	Upper Mixed	0-6m	1590	Chrysophyta	Chromulina		4	90.877	0.01288898	33.5103	3045.3139	0.00199847
060	Onondaga Lake	2705015	5/8/2007	South	Grab	Upper Mixed	0-6m	1127	Chrysophyta	Dinobryon	divergens	36	30.2923	0.00429632	78.5398	2379.1525	0.0015613
060	Onondaga Lake	2705015	5/8/2007	South	Grab	Upper Mixed	0-6m	1129	Chrysophyta	Dinobryon	sertularia	30	15.1462	0.00214817	78.5398	1189.5763	0.00078065
060	Onondaga Lake	2705015	5/8/2007	South	Grab	Upper Mixed	0-6m	1731	Chrysophyta	Erkenia	subaequiciliata	4	15.1462	0.00214817	30.2431	458.0668	0.0003006
060	Onondaga Lake	2705015	5/8/2007	South	Grab	Upper Mixed	0-6m	3015	Cryptophyta	Cryptomonas	erosa	20.889	166.6077	0.02362978	1019.0396	169779.8889	0.11141702
060	Onondaga Lake	2705015	5/8/2007	South	Grab	Upper Mixed	0-6m	3043	Cryptophyta	Rhodomonas	minuta	7.3333	2817.1855	0.39955825	32.1141	90471.3766	0.05937129
060	Onondaga Lake	2705015	5/8/2007	South	Grab	Upper Mixed	0-6m	3041	Cryptophyta	Rhodomonas	minuta	12	30.2923	0.00429632	94.2478	2854.9842	0.00187357
060	Onondaga Lake	2705015	5/8/2007	South	Grab	Upper Mixed	0-6m	7140	Miscellaneous			4	30.2923	0.00429632	11.3228	342.9938	0.00022509
060	Onondaga Lake	2705015	5/8/2007	South	Grab	Upper Mixed	0-6m	6032	Pyrrhophyta	Gymnodinium	sp. 1	32	2.1945	0.00031124	8471.4093	18590.2327	0.01219973
060	Onondaga Lake	2705015	5/8/2007	South	Grab	Upper Mixed	0-6m	6033	Pyrrhophyta	Gymnodinium	sp. 2	12	2.1945	0.00031124	201.0619	441.2238	0.00028955
060	Onondaga Lake	2705557	5/22/2007	South	Grab	Upper Mixed	0-6m	1021	Bacillariophyta	Asterionella	formosa	70	181.7539	0.01580084	840	152673.2782	0.07549218
060	Onondaga Lake	2705557	5/22/2007	South	Grab	Upper Mixed	0-6m	1109	Bacillariophyta	Diatoma	tenuis	46.2	1454.0312	0.1264067	574.9115	835939.2705	0.41334593
060	Onondaga Lake	2705557	5/22/2007	South	Grab	Upper Mixed	0-6m	9045	Bacillariophyta	Fragilaria	construens	20	22.7192	0.00790042	141.3717	3211.8573	0.00158816
060	Onondaga Lake	2705557	5/22/2007	South	Grab	Upper Mixed	0-6m	1152	Bacillariophyta	Fragilaria	crotonensis	96	4 3889	0.00183146	9047 7868	39710 1489	0.01963543
060	Onondaga Lake	2705557	5/22/2007	South	Grah	Upper Mixed	0-6m	9123	Bacillariophyta	Nitzschia	nalea	24	22 7192	0.0019751	150 7964	3425 9793	0.00169404
060	Onondaga Lake	2705557	5/22/2007	South	Grah	Upper Mixed	0-6m	1298	Bacillariophyta	Stephanodiscus	parvus	6	181 7539	0.01580084	84 823	15/16 9113	0.00762318
060	Onondaga Lake	2705557	5/22/2007	South	Grab	Upper Mixed	0-6m	1477	Bacillariophyta	Svnedra	filiformis	78.8	1294 9966	0 11258098	360.2	466457 7596	0.23064883
060	Onondaga Lake	2705557	5/22/2007	South	Grab	Upper Mixed	0-0m	0776	Bacillariophyta	Synedra	ulna	240	22 7102	0.0010751	3840	872/1 8733	0.04313830
060	Onondaga Lake	2705557	5/22/2007	South	Grab	Upper Mixed	0-0m	2080	Chlorophyta	Chlamydomonas	uma	240	22.7192	0.0019751	105 6832	2401 0418	0.00118724
060	Onondaga Lake	2705557	5/22/2007	South	Grab	Upper Mixed	0-6m	2363	Chlorophyta	Occustis	narva	5	22.7192	0.0019751	23 5619	535 3084	0.000116724
060	Onondaga Lake	2705557	5/22/2007	South	Grab	Upper Mixed	0-0m	2303	Chlorophyta	Scanadasmus	biinga	10	22.7192	0.00305021	83 7758	1003 3223	0.00020409
000	Onondaga Lake	2705557	5/22/2007	South	Grab	Upper Mixed	0.6m	2403	Chlorophyta	Scenedesmus	oijuga	16	22.7192	0.00395021	28 27 42	642 2705	0.00034113
000	Onondaga Lake	2705557	5/22/2007	South	Grab	Upper Mixed	0.6	2004	Chronophyta	Channeling	quadricauda	10	22.7192	0.00393021	26.2743	1496 0606	0.00031703
060	Onondaga Lake	2705557	5/22/2007	South	Grab	Upper Mixed	0-611	1390	Chrysophyta	Dinahman		20	22.7192	0.0019751	79 5209	1480.9090	0.00075520
060	Onondaga Lake	2705557	5/22/2007	South	Grab	Upper Mixed	0-611	1127	Chrysophyta	Dinobryon	divergens	30	22.7192	0.0019751	78.3398	1/84.3044	0.00088231
060	Onondaga Lake	2705557	5/22/2007	South	Grab	Upper Mixed	0-611	1128	Chrysophyta	Dinobryon	divergens	94.007	33.1113	0.01220971	323.3988	16364.3292	0.00909048
060	Onondaga Lake	2705557	5/22/2007	South	Grab	Upper Mixed	0-6m	1/31	Chrysophyta	Erkenia	subaequiciliata	4	3884.9897	0.33774292	30.2431	11/494.1311	0.05809/19
060	Onondaga Lake	2705557	5/22/2007	South	Grab	Upper Mixed	0-6m	1180	Chrysophyta	Mallomonas	•	20	22.7192	0.0019751	837.758	19033.2232	0.00941134
060	Onondaga Lake	2705557	5/22/2007	South	Grab	Upper Mixed	0-6m	1631	Chrysophyta	Uroglena	•	5	22.7192	0.0019751	41.8879	951.6612	0.00047057
060	Onondaga Lake	2705557	5/22/2007	South	Grab	Upper Mixed	0-6m	3015	Cryptophyta	Cryptomonas	erosa	16	68.1577	0.00592531	477.5221	32546.8145	0.01609339
060	Onondaga Lake	2705557	5/22/2007	South	Grab	Upper Mixed	0-6m	3043	Cryptophyta	Rhodomonas	minuta	80	3476.0434	0.30219103	33.5103	116483.2568	0.05759734
060	Onondaga Lake	2705557	5/22/2007	South	Grab	Upper Mixed	0-6m	4285	Cyanophyta	Synechocystis	•	1.5	408.9463	0.03555189	1.7671	722.649	0.00035733
060	Onondaga Lake	2705557	5/22/2007	South	Grab	Upper Mixed	0-6m	6033	Pyrrhophyta	Gymnodinium	sp. 2	14	22.7192	0.0019751	366.5191	8327.0346	0.00411746
060	Onondaga Lake	2705557	5/22/2007	South	Grab	Upper Mixed	0-6m	6044	Pyrrhophyta	Peridinium	umbonatum	52	4.3889	0.00038155	21781.7091	95598.5073	0.04727048
060	Onondaga Lake	2705989	6/5/2007	South	Grab	Upper Mixed	0-3m	1021	Bacillariophyta	Asterionella	formosa	64	72.7016	0.00760349	800	58161.2489	0.02774596
060	Onondaga Lake	2705989	6/5/2007	South	Grab	Upper Mixed	0-3m	1076	Bacillariophyta	Cyclotella	meneghiniana	12	36.3508	0.00380175	678.584	24667.0581	0.01176748
060	Onondaga Lake	2705989	6/5/2007	South	Grab	Upper Mixed	0-3m	9363	Bacillariophyta	Cyclotella	ocellata	8.3333	181.7539	0.01900872	308.3997	56052.8491	0.02674014
060	Onondaga Lake	2705989	6/5/2007	South	Grab	Upper Mixed	0-3m	1109	Bacillariophyta	Diatoma	tenuis	54	1181.4004	0.12355668	557.6327	658787.4766	0.31427613
060	Onondaga Lake	2705989	6/5/2007	South	Grab	Upper Mixed	0-3m	1152	Bacillariophyta	Fragilaria	crotonensis	84	18.1754	0.00570262	3166.7254	57556.47	0.02745745
060	Onondaga Lake	2705989	6/5/2007	South	Grab	Upper Mixed	0-3m	1221	Bacillariophyta	Nitzschia	acicularis	40	18.1754	0.00190087	141.3717	2569.4858	0.00122578
060	Onondaga Lake	2705989	6/5/2007	South	Grab	Upper Mixed	0-3m	1298	Bacillariophyta	Stephanodiscus	parvus	6	18.1754	0.00190087	84.823	1541.6911	0.00073547

	•
r	÷
ι	J
- 2	-

					Sample		Depth						Concentration	Relative	Biovolume	Total Biovolume	Relative Total
Job ID	Lake	Site	Date	Station	Туре	Depth	Note	Taxa Code	Division	Genus	Species	GALD	(natural unit/ml)	Concentration (%)	(um3/unit)	(um3/ml)	Biovolume (%)
060	Onondaga Lake	2705989	6/5/2007	South	Grab	Upper Mixed	0-3m	1477	Bacillariophyta	Svnedra	filiformis	84.889	708.8402	0.0823703	790.1111	560062.5263	0.26717916
060	Onondaga Lake	2705989	6/5/2007	South	Grah	Upper Mixed	0-3m	9776	Bacillariophyta	Synedra	ulna	220	36 3508	0.00380175	7920	287898 1818	0 13734251
060	Onondaga Lake	2705989	6/5/2007	South	Grah	Upper Mixed	0-3m	2683	Chlorophyta	oynodiu	unu	6	109.0523	0.01140523	113 0973	12333 5254	0.00588374
060	Onondaga Lake	2705989	6/5/2007	South	Grah	Upper Mixed	0-3m	2080	Chlorophyta	Chlamydomonas	•	8	18 1754	0.00190087	254 846	4631 9255	0.00220967
060	Onondaga Lake	2705989	6/5/2007	South	Grab	Upper Mixed	0.3m	1000012	Chlorophyta	Closterium		120	18 1754	0.00190087	804 2477	14617 5158	0.00220907
000	Onondaga Lake	2705989	6/5/2007	South Canth	Crah	Upper Mixed	0.2	8101	Chlorophyta	Demanishlamore	"	120	10.1754	0.00190087	419.970	7612 2002	0.00097332
060	Onondaga Lake	2705989	6/5/2007	South	Grab	Upper Mixed	0-511	8101	Chlorophyta	Pyramicmaniys	dissecta	10	18.1754	0.00190087	418.879	/015.2895	0.00303194
060	Onondaga Lake	2705989	6/5/2007	South	Grab	Upper Mixed	0-3m	8303	Chlorophyta	Scenedesmus	opoliensis	16	18.1/54	0.00760349	25.1327	456.7966	0.00021792
060	Onondaga Lake	2705989	6/5/2007	South	Grab	Upper Mixed	0-3m	2884	Chlorophyta	Scenedesmus	quadricauda	21	36.3508	0.01140523	124.0929	4510.8738	0.00215192
060	Onondaga Lake	2705989	6/5/2007	South	Grab	Upper Mixed	0-3m	2501	Chlorophyta	Selenastrum	minutum	6	18.1754	0.00190087	21.1595	384.5822	0.00018347
060	Onondaga Lake	2705989	6/5/2007	South	Grab	Upper Mixed	0-3m	1731	Chrysophyta	Erkenia	subaequiciliata	4	4580.1983	0.47901971	30.2431	138519.3966	0.06608101
060	Onondaga Lake	2705989	6/5/2007	South	Grab	Upper Mixed	0-3m	1631	Chrysophyta	Uroglena		6	572.5248	0.05987747	50.2655	28778.245	0.01372873
060	Onondaga Lake	2705989	6/5/2007	South	Grab	Upper Mixed	0-3m	3015	Cryptophyta	Cryptomonas	erosa	20.667	72.7016	0.00760349	1083.5004	78772.1705	0.03757845
060	Onondaga Lake	2705989	6/5/2007	South	Grab	Upper Mixed	0-3m	3043	Cryptophyta	Rhodomonas	minuta	8	1181.4004	0.12355668	33.5103	39589.0807	0.01888607
060	Onondaga Lake	2705989	6/5/2007	South	Grab	Upper Mixed	0-3m	4285	Cyanophyta	Synechocystis		1.5	381.6832	0.03991831	1.7671	674.4724	0.00032176
060	Onondaga Lake	2705989	6/5/2007	South	Grab	Upper Mixed	0-3m	6033	Pyrrhophyta	Gymnodinium	sp. 2	16	18.1754	0.00190087	603.1858	10963.1373	0.00522999
060	Onondaga Lake	2705989	6/5/2007	South	Grab	Upper Mixed	0-3m	6044	Pyrrhophyta	Peridinium	umbonatum	40	4.3889	0.00045901	10723.3029	47063.8803	0.02245194
060	Onondaga Lake	2706584	6/19/2007	South	Grab	Upper Mixed	0-6m	9363	Bacillariophyta	Cyclotella	ocellata	5	9.0877	0.00356131	98.1748	892.1827	0.00336072
060	Onondaga Lake	2706584	6/19/2007	South	Grab	Upper Mixed	0-6m	1477	Bacillariophyta	Synedra	filiformis	70	4.5438	0.00178064	280	1272.2773	0.00479247
060	Onondaga Lake	2706584	6/19/2007	South	Grab	Upper Mixed	0-6m	2683	Chlorophyta			4.3333	177.2101	0.06944551	48.8692	8660.1136	0.03262132
060	Onondaga Lake	2706584	6/19/2007	South	Grab	Upper Mixed	0-6m	2080	Chlorophyta	Chlamydomonas		6	13.6315	0.00534194	128,2335	1748.0204	0.00658452
060	Onondaga Lake	2706584	6/19/2007	South	Grah	Upper Mixed	0-6m	2211	Chlorophyta	Dictyosphaerium	nulchellum	6	4 5438	0.00534194	41 8479	190 1505	0.00071627
060	Onondaga Lake	2706584	6/19/2007	South	Grah	Upper Mixed	0-6m	2861	Chlorophyta	Monomastix	astigmata	5	4.5438	0.00178064	11 781	53 5311	0.00071027
060	Onondaga Lake	2706584	6/19/2007	South	Grah	Upper Mixed	0-6m	8041	Chlorophyta	Monoranhidium	capricornutum	1	77 2454	0.03027111	7 8108	603 3484	0.00020104
060	Onondaga Lake	2706584	6/10/2007	South	Grab	Upper Mixed	0.6m	2262	Chlorophyta	Ocavetie	Parrie	7 5 1 5 5	50.07	0.03027111	08 2105	5801 204	0.00125250
000	Onondaga Lake	2700384	6/10/2007	South	Crah	Upper Mixed	0.6	2303	Chlorenhute	Dediestrum	pai va	7.5455	J9.07	0.033770	96.2103	11062.027	0.02163239
060	Onondaga Lake	2706584	6/19/2007	South	Grab	Upper Mixed	0.6m	2389	Chlorophyta	Pediastrum Samadaamuu	boryanum	60	4.5458	0.02849047	2434.7047	1062.927	0.04107233
060	Onondaga Lake	2706584	6/19/2007	South	Grab	Upper Mixed	0-611	2485	Chlorophyta	Scenedesmus	bijuga	0	4.5458	0.00536131	28.2745	128.4741	0.00048594
060	Onondaga Lake	2706584	6/19/2007	South	Grab	Upper Mixed	0-6m	2884	Chlorophyta	Scenedesmus	quadricauda	28	4.5438	0.00/12262	314.1593	1427.492	0.00537714
060	Onondaga Lake	2706584	6/19/2007	South	Grab	Upper Mixed	0-6m	2501	Chlorophyta	Selenastrum	minutum	6	127.2277	0.04985829	32.0285	40/4.9134	0.01534957
060	Onondaga Lake	2706584	6/19/2007	South	Grab	Upper Mixed	0-6m	2910	Chlorophyta	Stichococcus		4	27.2631	0.01068393	7.0686	192.7118	0.00072592
060	Onondaga Lake	2706584	6/19/2007	South	Grab	Upper Mixed	0-6m	1590	Chrysophyta	Chromulina		4	9.0877	0.00356131	33.5103	304.5314	0.00114712
060	Onondaga Lake	2706584	6/19/2007	South	Grab	Upper Mixed	0-6m	1123	Chrysophyta	Dinobryon	•	10	31.8069	0.01246456	130.8997	4163.518	0.01568333
060	Onondaga Lake	2706584	6/19/2007	South	Grab	Upper Mixed	0-6m	1128	Chrysophyta	Dinobryon	divergens	86.333	49.9823	0.06855516	879.1084	43939.8802	0.16551478
060	Onondaga Lake	2706584	6/19/2007	South	Grab	Upper Mixed	0-6m	1127	Chrysophyta	Dinobryon	divergens	36	4.5438	0.00178064	157.0796	713.7458	0.00268857
060	Onondaga Lake	2706584	6/19/2007	South	Grab	Upper Mixed	0-6m	1731	Chrysophyta	Erkenia	subaequiciliata	4	790.6295	0.30983376	30.2431	23911.0863	0.09006939
060	Onondaga Lake	2706584	6/19/2007	South	Grab	Upper Mixed	0-6m	1569	Chrysophyta	Kephyrion	gracilis	8	4.5438	0.00178064	18.8496	85.6497	0.00032263
060	Onondaga Lake	2706584	6/19/2007	South	Grab	Upper Mixed	0-6m	1631	Chrysophyta	Uroglena		5	13.6315	0.00534194	41.8879	570.9967	0.00215086
060	Onondaga Lake	2706584	6/19/2007	South	Grab	Upper Mixed	0-6m	3015	Cryptophyta	Cryptomonas	erosa	17.2	59.07	0.02314849	704.764	41630.4224	0.1568154
060	Onondaga Lake	2706584	6/19/2007	South	Grab	Upper Mixed	0-6m	3018	Cryptophyta	Cryptomonas	lucens	10	13.6315	0.00534194	118.6824	1617.8242	0.0060941
060	Onondaga Lake	2706584	6/19/2007	South	Grab	Upper Mixed	0-6m	3043	Cryptophyta	Rhodomonas	minuta	6	776.9979	0.30449177	22.1657	17222.7031	0.06487528
060	Onondaga Lake	2706584	6/19/2007	South	Grab	Upper Mixed	0-6m	4285	Cvanophyta	Synechocystis		1.5	22,7192	0.00890325	1.7671	40.1472	0.00015123
060	Onondaga Lake	2706584	6/19/2007	South	Grab	Upper Mixed	0-6m	6044	Pyrrhophyta	Peridinium	umbonatum	50	4,5438	0.00178064	20943.951	95166.1208	0.35847615
060	Onondaga Lake	2706601	6/19/2007	North	Grah	Upper Mixed	0-6m	9363	Bacillariophyta	Cyclotella	ocellata	5	18 1754	0.00341987	98 1748	1784 3653	0.00776926
060	Onondaga Lake	2706601	6/19/2007	North	Grah	Upper Mixed	0-6m	1109	Bacillariophyta	Diatoma	tenuis	60	9 0877	0.00170993	753 9822	6851 9604	0.02983393
060	Onondaga Lake	2706601	6/19/2007	North	Grah	Upper Mixed	0-6m	1222	Bacillariophyta	Nitzschia	gracilis	60	9.0877	0.00170993	376 9911	3425 9802	0.01/91697
060	Onondaga Lake	2706601	6/19/2007	North	Grab	Upper Mixed	0-0m	1222	Bacillariophyta	Stanhanodiscus	paraus	6	36 3508	0.00683074	84 823	3083 3823	0.01342527
000	Onondaga Lake	2706601	6/10/2007	North	Grab	Upper Mixed	0.6m	0504	Bacillariophyta	Supadra	tanara	60	2 1045	0.00033374	04.823	2106 6999	0.001342327
060	Onondaga Lake	2706601	6/19/2007	North	Grab	Upper Mixed	0.6m	9504	Chlorophyta	Syneura	tenera	2 25	2.1943	0.00041292	18 0805	2100.0888	0.12166670
000	Onondaga Lake	2706601	6/10/2007	North	Crah	Upper Mixed	0.6	2085	Chlorenhute	Chlannadannana	•	5.25	1472.2000	0.27700920	18.9803	2/945.2170	0.12100079
060	Onondaga Lake	2706601	6/19/2007	North	Grab	Upper Mixed	0-6m	2080	Chlorophyta	Chiamydomonas	• .	5	18.1754	0.00341987	64.9273	1180.079	0.00513815
060	Onondaga Lake	2706601	6/19/2007	North	Grab	Upper Mixed	0-6m	21/1	Chlorophyta	Coelastrum	microporum	32	4.3889	0.00660655	1436.755	6305.8244	0.02745601
060	Unondaga Lake	2706601	6/19/2007	North	Grab	Upper Mixed	0-6m	2363	Chlorophyta	Oocystis	parva	8.2857	318.0693	0.15389233	84.2994	26813.0536	0.11674597
060	Onondaga Lake	2706601	6/19/2007	North	Grab	Upper Mixed	0-6m	2367	Chlorophyta	Oocystis	pusilla	4	36.3508	0.00683974	8.3776	304.5323	0.00132596
060	Onondaga Lake	2706601	6/19/2007	North	Grab	Upper Mixed	0-6m	2389	Chlorophyta	Pediastrum	boryanum	40	2.1945	0.00578072	1298.1921	2848.8404	0.01240406
060	Onondaga Lake	2706601	6/19/2007	North	Grab	Upper Mixed	0-6m	2484	Chlorophyta	Scenedesmus	abundans	16	9.0877	0.00341987	83.7758	761.3289	0.00331488
060	Onondaga Lake	2706601	6/19/2007	North	Grab	Upper Mixed	0-6m	2884	Chlorophyta	Scenedesmus	quadricauda	20	18.1754	0.01025961	92.1534	1674.924	0.00729274
060	Onondaga Lake	2706601	6/19/2007	North	Grab	Upper Mixed	0-6m	8308	Chlorophyta	Scenedesmus	serratus	16	9.0877	0.00683974	167.5516	1522.6579	0.00662976
060	Onondaga Lake	2706601	6/19/2007	North	Grab	Upper Mixed	0-6m	2501	Chlorophyta	Selenastrum	minutum	8	327.157	0.06155761	29.0943	9518.4046	0.04144382

					Sample		Depth						Concentration	Relative	Biovolume	Total Biovolume	Relative Total
Job IE	D Lake	Site	Date	Station	Туре	Depth	Note	Taxa Code	Division	Genus	Species	GALD	(natural unit/ml)	Concentration (%)	(um3/unit)	(um3/ml)	Biovolume (%)
060	Onondaga Lake	2706601	6/19/2007	North	Grab	Upper Mixed	0-6m	2910	Chlorophyta	Stichococcus		3.5	163.5785	0.03077881	6.185	1011.7331	0.00440516
060	Onondaga Lake	2706601	6/19/2007	North	Grab	Upper Mixed	0-6m	1123	Chrysophyta	Dinobryon		16	45 4385	0.00854967	209 4395	9516 6116	0.04143601
060	Onondaga Lake	2706601	6/19/2007	North	Grah	Upper Mixed	0-6m	1128	Chrysophyta	Dinobryon	divergens	66 667	36 3508	0.01595916	366 5191	13323 2554	0.05801042
060	Onondaga Lake	2706601	6/19/2007	North	Grab	Upper Mixed	0-0m	1120	Chrysophyta	Dinobryon	divergens	36	36 3508	0.00683074	104 7108	3806 6465	0.01657441
000	Onondaga Lake	2706601	6/19/2007	North	Grab	Upper Mixed	0.6m	1127	Chrysophyta	Enhania	uivergens	30	1200 4174	0.00063974	20.2421	42050 5211	0.01037441
060	Onondaga Lake	2706601	6/19/2007	North	Grab	Upper Mixed	0-6m	1/31	Chrysophyta	Erkenia	subaequicinata	4	1390.4174	0.26161987	30.2431	42050.5311	0.18309105
060	Onondaga Lake	2706601	6/19/2007	North	Grab	Upper Mixed	0-6m	3015	Cryptophyta	Cryptomonas	erosa	15.778	99.9646	0.01880926	472.6352	47246.8107	0.20571603
060	Onondaga Lake	2706601	6/19/2007	North	Grab	Upper Mixed	0-6m	3043	Cryptophyta	Rhodomonas	minuta	7	490.7355	0.09233642	33.5103	16444.6951	0.07160139
060	Onondaga Lake	2706601	6/19/2007	North	Grab	Upper Mixed	0-6m	4285	Cyanophyta	Synechocystis		1.5	81.7893	0.01538941	1.7671	144.5298	0.00062929
060	Onondaga Lake	2707237	7/3/2007	South	Grab	Upper Mixed	0-6m	9363	Bacillariophyta	Cyclotella	ocellata	5	45.4385	0.00110791	98.1748	4460.9133	0.00460779
060	Onondaga Lake	2707237	7/3/2007	South	Grab	Upper Mixed	0-6m	1468	Bacillariophyta	Stephanodiscus	alpinus	24	4.3889	0.00010701	5428.6721	23826.0894	0.02461057
060	Onondaga Lake	2707237	7/3/2007	South	Grab	Upper Mixed	0-6m	9504	Bacillariophyta	Synedra	tenera	60	4.3889	0.00010701	540	2370.0249	0.00244806
060	Onondaga Lake	2707237	7/3/2007	South	Grab	Upper Mixed	0-6m	2683	Chlorophyta			2.7	37077.7961	0.90405269	11.8988	441181.2807	0.45570724
060	Onondaga Lake	2707237	7/3/2007	South	Grab	Upper Mixed	0-6m	2162	Chlorophyta	Closterium	moniliferum	52	13.1668	0.00032104	423.1895	5572.0537	0.00575551
060	Onondaga Lake	2707237	7/3/2007	South	Grab	Upper Mixed	0-6m	8041	Chlorophyta	Monoraphidium	capricornutum	4	45.4385	0.00110791	7.8108	354,9108	0.0003666
060	Onondaga Lake	2707237	7/3/2007	South	Grab	Upper Mixed	0-6m	2363	Chlorophyta	Oocvstis	parva	12.333	136.3154	0.00775524	292.6917	39898.3941	0.04121205
060	Onondaga Lake	2707237	7/3/2007	South	Grab	Upper Mixed	0-6m	2484	Chlorophyta	Scenedesmus	abundans	12	90.877	0.00443163	12 5664	1141 9961	0.0011796
060	Onondaga Lake	2707237	7/3/2007	South	Grah	Upper Mixed	0-6m	2483	Chlorophyta	Scenedesmus	bijuga	16	13 1668	0.00128416	134 0413	1764 8957	0.00182301
060	Onondaga Lake	2707237	7/3/2007	South	Grab	Upper Mixed	0-6m	2485	Chlorophyta	Scenedesmus	denticulatus	24	15.1000	0.00120410	/18 879	19033 2232	0.00102501
000	Onondaga Lake	2707237	7/3/2007	South	Crab	Upper Mixed	0.6m	2400	Chlanarhuta	Scenedesinus Carradaansa	actiticulatus	11 222	45.4565	0.00445105	410.079	2954 2222	0.01905989
000		2707237	7/3/2007	South	Giab		0-011	2004	Chlorophyta	Scelleuesillus	quadricauda	11.555	130.3134	0.00555905	26.2743	3034.2233	0.00398112
060	Onondaga Lake	2707237	7/3/2007	South	Grab	Upper Mixed	0-6m	2501	Chlorophyta	Selenastrum	minutum	8	545.2617	0.01329489	36.1612	19/1/.31//	0.02036651
060	Onondaga Lake	2707237	7/3/2007	South	Grab	Upper Mixed	0-6m	1123	Chrysophyta	Dinobryon	•	12	45.4385	0.00110791	226.1947	10277.9424	0.01061635
060	Onondaga Lake	2707237	7/3/2007	South	Grab	Upper Mixed	0-6m	1128	Chrysophyta	Dinobryon	divergens	120	21.9447	0.00428054	837.758	18384.3274	0.01898963
060	Onondaga Lake	2707237	7/3/2007	South	Grab	Upper Mixed	0-6m	1411	Chrysophyta	Dinobryon	sertularia	30	45.4385	0.00221582	314.1593	14274.9197	0.01474492
060	Onondaga Lake	2707237	7/3/2007	South	Grab	Upper Mixed	0-6m	3015	Cryptophyta	Cryptomonas	erosa	18.571	363.5078	0.00886326	846.1356	307576.895	0.31770391
060	Onondaga Lake	2707237	7/3/2007	South	Grab	Upper Mixed	0-6m	3043	Cryptophyta	Rhodomonas	minuta	7	1635.7851	0.03988468	29.3215	47963.6735	0.04954288
060	Onondaga Lake	2707237	7/3/2007	South	Grab	Upper Mixed	0-6m	6044	Pyrrhophyta	Peridinium	umbonatum	22	4.3889	0.00010701	1474.4542	6471.2838	0.00668435
060	Onondaga Lake	2707686	7/17/2007	South	Grab	Upper Mixed	0-6m	1013	Bacillariophyta	Achnanthes	minutissima	12	60.5846	0.00427152	150.7964	9135.9447	0.0089735
060	Onondaga Lake	2707686	7/17/2007	South	Grab	Upper Mixed	0-6m	1076	Bacillariophyta	Cyclotella	meneghiniana	12	60.5846	0.00427152	852.9424	51675.2033	0.0507564
060	Onondaga Lake	2707686	7/17/2007	South	Grab	Upper Mixed	0-6m	9363	Bacillariophyta	Cvclotella	ocellata	5	121.1693	0.00854305	98.1748	11895.7687	0.01168426
060	Onondaga Lake	2707686	7/17/2007	South	Grab	Upper Mixed	0-6m	1298	Bacillariophyta	Stephanodiscus	narvus	6	181 7539	0.01281456	84 823	15416 9113	0.01514279
060	Onondaga Lake	2707686	7/17/2007	South	Grah	Upper Mixed	0-6m	2683	Chlorophyta	otephanouseus	partas	12	2726 3085	0 19221847	39 8982	108774 8034	0.1068/075
060	Onondaga Lake	2707686	7/17/2007	South	Grab	Upper Mixed	0-0m	2080	Chlorophyta	Chlamydomonas		2	2720.3003	0.00213576	105 6832	3201 380	0.00314447
000	Onondaga Lake	2707686	7/17/2007	South	Grab	Upper Mixed	0.6m	2080	Chlorophyta	Coalastrum	naudomiaranorum	20	4 2880	0.00213570	004 7787	2071.015	0.00314447
000		2707080	7/17/2007	South	Giab		0-011	2175	Chlorophyta	Coelastiulii	pseudoinicroporum	20	4.3009	0.00247334	904.7787	570,0001	0.00390041
060	Onondaga Lake	2707686	7/17/2007	South	Grab	Upper Mixed	0-6m	2861	Chlorophyta	Monomastix	astigmata	4	60.5846	0.00427152	9.4248	570.9981	0.00056085
060	Onondaga Lake	2707686	//1//2007	South	Grab	Upper Mixed	0-6m	8041	Chlorophyta	Monoraphidium	capricornutum	4	60.5846	0.0042/152	/.8108	4/3.2145	0.0004648
060	Onondaga Lake	2707686	//1//2007	South	Grab	Upper Mixed	0-6m	2363	Chlorophyta	Oocystis	parva	12	333.2155	0.0391564	164.7591	54900.2839	0.05392414
060	Onondaga Lake	2707686	7/17/2007	South	Grab	Upper Mixed	0-6m	2367	Chlorophyta	Oocystis	pusilla	4	60.5846	0.00427152	4.7124	285.499	0.00028042
060	Onondaga Lake	2707686	7/17/2007	South	Grab	Upper Mixed	0-6m	2381	Chlorophyta	Pediastrum		40	30.2923	0.02349337	1090.1595	33023.4573	0.03243629
060	Onondaga Lake	2707686	7/17/2007	South	Grab	Upper Mixed	0-6m	2483	Chlorophyta	Scenedesmus	bijuga	14.667	90.877	0.02562913	130.5506	11864.0405	0.01165309
060	Onondaga Lake	2707686	7/17/2007	South	Grab	Upper Mixed	0-6m	2884	Chlorophyta	Scenedesmus	quadricauda	28	90.877	0.02562913	329.8672	29977.3255	0.02944432
060	Onondaga Lake	2707686	7/17/2007	South	Grab	Upper Mixed	0-6m	2491	Chlorophyta	Schroederia	judayi	20	30.2923	0.00213576	18.8496	570.9981	0.00056085
060	Onondaga Lake	2707686	7/17/2007	South	Grab	Upper Mixed	0-6m	2501	Chlorophyta	Selenastrum	minutum	8	121.1693	0.00854305	23.8044	2884.3617	0.00283308
060	Onondaga Lake	2707686	7/17/2007	South	Grab	Upper Mixed	0-6m	2910	Chlorophyta	Stichococcus		3	30.2923	0.00213576	5.3014	160.5917	0.00015774
060	Onondaga Lake	2707686	7/17/2007	South	Grab	Upper Mixed	0-6m	8332	Chlorophyta	Tetraedron	muticum	7.6667	333.2155	0.02349337	100.1	33354.8704	0.03276181
060	Onondaga Lake	2707686	7/17/2007	South	Grab	Upper Mixed	0-6m	2571	Chlorophyta	Treubaria	setigera	48	4 3889	0.00030944	121.6	533 6945	0.00052421
060	Onondaga Lake	2707686	7/17/2007	South	Grah	Upper Mixed	0-6m	1590	Chrysophyta	Chromulina	seagera	4	60 5846	0.00427152	33 5103	2030 2093	0.00199411
060	Onondaga Lake	2707686	7/17/2007	South	Grab	Upper Mixed	0-6m	1127	Chrysophyta	Dinobryon	divergens	40	8 7779	0.00427132	100 531	882 4481	0.00177411
060	Onondaga Lake	2707686	7/17/2007	South	Grab	Upper Mixed	0.6m	1721	Chrysophyta	Erkania	subaguigilista	40	4007 2554	0.24500226	20 2421	149412 6202	0.14577470
000	Ononidaga Lake	2707686	7/17/2007	South	Crab	Upper Mixed	0.6m	2015	Composition	Companya	subaequicinata	21.111	4707.5554	0.02562012	1029 9124	140413.0392	0.14577479
060	Onondaga Lake	2707680	7/17/2007	South	Grab	Opper Mixed	0-6m	2010	Cryptopnyta	Cryptomonas	erosa	21.111	303.50/8	0.02562913	1028.8134	3/3981./011	0.30/3321/
060	Unondaga Lake	2/0/686	7/17/2007	South	Grab	Upper Mixed	0-6m	3018	Cryptophyta	Cryptomonas	lucens	10	30.2923	0.00213576	94.2478	2854.9842	0.00280422
060	Onondaga Lake	2707686	7/17/2007	South	Grab	∪pper Mixed	0-6m	3043	Cryptophyta	Khodomonas	minuta	8	2817.1855	0.19862576	33.5103	94404.731	0.09272618
060	Onondaga Lake	2707686	7/17/2007	South	Grab	Upper Mixed	0-6m	4285	Cyanophyta	Synechocystis	•	1.5	454.3848	0.03203642	1.7671	802.9433	0.00078867
060	Onondaga Lake	2707686	7/17/2007	South	Grab	Upper Mixed	0-6m	6033	Pyrrhophyta	Gymnodinium	sp. 2	12	4.3889	0.00030944	201.0619	882.4476	0.00086676
060	Onondaga Lake	2707686	7/17/2007	South	Grab	Upper Mixed	0-6m	6044	Pyrrhophyta	Peridinium	umbonatum	32	4.3889	0.00030944	4825.4863	21178.7461	0.02080218
060	Onondaga Lake	2708222	7/31/2007	South	Grab	Upper Mixed	0-3m	1076	Bacillariophyta	Cyclotella	meneghiniana	10	21.6374	0.00184719	392.6991	8496.9755	0.01162296
060	Onondaga Lake	2708222	7/31/2007	South	Grab	Upper Mixed	0-3m	9361	Bacillariophyta	Cyclotella	pseudostelligera	5.5	1514.6159	0.12930304	66.9552	101411.4075	0.13872

8	
-	

					Sample		Depth						Concentration	Relative	Biovolume	Total Biovolume	Relative Total
Job IE	D Lake	Site	Date	Station	Туре	Depth	Note	Taxa Code	Division	Genus	Species	GALD	(natural unit/ml)	Concentration (%)	(um3/unit)	(um3/ml)	Biovolume (%)
060	Onondaga Lake	2708222	7/31/2007	South	Grab	Upper Mixed	0-3m	1468	Bacillariophyta	Stephanodiscus	alpinus	20	21.6374	0.00184719	3141.5927	67975.8016	0.09298365
060	Onondaga Lake	2708222	7/31/2007	South	Grab	Upper Mixed	0-3m	1298	Bacillariophyta	Stephanodiscus	parvus	6	86.5495	0.00738875	84.823	7341.3863	0.01004223
060	Onondaga Lake	2708222	7/31/2007	South	Grab	Upper Mixed	0-3m	9504	Bacillariophyta	Synedra	tenera	50	43.2747	0.00369437	450	19473.6324	0.02663785
060	Onondaga Lake	2708222	7/31/2007	South	Grab	Upper Mixed	0-3m	131383	Bacillariophyta	Urosolenia		56	21.6374	0.00184719	549.7787	11895.7648	0.01627214
060	Onondaga Lake	2708222	7/31/2007	South	Grab	Upper Mixed	0-3m	2683	Chlorophyta			5	129.8242	0.01108312	65.4498	8496.969	0.01162295
060	Onondaga Lake	2708222	7/31/2007	South	Grab	Upper Mixed	0-3m	2082	Chlorophyta	Chlamydomonas	globosa	6	43.2747	0.00369437	113.0973	4894.2561	0.00669482
060	Onondaga Lake	2708222	7/31/2007	South	Grab	Upper Mixed	0-3m	2162	Chlorophyta	Closterium	moniliferum	80	43.2747	0.00369437	825.2194	35711.1539	0.04884905
060	Onondaga Lake	2708222	7/31/2007	South	Grab	Upper Mixed	0-3m	2175	Chlorophyta	Coelastrum	pseudomicroporum	20	3.135	0.00214105	904.7787	2836.4393	0.00387995
060	Onondaga Lake	2708222	7/31/2007	South	Grab	Upper Mixed	0-3m	2861	Chlorophyta	Monomastix	astigmata	4	21.6374	0.00184719	9.4248	203.9279	0.00027895
060	Onondaga Lake	2708222	7/31/2007	South	Grab	Upper Mixed	0-3m	2363	Chlorophyta	Oocystis	parva	7	43.2747	0.00554156	32.9867	1427.4908	0.00195266
060	Onondaga Lake	2708222	7/31/2007	South	Grab	Upper Mixed	0-3m	2462	Chlorophyta	Quadrigula	lacustris	16	3.135	0.00026764	45.2389	141.8219	0.000194
060	Onondaga Lake	2708222	7/31/2007	South	Grab	Upper Mixed	0-3m	2483	Chlorophyta	Scenedesmus	bijuga	8	367.8353	0.0753652	38.5369	141/5.2314	0.01939021
060	Onondaga Lake	2708222	7/31/2007	South	Grab	Upper Mixed	0-3m	8396	Chlorophyta	Scenedesmus	bijuga	12	21.6374	0.00738875	25.1327	543.8055	0.00074387
060	Onondaga Lake	2708222	7/31/2007	South	Grab	Upper Mixed	0-3m	8303	Chlorophyta	Scenedesmus	opoliensis	40	43.2747	0.014///49	138.2301	5981.8/15	0.00818256
060	Onondaga Lake	2708222	7/31/2007	South	Grab	Upper Mixed	0-3m	2884	Chlorophyta	Scenedesmus	quadricauda	5 2222	43.2747	0.00/388/5	67.0206	2900.299	0.0039673
060	Onondaga Lake	2708222	7/31/2007	South	Grab	Upper Mixed	0-3m	8308	Chlorophyta	Scenedesmus	serratus	5.5555	108.1868	0.0184/186	27.9253	3021.1502	0.00413261
060	Onondaga Lake	2708222	7/31/2007	South	Grab	Upper Mixed	0-3m	2501	Chlorophyta	Selenastrum	minutum	8.000/	04.9121	0.00004156	40.1/01	2997.388	0.00410011
060	Onondaga Lake	2708222	7/31/2007	South	Grab	Upper Mixed	0.2	2558	Chlorophyta	Staurastrum	nexacerum	30	2466 6601	0.00020704	7.0686	17425 9226	0.00454097
060	Onondaga Lake	2708222	7/31/2007	South	Grab	Upper Mixed	0.2	2910	Chlorophyta	Tatasadaan		12	2400.0001	0.2103/924	152,160	1/455.8550	0.02383030
060	Onondaga Lake	2708222	7/31/2007	South	Grab	Upper Mixed	0.2	2551	Chlorophyta	Tetraedron	caudatum	12	21.6274	0.00020704	152.109	477.0428	0.00065254
060	Onondaga Lake	2708222	7/31/2007	South	Grab	Upper Mixed	0.3m	2334	Chlorophyta	Tetraedron	minimum	0	21.03/4	0.00184/19	102.7	1108.4179	0.00159827
000	Onondaga Lake	2708222	7/31/2007	South	Grab	Upper Mixed	0.2m	1652	Chrucophyta	Tetraedron	mutcum	0	21 6274	0.00923393	105 6922	2286 7064	0.01319636
000	Onondaga Lake	2708222	7/31/2007	South	Grab	Upper Mixed	0.2m	1033	Chrysophyta	Dinchauon	divorgana	26	21.0374	0.00184719	103.0832	2200.7004	0.00312797
060	Onondaga Lake	2708222	7/31/2007	South	Grab	Upper Mixed	0.2	1127	Chrysophyta	Dinobryon	divergens	122	21.03/4	0.00184/19	137.0790	2602 2801	0.00404918
060	Onondaga Lake	2708222	7/31/2007	South	Grab	Upper Mixed	0.3m	1128	Chrysophyta	Dinobryon	artularia	152	2 1 2 5	0.00227487	11/8.09/2	2095.2801	0.00303201
060	Onondaga Lake	2708222	7/31/2007	South	Grab	Upper Mixed	0-3m	1411	Chrysophyta	Erkenia	subaequiciliata	100	3050 8601	0.0008029	30 2431	02267 7387	0.12621243
000	Onondaga Lake	2708222	7/31/2007	South	Grab	Upper Mixed	0.2m	2015	Cruptophyta	Cruptomonos	subaequiciliata	24 057	151 4616	0.20043327	1722 0622	92207.7567	0.12021243
060	Onondaga Lake	2708222	7/31/2007	South	Grab	Upper Mixed	0-3m	3013	Cryptophyta	Cryptomonas	erosa	24.657	131.4010	0.01293031	201.0610	2024/7.2177	0.33904080
000	Onondaga Lake	2708222	7/31/2007	South	Grab	Upper Mixed	0-3m	3043	Cryptophyta	Phodomonas	minuto	12	324 5605	0.00309437	201.0019	10106 3615	0.01190191
000	Onondaga Lake	2708222	7/31/2007	South	Grab	Upper Mixed	0-3m	4054	Cyanophyta	Aphapocapsa	delicatissima	8	524.5005	0.02770779	0 1218	611 7836	0.01394734
000	Onondaga Lake	2708222	7/31/2007	South	Grab	Upper Mixed	0-3m	4034	Cyanophyta	Chroococcus	limneticus	40	3 1 2 5	0.09974800	1072 3303	3361 7058	0.00083085
060	Onondaga Lake	2708222	7/31/2007	South	Grab	Upper Mixed	0-3m	4082	Cyanophyta	Synechocystis	mmeucus	1.5	714 0332	0.06095715	17671	1261 768	0.00439840
060	Onondaga Lake	2708222	7/31/2007	South	Grab	Upper Mixed	0-3m	4205 6044	Pyrrhophyta	Peridinium	umbonatum	24	3 135	0.00026764	2513 2741	7878 9978	0.00172550
060	Onondaga Lake	2708222	8/14/2007	South	Grab	Upper Mixed	0-5m	1523	Bacillariophyta	Cyclostenhanos	damasii	20	/ 3889	0.00020704	31/1 5927	13788 2464	0.02261505
060	Onondaga Lake	2708782	8/14/2007	South	Grab	Upper Mixed	0-6m	1076	Bacillariophyta	Cyclotella	meneghiniana	12	4 3889	0.00018911	678 584	2978 2611	0.02201305
060	Onondaga Lake	2708782	8/14/2007	South	Grab	Upper Mixed	0-6m	9361	Bacillariophyta	Cyclotella	nseudostelligera	.2	90.877	0.00391568	84 823	7708 4556	0.01264317
060	Onondaga Lake	2708782	8/14/2007	South	Grah	Upper Mixed	0-6m	1091	Bacillariophyta	Cymbella	microcenhala	12	22 7192	0.00097892	58	1317 7158	0.00216128
060	Onondaga Lake	2708782	8/14/2007	South	Grah	Upper Mixed	0-6m	1298	Bacillariophyta	Stephanodiscus	narvus	7	45 4385	0.00195784	142 9425	6495 0893	0.01065304
060	Onondaga Lake	2708782	8/14/2007	South	Grab	Upper Mixed	0-6m	1477	Bacillariophyta	Svnedra	filiformis	51.5	136.3154	0.00587352	302.25	41201.3378	0.06757714
060	Onondaga Lake	2708782	8/14/2007	South	Grab	Upper Mixed	0-6m	9504	Bacillariophyta	Synedra	tenera	70	45.4385	0.00195784	430	19538.5445	0.03204651
060	Onondaga Lake	2708782	8/14/2007	South	Grab	Upper Mixed	0-6m	2683	Chlorophyta	oynouru	tonoru	4	1567 6274	0.06754547	33 5103	52531 6648	0.08616078
060	Onondaga Lake	2708782	8/14/2007	South	Grab	Upper Mixed	0-6m	2035	Chlorophyta	Ankistrodesmus	convolutus	12	22.7192	0.00097892	22.6886	515.4677	0.00084545
060	Onondaga Lake	2708782	8/14/2007	South	Grab	Upper Mixed	0-6m	1000031	Chlorophyta	Ankistrodesmus	falcatus	34.8	181.7539	0.00783136	32.8359	5968.053	0.00978861
060	Onondaga Lake	2708782	8/14/2007	South	Grab	Upper Mixed	0-6m	2080	Chlorophyta	Chlamydomonas		7	45,4385	0.00195784	180.2646	8190.9486	0.01343454
060	Onondaga Lake	2708782	8/14/2007	South	Grab	Upper Mixed	0-6m	2175	Chlorophyta	Coelastrum	pseudomicroporum	12	22.7192	0.00783136	268.0826	6090.6323	0.00998966
060	Onondaga Lake	2708782	8/14/2007	South	Grab	Upper Mixed	0-6m	2861	Chlorophyta	Monomastix	astigmata	4	159.0347	0.00685244	9.4248	1498.8699	0.0024584
060	Onondaga Lake	2708782	8/14/2007	South	Grab	Upper Mixed	0-6m	8041	Chlorophyta	Monoraphidium	capricornutum	4	22.7192	0.00097892	7.8108	177.4554	0.00029106
060	Onondaga Lake	2708782	8/14/2007	South	Grab	Upper Mixed	0-6m	2363	Chlorophyta	Oocystis	parva	12	45.4385	0.00195784	515.2212	23410.866	0.03839777
060	Onondaga Lake	2708782	8/14/2007	South	Grab	Upper Mixed	0-6m	2483	Chlorophyta	Scenedesmus	bijuga	4	113.5962	0.0097892	8.3776	951.6634	0.00156089
060	Onondaga Lake	2708782	8/14/2007	South	Grab	Upper Mixed	0-6m	2884	Chlorophyta	Scenedesmus	quadricauda	12	45.4385	0.00391568	52.3599	2379.154	0.00390221
060	Onondaga Lake	2708782	8/14/2007	South	Grab	Upper Mixed	0-6m	8308	Chlorophyta	Scenedesmus	serratus	4	181.7539	0.01566272	8.3776	1522.6615	0.00249742
060	Onondaga Lake	2708782	8/14/2007	South	Grab	Upper Mixed	0-6m	2491	Chlorophyta	Schroederia	judayi	27	68.1577	0.00293676	25.4469	1734.4025	0.00284471
060	Onondaga Lake	2708782	8/14/2007	South	Grab	Upper Mixed	0-6m	2501	Chlorophyta	Selenastrum	minutum	12	22.7192	0.00097892	126.9568	2884.3617	0.00473084
060	Onondaga Lake	2708782	8/14/2007	South	Grab	Upper Mixed	0-6m	2910	Chlorophyta	Stichococcus		4	2521.8354	0.10866011	7.0686	17825.8457	0.02923739
060	Onondaga Lake	2708782	8/14/2007	South	Grab	Upper Mixed	0-6m	8332	Chlorophyta	Tetraedron	muticum	6	22.7192	0.00097892	54	1226.8388	0.00201222

	٦.
ĸ	л
	"

					Sample		Depth						Concentration	Relative	Biovolume	Total Biovolume	Relative Total
Job II	D Lake	Site	Date	Station	Type	Depth	Note	Taxa Code	Division	Genus	Species	GALD	(natural unit/ml)	Concentration (%)	(um3/unit)	(um3/ml)	Biovolume (%)
060	Onondaga Lake	2708782	8/14/2007	South	Grab	Upper Mixed	0-6m	1127	Chrysophyta	Dinobryon	divergens	32	21.9447	0.00094555	226,1947	4963.7693	0.00814142
060	Onondaga Lake	2708782	8/14/2007	South	Grah	Upper Mixed	0-6m	9736	Chrysophyta	Dinobryon	sociale	50	22 7192	0.00097892	78 5398	1784 3644	0.00292666
060	Onondaga Lake	2708782	8/14/2007	South	Grab	Upper Mixed	0.6m	1731	Chrysophyta	Erkenia	subaquiciliata	4	3053 1474	0.17033206	30 2431	110555 /316	0.10600106
060	Onondaga Lake	2708782	8/14/2007	South	Grab	Upper Mixed	0-0m	3015	Cruptophyta	Cryptomonas	erosa	22	150 0347	0.00685244	1278 6282	203346 2072	0.33352205
000		2708782	8/14/2007	South	Giab		0-011	2019	Cryptophyta	Cryptonionas	erosa	10	139.0347	0.00085244	1278.0282	203340.2072	0.33332203
060	Onondaga Lake	2708782	8/14/2007	South	Grab	Upper Mixed	0-6m	3018	Cryptopnyta	Cryptomonas	lucens	10	22.7192	0.00097892	167.5516	3806.6446	0.00624354
060	Onondaga Lake	2708782	8/14/2007	South	Grab	Upper Mixed	0-6m	3043	Cryptophyta	Rhodomonas	minuta	8	340.7886	0.0146838	33.5103	11419.9271	0.01873061
060	Onondaga Lake	2708782	8/14/2007	South	Grab	Upper Mixed	0-6m	3041	Cryptophyta	Rhodomonas	minuta	12	22.7192	0.00097892	94.2478	2141.2382	0.00351199
060	Onondaga Lake	2708782	8/14/2007	South	Grab	Upper Mixed	0-6m	4332	Cyanophyta	Anabaena	aphanizomenoides	160	4.3889	0.00605149	2010.6193	8824.4776	0.01447363
060	Onondaga Lake	2708782	8/14/2007	South	Grab	Upper Mixed	0-6m	4054	Cyanophyta	Aphanocapsa	delicatissima	9.5	522.5425	0.24766673	5.7596	3009.6356	0.00493631
060	Onondaga Lake	2708782	8/14/2007	South	Grab	Upper Mixed	0-6m	4062	Cyanophyta	Aphanothece	nidulans	10	408.9463	0.17620558	10.472	4282.4855	0.007024
060	Onondaga Lake	2708782	8/14/2007	South	Grab	Upper Mixed	0-6m	4166	Cyanophyta	Merismopedia	warmingiana	12.667	113.5962	0.11747038	3.1416	356.8738	0.00058533
060	Onondaga Lake	2708782	8/14/2007	South	Grab	Upper Mixed	0-6m	6033	Pyrrhophyta	Gymnodinium	sp. 2	13	68,1577	0.00293676	385.3687	26265.8494	0.04308042
060	Onondaga Lake	2709397	8/28/2007	South	Grah	Upper Mixed	0-6m	1021	Bacillarionhyta	Asterionella	formosa	60	3 6574	0.00023436	540	1975 0208	0.00310323
060	Onondaga Lake	2700207	8/28/2007	South	Grah	Upper Mixed	0.6m	0261	Bacillariophyta	Cualotalla	nondostalligara	6	25 2426	0.0016176	01 072	2141 2277	0.0022644
000	Onondaga Lake	2709397	8/28/2007	South	Crab	Upper Mixed	0.6m	2692	Chlanarhuta	Cyclotena	pseudosteringera	5.25	25.2430	0.0010170	04.023	2141.2377	0.0055044
060	Onondaga Lake	2709397	8/28/2007	South	Grab	Upper Mixed	0-611	2085	Chlorophyta			5.25	252.450	0.01617393	102.1018	23/74.10/3	0.04049739
060	Onondaga Lake	2709397	8/28/2007	South	Grab	Upper Mixed	0-6m	1000031	Chlorophyta	Ankistrodesmus	falcatus	80	25.2436	0.0016176	75.3982	1903.3218	0.00299057
060	Onondaga Lake	2709397	8/28/2007	South	Grab	Upper Mixed	0-6m	2162	Chlorophyta	Closterium	moniliferum	64	7.3149	0.00046873	312.4328	2285.4121	0.00359093
060	Onondaga Lake	2709397	8/28/2007	South	Grab	Upper Mixed	0-6m	2175	Chlorophyta	Coelastrum	pseudomicroporum	32	3.6574	0.0014062	1608.4954	5882.9849	0.00924358
060	Onondaga Lake	2709397	8/28/2007	South	Grab	Upper Mixed	0-6m	2861	Chlorophyta	Monomastix	astigmata	4	50.4872	0.00323519	9.4248	475.8317	0.00074765
060	Onondaga Lake	2709397	8/28/2007	South	Grab	Upper Mixed	0-6m	8041	Chlorophyta	Monoraphidium	capricornutum	4	50.4872	0.00323519	7.8108	394.3454	0.00061961
060	Onondaga Lake	2709397	8/28/2007	South	Grab	Upper Mixed	0-6m	2363	Chlorophyta	Oocystis	parva	6	25,2436	0.0016176	50.2655	1268.8821	0.00199372
060	Onondaga Lake	2709397	8/28/2007	South	Grab	Upper Mixed	0-6m	2483	Chlorophyta	Scenedesmus	bijuga	4	25,2436	0.00323519	8.3776	211.4808	0.00033229
060	Onondaga Lake	2709397	8/28/2007	South	Grah	Upper Mixed	0-6m	2884	Chlorophyta	Scenedesmus	quadricauda	25.5	126 218	0.02426393	112 0501	14142 7382	0.02222163
060	Onondaga Lake	2700207	8/28/2007	South	Grah	Upper Mixed	0.6m	8208	Chlorophyta	Seenedesmus	correctue	1 6667	151 4616	0.01041114	15 0008	2272 4081	0.00257207
000		2709397	8/28/2007	South	Giab		0-011	0010	Chlorophyta	Sceneuesinus	serratus	4.0007	131.4010	0.01941114	13.0098	2273.4081	0.00337207
060	Onondaga Lake	2709397	8/28/2007	South	Grab	Upper Mixed	0-6m	2910	Chlorophyta	Sticnococcus	·	4	984.5003	0.06308621	/.0686	6959.0389	0.01093432
060	Onondaga Lake	2709397	8/28/2007	South	Grab	Upper Mixed	0-6m	8332	Chlorophyta	Tetraedron	muticum	10	3.6574	0.00023436	160	585.1913	0.00091948
060	Onondaga Lake	2709397	8/28/2007	South	Grab	Upper Mixed	0-6m	1653	Chrysophyta	•	•	5	25.2436	0.0016176	64.9273	1638.9986	0.00257526
060	Onondaga Lake	2709397	8/28/2007	South	Grab	Upper Mixed	0-6m	1128	Chrysophyta	Dinobryon	divergens	340	3.6574	0.0042186	1809.5574	6618.3583	0.01039902
060	Onondaga Lake	2709397	8/28/2007	South	Grab	Upper Mixed	0-6m	1731	Chrysophyta	Erkenia	subaequiciliata	4	6058.4634	0.38822281	30.2431	183226.7151	0.28789302
060	Onondaga Lake	2709397	8/28/2007	South	Grab	Upper Mixed	0-6m	3015	Cryptophyta	Cryptomonas	erosa	18.2	302.9232	0.01941114	829.171	251175.1087	0.39465621
060	Onondaga Lake	2709397	8/28/2007	South	Grab	Upper Mixed	0-6m	3043	Cryptophyta	Rhodomonas	minuta	7.3333	1767.0518	0.11323165	32,1141	56747.2792	0.08916356
060	Onondaga Lake	2709397	8/28/2007	South	Grah	Upper Mixed	0-6m	3041	Cryptophyta	Rhodomonas	minuta	10	176 7052	0.01132317	94 2478	16654 0748	0.02616754
060	Onondaga Lake	2709397	8/28/2007	South	Grah	Upper Mixed	0-6m	4054	Cyanophyta	Aphanocansa	delicatissima	8	252 436	0.19411141	6 2832	1586 1057	0.002/10754
060	Onondaga Lake	2700207	8/28/2007	South	Grab	Upper Mixed	0.6m	4062	Cyanophyta	Aphanothasa	nidulana	12	75 7209	0.05822242	12 5664	051 6624	0.00249213
000		2709397	8/28/2007	South	Giab		0-011	4002	Cyanophyta	Aphanotnece		12	75.7506	0.03623342	12.3004	951.0034	0.00149329
060	Onondaga Lake	2709397	8/28/2007	South	Grab	Upper Mixed	0-6m	4082	Cyanophyta	Chroococcus	limneticus	20	25.2436	0.00647038	536.1651	13534./36	0.02126631
060	Onondaga Lake	2709397	8/28/2007	South	Grab	Upper Mixed	0-6m	4166	Cyanophyta	Merismopedia	warmingiana	8	50.4872	0.051/6304	2.0944	105.7404	0.00016614
060	Onondaga Lake	2709397	8/28/2007	South	Grab	Upper Mixed	0-6m	4285	Cyanophyta	Synechocystis		1.5	151.4616	0.00970557	1.7671	267.6478	0.00042054
060	Onondaga Lake	2709397	8/28/2007	South	Grab	Upper Mixed	0-6m	6021	Pyrrhophyta	Glenodinium	quadridens	20	25.2436	0.0016176	1340.4129	33836.8439	0.05316578
060	Onondaga Lake	2709397	8/28/2007	South	Grab	Upper Mixed	0-6m	6033	Pyrrhophyta	Gymnodinium	sp. 2	16	3.6574	0.00023436	1045.522	3823.9402	0.00600833
060	Onondaga Lake	2710065	9/11/2007	South	Grab	Upper Mixed	0-3m	9363	Bacillariophyta	Cyclotella	ocellata	8	28.399	0.00314114	201.0619	5709.9664	0.00183996
060	Onondaga Lake	2710065	9/11/2007	South	Grab	Upper Mixed	0-3m	9361	Bacillariophyta	Cyclotella	pseudostelligera	6	354.9881	0.03926431	84.823	30111.1549	0.00970293
060	Onondaga Lake	2710065	9/11/2007	South	Grab	Upper Mixed	0-3m	1298	Bacillariophyta	Stephanodiscus	parvus	8	14,1995	0.00157057	201.0619	2854.9832	0.00091998
060	Onondaga Lake	2710065	9/11/2007	South	Grab	Upper Mixed	0-3m	131383	Bacillariophyta	Urosolenia	1	40	340,7886	0.03769374	565,4867	192711.4024	0.06209878
060	Onondaga Lake	2710065	9/11/2007	South	Grah	Upper Mixed	0-3m	2683	Chlorophyta			3	127 7957	0.01/13515	14 1372	1806 6736	0.00058218
060	Onondaga Lake	2710065	0/11/2007	South	Grab	Upper Mixed	0-3m	1000021	Chlorophyta	Anlaistrodosmus	falaatus	40	2 4280	0.00027026	67.0206	220 804	0.000050210
000		2710005	9/11/2007	South	Giab		0-311	2000	Chlorophyta	Alikistrouesilius	Talcatus	40	5.4209	0.00037920	540.2500	229.004	0.00007403
060	Onondaga Lake	2/10065	9/11/2007	South	Grab	Upper Mixed	0-3m	2080	Chlorophyta	Chlamydomonas	•	10	553./814	0.06125232	549.3598	304225.2513	0.0980327
060	Onondaga Lake	2710065	9/11/2007	South	Grab	Upper Mixed	0-3m	2171	Chlorophyta	Coelastrum	microporum	20	28.399	0.02512916	1206.3716	34259.8041	0.01103978
060	Onondaga Lake	2710065	9/11/2007	South	Grab	Upper Mixed	0-3m	2251	Chlorophyta	Eudorina	elegans	37.333	10.2866	0.01668734	2158.1183	22199.6276	0.00715355
060	Onondaga Lake	2710065	9/11/2007	South	Grab	Upper Mixed	0-3m	2861	Chlorophyta	Monomastix	astigmata	4	113.5962	0.01256458	9.4248	1070.6214	0.00034499
060	Onondaga Lake	2710065	9/11/2007	South	Grab	Upper Mixed	0-3m	2363	Chlorophyta	Oocystis	parva	15.4	70.9976	0.02041744	375.4203	26653.9471	0.00858889
060	Onondaga Lake	2710065	9/11/2007	South	Grab	Upper Mixed	0-3m	2367	Chlorophyta	Oocystis	pusilla	3	14.1995	0.00157057	3.5343	50.1854	0.00001617
060	Onondaga Lake	2710065	9/11/2007	South	Grab	Upper Mixed	0-3m	2483	Chlorophyta	Scenedesmus	bijuga	20	14.1995	0.00628229	314.1593	4460.9124	0.00143747
060	Onondaga Lake	2710065	9/11/2007	South	Grah	Upper Mixed	0-3m	8226	Chlorophyta	Scenedesmus	intermedius	16	14 1995	0.00628229	13 9487	198 0649	0.00006382
060	Onondaga Lake	2710065	9/11/2007	South	Grah	Upper Mixed	0-3m	2884	Chlorophyta	Scenedesmus	quadricauda	16	28 300	0.00942343	18 8496	535 3107	0.0001725
060	Onondaga Lake	2710065	0/11/2007	South	Grab	Upper Mixed	0.3m	2309	Chlorophyta	Scenedesmus	corrotuc	10	107 7057	0.00942343	16404	504 1020	0.0001725
000	Ononuaga Lake	2710005	9/11/2007	South	Carl	Upper Mixed	0.2	0300	Chlorent	Sceneuesinus Sahara da l	serratus	4	121.1951	0.0262705	4.0490	374.1989	0.00019147
060	Onondaga Lake	2/10065	9/11/2007	South	Grab	∪pper Mixed	0-3m	2491	Chlorophyta	Schroederia	judayi	48	3.4289	0.00037926	101.8714	349.3023	0.00011256

1	n
1	υ

					Sample		Depth						Concentration	Relative	Biovolume	Total Biovolume	Relative Total
Job II	D Lake	Site	Date	Station	Туре	Depth	Note	Taxa Code	Division	Genus	Species	GALD	(natural unit/ml)	Concentration (%)	(um3/unit)	(um3/ml)	Biovolume (%)
060	Onondaga Lake	2710065	9/11/2007	South	Grab	Upper Mixed	0-3m	2501	Chlorophyta	Selenastrum	minutum	6	56,7981	0.00628229	12.2741	697,1455	0.00022465
060	Onondaga Lake	2710065	9/11/2007	South	Grah	Upper Mixed	0-3m	1000229	Chlorophyta	Spermatozopsis	exsultans	6	14 1995	0.00157057	22,6195	321 1861	0.0001035
060	Onondaga Lake	2710065	9/11/2007	South	Grah	Upper Mixed	0.3m	2010	Chlorophyta	Stichococcus	Unsultuns	4	553 7814	0.06125232	7.0686	3014 4504	0.00126138
060	Onondaga Lake	2710065	0/11/2007	South	Grab	Upper Mixed	0-3m	2222	Chlorophyta	Tatraadron	muticum	- 0	28 200	0.00125252	7.0000	2612 7124	0.00020150
000	Onondaga Lake	2710005	9/11/2007	South	Cash	Upper Mixed	0.2	1652	Chronophyta	Tetraeuron	muticum	6	28.399	0.00314114	105 6922	2012.7124	0.00084191
060	Onondaga Lake	2710065	9/11/2007	South	Grab	Upper Mixed	0-511	1055	Chrysophyta			0	28.399	0.00514114	105.0852	3001.3022	0.00096713
060	Onondaga Lake	2710065	9/11/2007	South	Grab	Upper Mixed	0-3m	1731	Chrysophyta	Erkenia	subaequiciliata	4	425.9857	0.04711717	30.2431	12883.1284	0.00415142
060	Onondaga Lake	2710065	9/11/2007	South	Grab	Upper Mixed	0-3m	3015	Cryptophyta	Cryptomonas	erosa	25.8	1277.9571	0.1413515	1504.404	1922563.815	0.6195216
060	Onondaga Lake	2710065	9/11/2007	South	Grab	Upper Mixed	0-3m	3043	Cryptophyta	Rhodomonas	minuta	6	1448.3514	0.16019837	33.5103	48534.6903	0.01563968
060	Onondaga Lake	2710065	9/11/2007	South	Grab	Upper Mixed	0-3m	3041	Cryptophyta	Rhodomonas	minuta	10	28.399	0.00314114	94.2478	2676.5477	0.00086248
060	Onondaga Lake	2710065	9/11/2007	South	Grab	Upper Mixed	0-3m	4046	Cyanophyta	Aphanizomenon	issatschenkoi	280	3.4289	0.01769867	1979.2034	6786.4025	0.00218683
060	Onondaga Lake	2710065	9/11/2007	South	Grab	Upper Mixed	0-3m	4054	Cyanophyta	Aphanocapsa	delicatissima	8.6667	156.1948	0.21883365	6.6323	1035.9305	0.00033382
060	Onondaga Lake	2710065	9/11/2007	South	Grab	Upper Mixed	0-3m	4082	Cyanophyta	Chroococcus	limneticus	30	56.7981	0.03769374	494.2772	28074.0032	0.00904649
060	Onondaga Lake	2710065	9/11/2007	South	Grab	Upper Mixed	0-3m	4285	Cvanophyta	Synechocystis		1.5	42.5986	0.00471172	1.7671	75.2759	0.00002426
060	Onondaga Lake	2710065	9/11/2007	South	Grah	Upper Mixed	0-3m	6021	Pyrrhophyta	Glenodinium	quadridens	40	42 5986	0.00471172	9424 778	401482 0742	0 12937246
060	Onondaga Lake	2710065	9/11/2007	South	Grah	Upper Mixed	0-3m	6033	Pyrrhophyta	Gymnodinium	sn 2	12	14 1995	0.00157057	314 1593	4460 9124	0.00143747
060	Onondaga Lake	2710065	9/11/2007	South	Grab	Upper Mixed	0.3m	6034	Pyrrhophyta	Gymnodinium	sp. 2	2	14 1005	0.00157057	33 5103	475 8303	0.000145747
000	Onondaga Lake	2710005	9/11/2007	South	Cash	Upper Mixed	0.2	6044	T ynnopnyta Demb en beste	Denidinium	sp. 5	24	14.1995	0.00157057	2512 2741	475.8505	0.00015555
060	Onondaga Lake	2710065	9/11/2007	South	Grab	Upper Mixed	0-511	0044	Pyrnopnyta	Peridimum	umbonatum	24	14.1995	0.00157057	2313.2741	55087.295	0.01149977
060	Onondaga Lake	2/10/18	9/25/2007	South	Grab	Upper Mixed	0-6m	9361	Bacillariophyta	Cyclotella	pseudosteiligera	0	170.3943	0.02279662	84.823	14453.3543	0.00855015
060	Onondaga Lake	2/10/18	9/25/2007	South	Grab	Upper Mixed	0-6m	9131	Bacıllarıophyta	Entomoneis	ct ornata	40	11.3596	0.00151977	6157.5216	69947.0988	0.04137849
060	Onondaga Lake	2710718	9/25/2007	South	Grab	Upper Mixed	0-6m	9123	Bacillariophyta	Nitzschia	palea	40	2.7431	0.00036699	565.4867	1551.1778	0.00091763
060	Onondaga Lake	2710718	9/25/2007	South	Grab	Upper Mixed	0-6m	131383	Bacillariophyta	Urosolenia		40	56.7981	0.00759887	848.23	48177.8478	0.02850049
060	Onondaga Lake	2710718	9/25/2007	South	Grab	Upper Mixed	0-6m	2683	Chlorophyta			4.5	431.6655	0.05775142	49.4801	21358.853	0.01263522
060	Onondaga Lake	2710718	9/25/2007	South	Grab	Upper Mixed	0-6m	1000031	Chlorophyta	Ankistrodesmus	falcatus	54	5.4862	0.00073398	49.5457	271.8161	0.0001608
060	Onondaga Lake	2710718	9/25/2007	South	Grab	Upper Mixed	0-6m	2080	Chlorophyta	Chlamydomonas		8.8	522.5425	0.06990962	498.2617	260362.8995	0.15402245
060	Onondaga Lake	2710718	9/25/2007	South	Grab	Upper Mixed	0-6m	1000012	Chlorophyta	Closterium		180	2.7431	0.00036699	678.584	1861.4132	0.00110115
060	Onondaga Lake	2710718	9/25/2007	South	Grab	Upper Mixed	0-6m	2171	Chlorophyta	Coelastrum	microporum	13.333	34.0789	0.03039563	351.1602	11967.1382	0.00707938
060	Onondaga Lake	2710718	9/25/2007	South	Grab	Upper Mixed	0-6m	2175	Chlorophyta	Coelastrum	nseudomicroporum	20	2 7431	0.00293593	2144 6606	5882 9851	0.00348019
060	Onondaga Lake	2710718	9/25/2007	South	Grah	Upper Mixed	0-6m	2193	Chlorophyta	Crucigenia	tetrapedia	- 20	22.7451	0.0121582	2144.0000	611 3747	0.00036167
000	Onondaga Lake	2710718	9/25/2007	South	Grab	Upper Mixed	0.6m	2195	Chlorophyta	Diatuaanhaarium	nulaballum	20	11 2506	0.0121582	510 4194	5000 2051	0.00030107
000		2710718	9/25/2007	South	Giab		0-011	2211	Chlorophyta	Dictyosphaerium	pulchenum	20	11.3390	0.0121362	10706 2021	59000.5951	0.00349049
060	Onondaga Lake	2/10/18	9/25/2007	South	Grab	Upper Mixed	0-611	2340	Chlorophyta	Mougeona		0.0057	43.4383	0.04550700	12/80.2821	580989.1081	0.3430948
060	Onondaga Lake	2/10/18	9/25/2007	South	Grab	Upper Mixed	0-6m	2363	Chlorophyta	Oocystis	parva	9.2857	102.2366	0.02931051	113.7705	11631.5057	0.00688083
060	Onondaga Lake	2710718	9/25/2007	South	Grab	Upper Mixed	0-6m	2381	Chlorophyta	Pediastrum	•	44	22.7192	0.03647459	1914.5736	43497.653	0.02573183
060	Onondaga Lake	2710718	9/25/2007	South	Grab	Upper Mixed	0-6m	2385	Chlorophyta	Pediastrum	simplex	72	2.7431	0.00587185	9216	25280.2661	0.01495501
060	Onondaga Lake	2710718	9/25/2007	South	Grab	Upper Mixed	0-6m	2484	Chlorophyta	Scenedesmus	abundans	12	11.3596	0.00303954	12.5664	142.7495	0.00008445
060	Onondaga Lake	2710718	9/25/2007	South	Grab	Upper Mixed	0-6m	2483	Chlorophyta	Scenedesmus	bijuga	6	45.4385	0.01519774	14.1372	642.3728	0.00038001
060	Onondaga Lake	2710718	9/25/2007	South	Grab	Upper Mixed	0-6m	8226	Chlorophyta	Scenedesmus	intermedius	14.667	34.0789	0.0151976	20.944	713.7476	0.00042223
060	Onondaga Lake	2710718	9/25/2007	South	Grab	Upper Mixed	0-6m	2884	Chlorophyta	Scenedesmus	quadricauda	16	56.7981	0.02532932	49.5674	2815.3339	0.00166546
060	Onondaga Lake	2710718	9/25/2007	South	Grab	Upper Mixed	0-6m	8308	Chlorophyta	Scenedesmus	serratus	5	136.3154	0.03647459	10.472	1427.4952	0.00084446
060	Onondaga Lake	2710718	9/25/2007	South	Grab	Upper Mixed	0-6m	2501	Chlorophyta	Selenastrum	minutum	8	113.5962	0.01519774	38.6822	4394.1505	0.00259944
060	Onondaga Lake	2710718	9/25/2007	South	Grab	Upper Mixed	0-6m	2538	Chlorophyta	Staurastrum	hexacerum	50	22.7192	0.00303954	782,466	17777.0312	0.01051633
060	Onondaga Lake	2710718	9/25/2007	South	Grah	Upper Mixed	0-6m	2910	Chlorophyta	Stichococcus		4	1874 3371	0 25076275	7 0686	13248 9394	0.00783765
060	Onondaga Lake	2710718	9/25/2007	South	Grah	Upper Mixed	0-6m	2551	Chlorophyta	Tetraedron	caudatum	16	11 3596	0.00151977	64 1963	729 2455	0.000/03/03
060	Onondaga Lake	2710718	9/25/2007	South	Grab	Upper Mixed	0-0m	8332	Chlorophyta	Tetraedron	muticum	8.4	00.877	0.0121582	123.2	11196 0404	0.0004314
000	Onondaga Lake	2710718	9/25/2007	South	Crab	Upper Mixed	0.6	0552	Chlorenhute	Tetraeuron	muticum 	0.4	90.877	0.0121582	123.2	11190.0404	0.00002322
060	Onondaga Lake	2/10/18	9/25/2007	South	Grab	Upper Mixed	0-611	2501	Chlorophyta	Tetrastrum	staurogemaetorme	12	22.7192	0.0121382	03.0090	1440.5248	0.00085572
060	Onondaga Lake	2/10/18	9/25/2007	South	Grab	Upper Mixed	0-6m	1731	Chrysophyta	Erkenia	subaequiciliata	4	11.3596	0.00151977	30.2431	343.5501	0.00020323
060	Onondaga Lake	2710718	9/25/2007	South	Grab	Upper Mixed	0-6m	3015	Cryptophyta	Cryptomonas	erosa	24.8	249.9116	0.03343503	1327.6371	331791.9333	0.1962776
060	Onondaga Lake	2710718	9/25/2007	South	Grab	Upper Mixed	0-6m	3043	Cryptophyta	Rhodomonas	minuta	8	602.0598	0.08054803	33.5103	20175.2046	0.01193501
060	Onondaga Lake	2710718	9/25/2007	South	Grab	Upper Mixed	0-6m	3041	Cryptophyta	Rhodomonas	minuta	10	22.7192	0.00303954	94.2478	2141.2382	0.00126669
060	Onondaga Lake	2710718	9/25/2007	South	Grab	Upper Mixed	0-6m	4046	Cyanophyta	Aphanizomenon	issatschenkoi	280	5.4862	0.03425245	1979.2034	10858.2441	0.00642339
060	Onondaga Lake	2710718	9/25/2007	South	Grab	Upper Mixed	0-6m	4054	Cyanophyta	Aphanocapsa	delicatissima	8.6667	45.4385	0.06079098	5.236	237.9159	0.00014074
060	Onondaga Lake	2710718	9/25/2007	South	Grab	Upper Mixed	0-6m	4172	Cyanophyta	Oscillatoria	limnetica	200	2.7431	0.01834951	344.0672	943.8054	0.00055833
060	Onondaga Lake	2710718	9/25/2007	South	Grab	Upper Mixed	0-6m	4285	Cyanophyta	Synechocystis		1.5	170.3943	0.02279662	1.7671	301.1037	0.00017812
060	Onondaga Lake	2710718	9/25/2007	South	Grab	Upper Mixed	0-6m	7140	Miscellaneous			4	102 2366	0.01367797	30 2431	3091 9508	0.0018291
060	Onondaga Lake	2710718	9/25/2007	South	Grah	Upper Mixed	0-6m	6021	Pyrrhonhyta	Glenodinium	quadridens	40	11 3596	0.00151977	9424 778	107061 8865	0.06333442
060	Onondaga Laka	2710718	9/25/2007	South	Grab	Upper Mixed	0.6m	6033	Pyrrhophyta	Gymnodinium	en 2	19	11.5570	0.00151777	1214 7402	55106 252	0.03265241
000	Onondaga Lake	2711206	10/0/2007	South	Cash	Upper Mixed	0.6m	1242	n ynnopnyta Daaillaaiaaba (A mark and	op. 2	10	43.4363	0.0000791	1214./472	2060 8624	0.05205241
000	Ononuaga Lake	2/11390	10/9/2007	South	Grad	opper Mixed	0-om	1343	Бастпагторпута	Ampnora	pediculus	10	11.5596	0.00140011	102.2124	2009.8034	0.00110039

1	1
	-

					Sample		Depth						Concentration	Relative	Biovolume	Total Biovolume	Relative Total
Job ID	Lake	Site	Date	Station	Туре	Depth	Note	Taxa Code	Division	Genus	Species	GALD	(natural unit/ml)	Concentration (%)	(um3/unit)	(um3/ml)	Biovolume (%)
060	Onondaga Lake	2711396	10/9/2007	South	Grab	Upper Mixed	0-6m	9361	Bacillariophyta	Cyclotella	pseudostelligera	6	204.4731	0.02639006	84.823	17344.0252	0.00922051
060	Onondaga Lake	2711396	10/9/2007	South	Grab	Upper Mixed	0-6m	1221	Bacillariophyta	Nitzschia	acicularis	80	2.4204	0.00031239	251.3274	608.305	0.00032339
060	Onondaga Lake	2711396	10/9/2007	South	Grab	Upper Mixed	0-6m	1296	Bacillariophyta	Stephanodiscus	hantzschii	16	11.3596	0.00146611	1608.4954	18271.8948	0.00971378
060	Onondaga Lake	2711396	10/9/2007	South	Grab	Upper Mixed	0-6m	1477	Bacillariophyta	Synedra	filiformis	85	22.7192	0.00293222	1185	26922.2968	0.01431255
060	Onondaga Lake	2711396	10/9/2007	South	Grab	Upper Mixed	0-6m	9776	Bacillariophyta	Synedra	ulna	200	11.3596	0.00146611	7200	81789.2562	0.04348116
060	Onondaga Lake	2711396	10/9/2007	South	Grab	Upper Mixed	0-6m	131383	Bacillariophyta	Urosolenia		40	11.3596	0.00146611	1130.9734	12847.4268	0.00683
060	Onondaga Lake	2711396	10/9/2007	South	Grab	Upper Mixed	0-6m	2683	Chlorophyta			4	477.104	0.06157682	33.5103	15987.898	0.00849956
060	Onondaga Lake	2711396	10/9/2007	South	Grab	Upper Mixed	0-6m	1000031	Chlorophyta	Ankistrodesmus	falcatus	22	45.4385	0.00586446	20.7345	942.1441	0.00050087
060	Onondaga Lake	2711396	10/9/2007	South	Grab	Upper Mixed	0-6m	2080	Chlorophyta	Chlamvdomonas		8.5714	329,4289	0.04251732	743,4806	244924.0323	0.13020758
060	Onondaga Lake	2711396	10/9/2007	South	Grab	Upper Mixed	0-6m	2162	Chlorophyta	Closterium	moniliferum	60	2.4204	0.00031239	264.824	640.9717	0.00034076
060	Onondaga Lake	2711396	10/9/2007	South	Grab	Upper Mixed	0-6m	2171	Chlorophyta	Coelastrum	microporum	20	11.3596	0.01759337	1357.168	15416.9113	0.00819601
060	Onondaga Lake	2711396	10/9/2007	South	Grab	Upper Mixed	0-6m	2193	Chlorophyta	Crucigenia	tetrapedia	6	11.3596	0.00586446	36	408,9463	0.00021741
060	Onondaga Lake	2711396	10/9/2007	South	Grab	Upper Mixed	0-6m	2251	Chlorophyta	Eudorina	elegans	36	7 2611	0.01499433	1408 0099	10223 7089	0.00543517
060	Onondaga Lake	2711396	10/9/2007	South	Grab	Upper Mixed	0-6m	2861	Chlorophyta	Monomastix	astigmata	4	79 5173	0.0102628	9 4248	749 435	0.00039842
060	Onondaga Lake	2711396	10/9/2007	South	Grab	Upper Mixed	0-6m	8041	Chlorophyta	Monoraphidium	capricornutum	4	11 3596	0.00146611	7 8108	88 7277	0.00004717
060	Onondaga Lake	2711396	10/9/2007	South	Grah	Upper Mixed	0-6m	2340	Chlorophyta	Mougeotia	eupineoinatain	345	45 4385	0.05791153	11184.0698	508187 0835	0 27016463
060	Onondaga Lake	2711396	10/9/2007	South	Grab	Upper Mixed	0-6m	2340	Chlorophyta	Occustis	narva	16 286	90 877	0.03015974	275 9366	25076 277	0.01333116
060	Onondaga Lake	2711396	10/9/2007	South	Grab	Upper Mixed	0-6m	2305	Chlorophyta	Pediastrum	paiva	32	2 4204	0.00312382	1106 3558	2677 7889	0.001333110
060	Onondaga Lake	2711396	10/9/2007	South	Grab	Upper Mixed	0-0m	8101	Chlorophyta	Duramichlamyc	dissecta	16	2.4204	0.00312302	418 870	0516 6116	0.00142556
000	Onondaga Lake	2711390	10/9/2007	South	Grab	Upper Mixed	0-011 0.6m	2484	Chlorophyta	Scanadasmus	abundans	10	68 1577	0.00293222	23 0383	1570 2370	0.000003920
000	Onondaga Lake	2711390	10/9/2007	South	Grab	Upper Mixed	0.6m	102702	Chlorophyta	Scenedesmus	aoutus	10	2 4204	0.02039000	23.0385	1450.022	0.00083478
060	Onondaga Lake	2711390	10/9/2007	South	Grab	Upper Mixed	0.6m	2482	Chlorophyta	Scenedesmus	biingo	10.5	2.4204	0.00249903	112 0715	6706 2262	0.00077014
000	Onondaga Lake	2711390	10/9/2007	South	Grab	Upper Mixed	0.6m	2403	Chlanaphyta	Scenedesinus	Janti mlatan	10.5	11 2506	0.01049379	75 2092	0700.2302	0.0035032
060	Onondaga Lake	2711396	10/9/2007	South	Grab	Upper Mixed	0-611	2488	Chlorophyta	Scenedesmus	denticulatus	12	11.5590	0.00380440	15.3982	830.4948	0.00045555
060	Onondaga Lake	2711396	10/9/2007	South	Grab	Upper Mixed	0-6m	8303	Chlorophyta	Scenedesmus	opoliensis	1/	56.7981	0.02199172	60.7375	3449.7743	0.00183398
060	Onondaga Lake	2711396	10/9/2007	South	Grab	Upper Mixed	0-6m	8308	Chlorophyta	Scenedesmus	serratus	4	454.3848	0.11/28918	8.3776	3806.6537	0.00202371
060	Onondaga Lake	2711396	10/9/2007	South	Grab	Upper Mixed	0-6m	2501	Chlorophyta	Selenastrum	minutum	8	90.877	0.011/2892	54.5518	4957.5013	0.00263553
060	Onondaga Lake	2/11396	10/9/2007	South	Grab	Upper Mixed	0-6m	2910	Chlorophyta	Stichococcus	•	4	613.4194	0.07917019	/.0686	4336.0165	0.00230513
060	Onondaga Lake	2711396	10/9/2007	South	Grab	Upper Mixed	0-6m	2551	Chlorophyta	Tetraedron	caudatum	20	11.3596	0.00146611	152.169	1728.5819	0.00091896
060	Onondaga Lake	2711396	10/9/2007	South	Grab	Upper Mixed	0-6m	2554	Chlorophyta	Tetraedron	minimum	12	11.3596	0.00146611	432	4907.3554	0.00260887
060	Onondaga Lake	2711396	10/9/2007	South	Grab	Upper Mixed	0-6m	8332	Chlorophyta	Tetraedron	muticum	9	79.5173	0.0102628	193.5	15386.6038	0.00817989
060	Onondaga Lake	2711396	10/9/2007	South	Grab	Upper Mixed	0-6m	2561	Chlorophyta	Tetrastrum	staurogeniaeforme	8	11.3596	0.0102628	111.4218	1265.7092	0.00067288
060	Onondaga Lake	2711396	10/9/2007	South	Grab	Upper Mixed	0-6m	1731	Chrysophyta	Erkenia	subaequiciliata	4	562.3011	0.07257267	30.2431	17005.7295	0.00904066
060	Onondaga Lake	2711396	10/9/2007	South	Grab	Upper Mixed	0-6m	3015	Cryptophyta	Cryptomonas	erosa	25.2	340.7886	0.04398345	1501.2624	511613.0627	0.27198596
060	Onondaga Lake	2711396	10/9/2007	South	Grab	Upper Mixed	0-6m	3069	Cryptophyta	Cryptomonas	rostratiformis	50	11.3596	0.00146611	5235.9878	59478.8261	0.03162039
060	Onondaga Lake	2711396	10/9/2007	South	Grab	Upper Mixed	0-6m	3043	Cryptophyta	Rhodomonas	minuta	8	511.1829	0.06597517	32.1141	16416.1772	0.00872724
060	Onondaga Lake	2711396	10/9/2007	South	Grab	Upper Mixed	0-6m	3041	Cryptophyta	Rhodomonas	minuta	12	56.7981	0.00733057	94.2478	5353.0955	0.00284584
060	Onondaga Lake	2711396	10/9/2007	South	Grab	Upper Mixed	0-6m	4046	Cyanophyta	Aphanizomenon	issatschenkoi	170	22.7192	0.08307974	2136.283	48534.7216	0.02580224
060	Onondaga Lake	2711396	10/9/2007	South	Grab	Upper Mixed	0-6m	4054	Cyanophyta	Aphanocapsa	delicatissima	8.4	68.1577	0.07917019	4.7124	321.1864	0.00017075
060	Onondaga Lake	2711396	10/9/2007	South	Grab	Upper Mixed	0-6m	4023	Cyanophyta	Cylindrospermopsis	raciborskii	110	11.3596	0.01343943	1382.3008	15702.4103	0.00834778
060	Onondaga Lake	2711396	10/9/2007	South	Grab	Upper Mixed	0-6m	4172	Cyanophyta	Oscillatoria	limnetica	224	2.4204	0.01749337	385.3553	932.7019	0.00049585
060	Onondaga Lake	2711396	10/9/2007	South	Grab	Upper Mixed	0-6m	4285	Cyanophyta	Synechocystis		1.5	68.1577	0.00879669	1.7671	120.4415	0.00006403
060	Onondaga Lake	2711396	10/9/2007	South	Grab	Upper Mixed	0-6m	7140	Miscellaneous			6	22.7192	0.00293222	105.6832	2401.0418	0.00127645
060	Onondaga Lake	2711396	10/9/2007	South	Grab	Upper Mixed	0-6m	6033	Pyrrhophyta	Gymnodinium	sp. 2	16	45.4385	0.00586446	603.1858	27407.8433	0.01457068
060	Onondaga Lake	2711396	10/9/2007	South	Grab	Upper Mixed	0-6m	6044	Pyrrhophyta	Peridinium	umbonatum	30	22.7192	0.00293222	5749.1146	130615.5019	0.06943838
060	Onondaga Lake	2711412	10/9/2007	North	Grab	Upper Mixed	0-6m	9363	Bacillariophyta	Cyclotella	ocellata	12	11.3596	0.00135459	678.584	7708.4556	0.00800324
060	Onondaga Lake	2711412	10/9/2007	North	Grab	Upper Mixed	0-6m	9361	Bacillariophyta	Cyclotella	pseudostelligera	7	170.3943	0.02031888	142.9425	24356.5849	0.02528801
060	Onondaga Lake	2711412	10/9/2007	North	Grab	Upper Mixed	0-6m	1221	Bacillariophyta	Nitzschia	acicularis	80	22.7192	0.00270918	565.4867	12847.4268	0.01333873
060	Onondaga Lake	2711412	10/9/2007	North	Grab	Upper Mixed	0-6m	1468	Bacillariophyta	Stephanodiscus	alpinus	20	11.3596	0.00135459	3141.5927	35687.2959	0.03705202
060	Onondaga Lake	2711412	10/9/2007	North	Grab	Upper Mixed	0-6m	1477	Bacillariophyta	Synedra	filiformis	60	22.7192	0.00270918	240	5452.6171	0.00566113
060	Onondaga Lake	2711412	10/9/2007	North	Grab	Upper Mixed	0-6m	9504	Bacillariophyta	Synedra	tenera	60	11.3596	0.00135459	240	2726.3085	0.00283057
060	Onondaga Lake	2711412	10/9/2007	North	Grab	Upper Mixed	0-6m	2683	Chlorophyta			4	851.9714	0.10159441	33.5103	28549.8178	0.0296416
060	Onondaga Lake	2711412	10/9/2007	North	Grab	Upper Mixed	0-6m	1000031	Chlorophyta	Ankistrodesmus	falcatus	45	68.1577	0.00812755	42.4115	2890.6709	0.00300121
060	Onondaga Lake	2711412	10/9/2007	North	Grab	Upper Mixed	0-6m	2080	Chlorophyta	Chlamydomonas		95	283 9905	0.03386481	471 8567	134002 8074	0.13912724
060	Onondaga Lake	2711412	10/9/2007	North	Grab	Upper Mixed	0-6m	1000012	Chlorophyta	Closterium		180	34 0789	0.00406378	1884 9556	64237 1319	0.06669364
060	Onondaga Lake	2711412	10/9/2007	North	Grab	Upper Mixed	0-6m	2171	Chlorophyta	Coelastrum	microporum	30	34.0789	0.02844644	552 9203	18842 8917	0.01956347
060	Onondaga Lake	2711412	10/0/2007	North	Grab	Upper Mixed	0-6m	2180	Chlorophyta	Cosmarium	meroporum	10	27.0709	0.0070019	130 8007	2073 0/1/	0.01308767
000	Chondaga Lake	2/11+12	10/ 2/ 2007	110101	5140	opportanted	0-011	2100	Chlorophyta	Cosmanum	•	10	22.1192	0.00270918	150.0777	2713.7414	0.00508707

- 1	2
1	2

					Sample		Depth						Concentration	Relative	Biovolume	Total Biovolume	Relative Total
Job IE	Lake	Site	Date	Station	Type	Depth	Note	Taxa Code	Division	Genus	Species	GALD	(natural unit/ml)	Concentration (%)	(um3/unit)	(um3/ml)	Biovolume (%)
060	Onondaga Lake	2711412	10/9/2007	North	Grab	Upper Mixed	0-6m	2195	Chlorophyta	Crucigenia	quadrata	7	34.0789	0.01219133	28.61	974,9961	0.00101228
060	Onondaga Lake	2711412	10/9/2007	North	Grah	Upper Mixed	0-6m	2193	Chlorophyta	Crucigenia	tetrapedia	6	11 3596	0.00541837	26.82	304 665	0.00031632
060	Onondaga Lake	2711412	10/9/2007	North	Grab	Upper Mixed	0.6m	2155	Chlorophyta	Eudorina	elegans	34	22 7102	0.02700185	1851 1030	42057 7145	0.04366605
060	Onondaga Lake	2711412	10/9/2007	North	Grab	Upper Mixed	0-0m	2861	Chlorophyta	Monomastix	astigmata		22.7192	0.002709185	0 1248	214 1243	0.00022231
060	Onondaga Lake	2711412	10/0/2007	North	Grab	Upper Mixed	0.6m	2240	Chlorophyta	Mongaotia	astigiliata	160	24.0780	0.01200408	4522 8024	154160 1151	0.16006473
000		2711412	10/9/2007	North	Giab	Upper Mixed	0-011	2340	Chlorophyta	Nougeona	•	10.142	34.0789	0.01500408	4323.6934	134109.1131	0.10000473
060	Onondaga Lake	2711412	10/9/2007	North	Grab	Upper Mixed	0-6m	2363	Chlorophyta	Oocystis	parva	10.143	124.9558	0.03618/39	181.5392	22684.3774	0.02355186
060	Onondaga Lake	2711412	10/9/2007	North	Grab	Upper Mixed	0-6m	2381	Chlorophyta	Pediastrum	·	40	11.3596	0.01083674	2450.9229	2/841.5501	0.02890625
060	Onondaga Lake	2711412	10/9/2007	North	Grab	Upper Mixed	0-6m	2484	Chlorophyta	Scenedesmus	abundans	20	22.7192	0.01083674	25.1327	570.9958	0.00059283
060	Onondaga Lake	2711412	10/9/2007	North	Grab	Upper Mixed	0-6m	8396	Chlorophyta	Scenedesmus	bijuga	16	11.3596	0.00541837	201.0619	2283.9866	0.00237133
060	Onondaga Lake	2711412	10/9/2007	North	Grab	Upper Mixed	0-6m	2488	Chlorophyta	Scenedesmus	denticulatus	16	22.7192	0.01083674	54.4543	1237.1602	0.00128447
060	Onondaga Lake	2711412	10/9/2007	North	Grab	Upper Mixed	0-6m	8303	Chlorophyta	Scenedesmus	opoliensis	12	11.3596	0.00270918	16.7552	190.3327	0.00019761
060	Onondaga Lake	2711412	10/9/2007	North	Grab	Upper Mixed	0-6m	2884	Chlorophyta	Scenedesmus	quadricauda	20	56.7981	0.01806146	113.0973	6423.7111	0.00666936
060	Onondaga Lake	2711412	10/9/2007	North	Grab	Upper Mixed	0-6m	8391	Chlorophyta	Scenedesmus	semipulcher	12	11.3596	0.00270918	12.5664	142.7495	0.00014821
060	Onondaga Lake	2711412	10/9/2007	North	Grab	Upper Mixed	0-6m	8308	Chlorophyta	Scenedesmus	serratus	4	238.552	0.05689287	8.3776	1998.4932	0.00207492
060	Onondaga Lake	2711412	10/9/2007	North	Grab	Upper Mixed	0-6m	2501	Chlorophyta	Selenastrum	minutum	8	68.1577	0.00812755	50.5844	3447.717	0.00357956
060	Onondaga Lake	2711412	10/9/2007	North	Grab	Upper Mixed	0-6m	2538	Chlorophyta	Staurastrum	hexacerum	44	5.4862	0.00065421	804.2477	4412.2387	0.00458097
060	Onondaga Lake	2711412	10/9/2007	North	Grab	Upper Mixed	0-6m	2910	Chlorophyta	Stichococcus		4	1329.0754	0.15848728	7.0686	9394.7025	0.00975397
060	Onondaga Lake	2711412	10/9/2007	North	Grab	Upper Mixed	0-6m	2551	Chlorophyta	Tetraedron	caudatum	16	11.3596	0.00135459	285.4358	3242.4419	0.00336644
060	Onondaga Lake	2711412	10/9/2007	North	Grab	Upper Mixed	0-6m	8332	Chlorophyta	Tetraedron	muticum	9.5	181,7539	0.02167347	165	29989.3939	0.03113623
060	Onondaga Lake	2711412	10/9/2007	North	Grah	Upper Mixed	0-6m	2572	Chlorophyta	Treubaria	schmidlei	50	11 3596	0.00135459	249.6	2835 3609	0.00294379
060	Onondaga Lake	2711/12	10/9/2007	North	Grah	Upper Mixed	0-6m	1731	Chrysophyta	Frkenia	subaequiciliata	4	56 7981	0.00677296	30 2431	1717 7505	0.00178344
060	Onondaga Lake	2711412	10/9/2007	North	Grab	Upper Mixed	0-6m	3015	Cryptophyta	Cryptomonas	erosa	14	193 1135	0.00077290	402 1239	77655 5624	0.08062521
060	Onondaga Lake	2711412	10/0/2007	North	Grab	Upper Mixed	0.6m	2060	Cryptophyta	Cryptomonas	rostratiformia	26	24.0780	0.00406278	2412 7422	82222 5200	0.08526786
000	Onondaga Lake	2711412	10/9/2007	North	Grab	Upper Mixed	0.6	2042	Cryptophyta	Dhadamanaa		50	54.0769	0.00400378	2412.7432	02223.3299	0.06550760
060	Onondaga Lake	2711412	10/9/2007	North	Grab	Upper Mixed	0-611	3043	Сгургорнуга	Rhodomonas	minuta	0	343.2017	0.06502042	35.5105	162/1.8854	0.01897062
060	Onondaga Lake	2711412	10/9/2007	North	Grab	Upper Mixed	0-6m	3041	Cryptopnyta	Rnodomonas	minuta	10	124.9558	0.01490051	94.2478	11//6.81	0.01222/1/
060	Onondaga Lake	2711412	10/9/2007	North	Grab	Upper Mixed	0-6m	4332	Cyanophyta	Anabaena	aphanizomenoides	64	2.7431	0.00261682	804.2477	2206.1193	0.00229048
060	Onondaga Lake	2711412	10/9/2007	North	Grab	Upper Mixed	0-6m	4046	Cyanophyta	Aphanizomenon	issatschenkoi	340	11.3596	0.07676027	4272.566	48534.7216	0.05039075
060	Onondaga Lake	2711412	10/9/2007	North	Grab	Upper Mixed	0-6m	4054	Cyanophyta	Aphanocapsa	delicatissima	7.25	56.7981	0.03047832	2.3562	133.8277	0.00013895
060	Onondaga Lake	2711412	10/9/2007	North	Grab	Upper Mixed	0-6m	4172	Cyanophyta	Oscillatoria	limnetica	280	11.3596	0.09482145	494.8008	5620.7485	0.00583569
060	Onondaga Lake	2711412	10/9/2007	North	Grab	Upper Mixed	0-6m	4285	Cyanophyta	Synechocystis		1.5	511.1829	0.06095665	1.7671	903.3112	0.00093785
060	Onondaga Lake	2711412	10/9/2007	North	Grab	Upper Mixed	0-6m	7140	Miscellaneous			5	11.3596	0.00135459	41.8879	475.8306	0.00049403
060	Onondaga Lake	2711412	10/9/2007	North	Grab	Upper Mixed	0-6m	6033	Pyrrhophyta	Gymnodinium	sp. 2	16	11.3596	0.00135459	603.1858	6851.9608	0.00711399
060	Onondaga Lake	2711412	10/9/2007	North	Grab	Upper Mixed	0-6m	6034	Pyrrhophyta	Gymnodinium	sp. 3	20	11.3596	0.00135459	2073.4512	23553.6155	0.02445434
060	Onondaga Lake	2711412	10/9/2007	North	Grab	Upper Mixed	0-6m	6044	Pyrrhophyta	Peridinium	umbonatum	24	11.3596	0.00135459	2513.2741	28549.836	0.02964162
060	Onondaga Lake	2712072	10/24/2007	South	Grab	Upper Mixed	0-6m	1076	Bacillariophyta	Cyclotella	meneghiniana	11.333	16.5231	0.00410402	583.289	9637.732	0.03197057
060	Onondaga Lake	2712072	10/24/2007	South	Grab	Upper Mixed	0-6m	9361	Bacillariophyta	Cyclotella	pseudostelligera	6	41.3077	0.01026005	84.823	3503.8435	0.01162305
060	Onondaga Lake	2712072	10/24/2007	South	Grab	Upper Mixed	0-6m	9123	Bacillariophyta	Nitzschia	palea	8	4.1308	0.00102601	50.2655	207.6352	0.00068877
060	Onondaga Lake	2712072	10/24/2007	South	Grab	Upper Mixed	0-6m	1477	Bacillariophyta	Synedra	filiformis	56	4.1308	0.00102601	504	2081.9083	0.00690617
060	Onondaga Lake	2712072	10/24/2007	South	Grab	Upper Mixed	0-6m	2683	Chlorophyta			5.6667	289,1539	0.07182033	97.2148	28110.0421	0.09324747
060	Onondaga Lake	2712072	10/24/2007	South	Grab	Upper Mixed	0-6m	1000031	Chlorophyta	Ankistrodesmus	falcatus	24	4.1308	0.00102601	22.6195	93.436	0.00030995
060	Onondaga Lake	2712072	10/24/2007	South	Grab	Upper Mixed	0-6m	2080	Chlorophyta	Chlamydomonas		7.8333	49.5692	0.01231205	297.4811	14745.9139	0.04891559
060	Onondaga Lake	2712072	10/24/2007	South	Grah	Upper Mixed	0-6m	2162	Chlorophyta	Closterium	moniliferum	60	1 8287	0.00045421	507 8273	928 6754	0.00308063
060	Onondaga Lake	2712072	10/24/2007	South	Grah	Upper Mixed	0-6m	2102	Chlorophyta	Crucigenia	tetranedia	9	49 5692	0.04924824	72	3568 9857	0.01183915
060	Onondaga Lake	2712072	10/24/2007	South	Grah	Upper Mixed	0-6m	22175	Chlorophyta	Dictyosphaerium	nulchellum	10	4 1308	0.04924824	111 5944	460.9709	0.00152915
060	Onondaga Lake	2712072	10/24/2007	South	Grab	Upper Mixed	0-6m	2851	Chlorophyta	Lagerbeimia	ciliata	40	4.1308	0.00020000	402 1230	1661 0815	0.00152015
060	Onondaga Lake	2712072	10/24/2007	South	Grab	Upper Mixed	0.6m	2031	Chlorophyta	Monoronhidium	cillata	40	4.1508	0.00102001	402.1239	219 512	0.00072485
060	Onondaga Lake	2712072	10/24/2007	South	Grab	Upper Mixed	0.6m	2240	Chlorophyta	Monoraphium	capitcornutum	240	8.2015	0.002032	20.4493	210.312	0.22061124
060	Onondaga Lake	2712072	10/24/2007	South	Grab	Upper Mixed	0-611	2340	Chlorophyta	Nougeona	•	240	8.2015	0.00820805	12005.7158	99004.8851	0.55061154
060	Onondaga Lake	2/120/2	10/24/2007	South	Grab	Upper Mixed	0-6m	2363	Chlorophyta	Oocystis	parva	12	28.9154	0.0205198	233.3755	6/48.1444	0.02238515
060	Onondaga Lake	2/120/2	10/24/2007	South	Grab	Upper Mixed	0-6m	2371	Chlorophyta	Pandorina	morum	/0	3.65/4	0.01453503	10919.0702	39935.9086	0.13247659
060	Unondaga Lake	2712072	10/24/2007	South	Grab	Upper Mixed	0-6m	2385	Chlorophyta	Pediastrum	simplex	40	4.1308	0.00820805	576	2379.3238	0.00789276
060	Onondaga Lake	2712072	10/24/2007	South	Grab	Upper Mixed	0-6m	8101	Chlorophyta	Pyramichlamys	dissecta	16	4.1308	0.00102601	418.879	1730.293	0.00573978
060	Onondaga Lake	2712072	10/24/2007	South	Grab	Upper Mixed	0-6m	2484	Chlorophyta	Scenedesmus	abundans	17	70.2231	0.05232625	36.3901	2555.4256	0.00847693
060	Onondaga Lake	2712072	10/24/2007	South	Grab	Upper Mixed	0-6m	8396	Chlorophyta	Scenedesmus	bijuga	16	4.1308	0.00410402	167.5516	692.1172	0.00229591
060	Onondaga Lake	2712072	10/24/2007	South	Grab	Upper Mixed	0-6m	2483	Chlorophyta	Scenedesmus	bijuga	11	8.2615	0.00615602	115.7153	955.9867	0.00317123
060	Onondaga Lake	2712072	10/24/2007	South	Grab	Upper Mixed	0-6m	2488	Chlorophyta	Scenedesmus	denticulatus	16	12.3923	0.01231205	201.0619	2491.6217	0.00826528
060	Onondaga Lake	2712072	10/24/2007	South	Grab	Upper Mixed	0-6m	2487	Chlorophyta	Scenedesmus	dimorphus	30	8.2615	0.01026005	486.6679	4020.6268	0.01333734

1	2
1	J

					Sample		Depth						Concentration	Relative	Biovolume	Total Biovolume	Relative Total
Job II	D Lake	Site	Date	Station	Type	Depth	Note	Taxa Code	Division	Genus	Species	GALD	(natural unit/ml)	Concentration (%)	(um3/unit)	(um3/ml)	Biovolume (%)
060	Onondaga Lake	2712072	10/24/2007	South	Grab	Upper Mixed	0-6m	8303	Chlorophyta	Scenedesmus	opoliensis	28	24,7846	0.02462412	159,174	3945.0676	0.0130867
060	Onondaga Lake	2712072	10/24/2007	South	Grah	Upper Mixed	0-6m	2884	Chlorophyta	Scenedesmus	quadricanda	44.4	20 6539	0.0184681	156 6608	3235 6491	0.01073339
060	Onondaga Lake	2712072	10/24/2007	South	Grah	Upper Mixed	0-6m	8308	Chlorophyta	Scenedesmus	serratus		433 7309	0 32319154	16 7552	7267 248	0.02410713
060	Onondaga Lake	2712072	10/24/2007	South	Grah	Upper Mixed	0-6m	2501	Chlorophyta	Selenastrum	minutum	8	16 5231	0.00410402	29 09/3	480 7275	0.00159468
060	Onondaga Lake	2712072	10/24/2007	South	Grab	Upper Mixed	0-0m	2538	Chlorophyta	Stourastrum	havacarum	36	8 2615	0.00410402	640 8849	5204 6060	0.01756373
000	Onondaga Lake	2712072	10/24/2007	South	Crab	Upper Mixed	0.6	2010	Chlanarhata	Staulasu ulli	пехасегин	30	74 2520	0.002032	7.0696	5254.0909	0.01730373
060	Onondaga Lake	2/120/2	10/24/2007	South	Grab	Upper Mixed	0-611	2910	Chlorophyta	Suchococcus		4	/4.5559	0.0184681	7.0686	323.3778	0.00174346
060	Onondaga Lake	2/120/2	10/24/2007	South	Grab	Upper Mixed	0-6m	2551	Chlorophyta	Tetraedron	caudatum	8	4.1308	0.00102601	59.9879	247.7962	0.000822
060	Onondaga Lake	2/120/2	10/24/2007	South	Grab	Upper Mixed	0-6m	2554	Chlorophyta	Tetraedron	minimum	8	8.2615	0.002052	128	1057.4773	0.0035079
060	Onondaga Lake	2712072	10/24/2007	South	Grab	Upper Mixed	0-6m	8332	Chlorophyta	Tetraedron	muticum	12	4.1308	0.00102601	300	1239.2312	0.00411081
060	Onondaga Lake	2712072	10/24/2007	South	Grab	Upper Mixed	0-6m	1590	Chrysophyta	Chromulina		4	4.1308	0.00102601	33.5103	138.4234	0.00045918
060	Onondaga Lake	2712072	10/24/2007	South	Grab	Upper Mixed	0-6m	3015	Cryptophyta	Cryptomonas	erosa	20	8.2615	0.002052	1105.8406	9135.9475	0.03030604
060	Onondaga Lake	2712072	10/24/2007	South	Grab	Upper Mixed	0-6m	3041	Cryptophyta	Rhodomonas	minuta	10	24.7846	0.00615602	94.2478	2335.8962	0.0077487
060	Onondaga Lake	2712072	10/24/2007	South	Grab	Upper Mixed	0-6m	3043	Cryptophyta	Rhodomonas	minuta	8	123.9231	0.03078014	33.5103	4152.7008	0.01377546
060	Onondaga Lake	2712072	10/24/2007	South	Grab	Upper Mixed	0-6m	4332	Cyanophyta	Anabaena	aphanizomenoides	100	1.8287	0.00757035	1256.6371	2298.0411	0.00762313
060	Onondaga Lake	2712072	10/24/2007	South	Grab	Upper Mixed	0-6m	1000393	Cyanophyta	Aphanizomenon	gracile	240	4.1308	0.04104019	1696.46	7007.6869	0.02324611
060	Onondaga Lake	2712072	10/24/2007	South	Grab	Upper Mixed	0-6m	4046	Cyanophyta	Aphanizomenon	issatschenkoi	160	4.1308	0.02736016	2010.6193	8305.4069	0.02755094
060	Onondaga Lake	2712072	10/24/2007	South	Grab	Upper Mixed	0-6m	4054	Cyanophyta	Aphanocapsa	delicatissima	8	8.2615	0.01641607	4.1888	34.6059	0.0001148
060	Onondaga Lake	2712072	10/24/2007	South	Grab	Upper Mixed	0-6m	4023	Cvanophyta	Cylindrospermopsis	raciborskii	240	4.1308	0.04104019	3015.9289	12458.1102	0.04132642
060	Onondaga Lake	2712072	10/24/2007	South	Grab	Upper Mixed	0-6m	4285	Cyanophyta	Synechocystis		1.5	520.4771	0.12927662	1.7671	919.7351	0.00305097
060	Onondaga Lake	2712072	10/24/2007	South	Grah	Upper Mixed	0-6m	6033	Pyrrhonhyta	Gymnodinium	sn 2	16	4 1308	0.00102601	603 1858	2491 6221	0.00826528
060	Onondaga Lake	2712072	10/24/2007	South	Grah	Upper Mixed	0-6m	6044	Pyrrhophyta	Peridinium	umbonatum	16	4.1308	0.00102601	603 1858	2491.6221	0.00826528
000	Onondaga Lake	2712611	11/8/2007	South	Grab	Upper Mixed	0-011 0.6m	1076	Bacillariophyta	Cyclotella	meneghiniana	14	4.1308	0.00102001	1077 5663	2491.0221	0.00820528
000	Onondaga Lake	2712611	11/8/2007	South	Crab	Upper Mixed	0.6	0261	Dacillariophyta	Cyclotella	meneginnana	14	27.9654	0.00195054	1077.5005	20401.2373	0.03933022
060	Onondaga Lake	2712611	11/8/2007	South	Grab	Upper Mixed	0-611	9361	Bacillariophyta	Cyclotella	pseudostemgera	0	57.8034	0.00390107	84.823	5211.8505	0.00619602
060	Onondaga Lake	2712611	11/8/2007	South	Grab	Upper Mixed	0-6m	9045	Bacillariophyta	Fragilaria	construens	60	2.7431	0.00211954	2261.9467	6204.7108	0.01196957
060	Onondaga Lake	2/12611	11/8/2007	South	Grab	Upper Mixed	0-6m	14//	Bacillariophyta	Synedra	filiformis	82	18.9327	0.00195054	/38	13972.3313	0.02695416
060	Onondaga Lake	2712611	11/8/2007	South	Grab	Upper Mixed	0-6m	2683	Chlorophyta	•	•	5.1429	416.5194	0.0429118	80.7838	33648.0167	0.06491071
060	Onondaga Lake	2712611	11/8/2007	South	Grab	Upper Mixed	0-6m	2080	Chlorophyta	Chlamydomonas		6.8571	113.5962	0.01170322	215.5671	24487.6011	0.04723927
060	Onondaga Lake	2712611	11/8/2007	South	Grab	Upper Mixed	0-6m	2171	Chlorophyta	Coelastrum	microporum	12	18.9327	0.01560429	268.0826	5075.527	0.00979125
060	Onondaga Lake	2712611	11/8/2007	South	Grab	Upper Mixed	0-6m	2175	Chlorophyta	Coelastrum	pseudomicroporum	20	2.7431	0.00226085	904.7787	2481.8844	0.00478783
060	Onondaga Lake	2712611	11/8/2007	South	Grab	Upper Mixed	0-6m	2193	Chlorophyta	Crucigenia	tetrapedia	8	75.7308	0.03120858	64	4846.7707	0.00934995
060	Onondaga Lake	2712611	11/8/2007	South	Grab	Upper Mixed	0-6m	8041	Chlorophyta	Monoraphidium	capricornutum	4	37.8654	0.00390107	7.8108	295.759	0.00057055
060	Onondaga Lake	2712611	11/8/2007	South	Grab	Upper Mixed	0-6m	2363	Chlorophyta	Oocystis	parva	10	18.9327	0.00195054	188.4956	3568.7303	0.00688447
060	Onondaga Lake	2712611	11/8/2007	South	Grab	Upper Mixed	0-6m	2371	Chlorophyta	Pandorina	morum	48	2.7431	0.00452169	13527.4466	37106.9281	0.07158333
060	Onondaga Lake	2712611	11/8/2007	South	Grab	Upper Mixed	0-6m	2484	Chlorophyta	Scenedesmus	abundans	17.333	75.7308	0.02080598	16.7552	1268.8846	0.00244782
060	Onondaga Lake	2712611	11/8/2007	South	Grab	Upper Mixed	0-6m	2488	Chlorophyta	Scenedesmus	denticulatus	12.667	56.7981	0.01170322	79.9361	4540.2182	0.00875858
060	Onondaga Lake	2712611	11/8/2007	South	Grab	Upper Mixed	0-6m	8303	Chlorophyta	Scenedesmus	opoliensis	16	18.9327	0.00780215	40.8407	773.2246	0.00149164
060	Onondaga Lake	2712611	11/8/2007	South	Grab	Upper Mixed	0-6m	8308	Chlorophyta	Scenedesmus	serratus	4	1476.7505	0.30428363	8.3776	12371.6246	0.02386622
060	Onondaga Lake	2712611	11/8/2007	South	Grah	Upper Mixed	0-6m	2501	Chlorophyta	Selenastrum	minutum	5	37 8654	0.00390107	18 4939	700 2789	0.00135091
060	Onondaga Lake	2712611	11/8/2007	South	Grah	Upper Mixed	0-6m	2538	Chlorophyta	Staurastrum	hexacerum	32	2 7431	0.00028261	723 8229	1985 5073	0.00383026
060	Onondaga Lake	2712611	11/8/2007	South	Grah	Upper Mixed	0-6m	2910	Chlorophyta	Stichococcus	nondoordin	4	851 9714	0.08777412	7.0686	6022 2452	0.01161757
060	Onondaga Lake	2712611	11/8/2007	South	Grah	Upper Mixed	0-6m	2561	Chlorophyta	Tetrastrum	staurogeniaeforme	10	37 8654	0.01560429	50 6844	1010 18/0	0.00370232
000	Onondaga Lake	2712611	11/8/2007	South	Grab	Upper Mixed	0.6m	2015	Cruptophyta	Cruntomonos	stautogemaetorme	22.2	04 6625	0.00075268	1159 6104	1919.1049	0.00370232
060	Onondaga Lake	2712611	11/8/2007	South	Grab	Upper Mixed	0.6m	2041	Cryptophyta	Phodomonas	minuto	12	1211 6027	0.00973208	1136.0194	109078.9371	0.21136274
060	Onondaga Lake	2712611	11/8/2007	South	Grab	Upper Mixed	0-611	3041	Cryptopnyta	Rhodomonas	minuta	12	1211.0927	0.12485451	147.0349	178912.3021	0.54514157
060	Onondaga Lake	2712611	11/8/2007	South	Grab	Upper Mixed	0-6m	3043	Cryptopnyta	Rhodomonas	minuta	8	851.9714	0.08/7/412	46.2076	39367.3343	0.07594433
060	Onondaga Lake	2/12611	11/8/2007	South	Grab	Upper Mixed	0-6m	4170	Cyanophyta	Oscillatoria	•	24	2.7431	0.00226085	169.646	465.3533	0.00089772
060	Onondaga Lake	2712611	11/8/2007	South	Grab	Upper Mixed	0-6m	4285	Cyanophyta	Synechocystis	•	1.5	1931.1352	0.19895468	1.7671	3412.509	0.0065831
060	Onondaga Lake	2712611	11/8/2007	South	Grab	Upper Mixed	0-6m	6033	Pyrrhophyta	Gymnodinium	sp. 2	16	2.7431	0.00028261	603.1858	1654.5896	0.00319188
060	Onondaga Lake	2712958	11/20/2007	South	Grab	Upper Mixed	0-6m	1013	Bacillariophyta	Achnanthes	minutissima	12	4.5438	0.0026813	56.5487	256.9487	0.00161271
060	Onondaga Lake	2712958	11/20/2007	South	Grab	Upper Mixed	0-6m	9363	Bacillariophyta	Cyclotella	ocellata	10	4.5438	0.0026813	392.6991	1784.3648	0.0111994
060	Onondaga Lake	2712958	11/20/2007	South	Grab	Upper Mixed	0-6m	9045	Bacillariophyta	Fragilaria	construens	8	4.5438	0.00536267	75.3982	342.5979	0.00215028
060	Onondaga Lake	2712958	11/20/2007	South	Grab	Upper Mixed	0-6m	1468	Bacillariophyta	Stephanodiscus	alpinus	26	4.5438	0.0026813	6902.0791	31361.9953	0.1968406
060	Onondaga Lake	2712958	11/20/2007	South	Grab	Upper Mixed	0-6m	2683	Chlorophyta			5.5	49.9823	0.02949465	89.2736	4462.1019	0.02800596
060	Onondaga Lake	2712958	11/20/2007	South	Grab	Upper Mixed	0-6m	1000031	Chlorophyta	Ankistrodesmus	falcatus	100	2.1945	0.00129498	167.5516	367.6865	0.00230775
060	Onondaga Lake	2712958	11/20/2007	South	Grab	Upper Mixed	0-6m	2080	Chlorophyta	Chlamydomonas		5.5	13.6315	0.00804397	85.3052	1162.8415	0.00729846
060	Onondaga Lake	2712958	11/20/2007	South	Grab	Upper Mixed	0-6m	2175	Chlorophyta	Coelastrum	pseudomicroporum	20	4.5438	0.04290135	1047.1976	4758.3063	0.02986506
060	Onondaga Lake	2712958	11/20/2007	South	Grab	Upper Mixed	0-6m	2193	Chlorophyta	Crucigenia	tetrapedia	6	4.5438	0.01072534	60.8	276.2659	0.00173396
	-									~	•						

14

					Sample		Depth						Concentration	Relative	Biovolume	Total Biovolume	Relative Total
Job II	D Lake	Site	Date	Station	Туре	Depth	Note	Taxa Code	Division	Genus	Species	GALD	(natural unit/ml)	Concentration (%)	(um3/unit)	(um3/ml)	Biovolume (%)
060	Onondaga Lake	2712958	11/20/2007	South	Grab	Upper Mixed	0-6m	2861	Chlorophyta	Monomastix	astigmata	6	4.5438	0.0026813	25,1327	114,1992	0.00071676
060	Onondaga Lake	2712958	11/20/2007	South	Grah	Upper Mixed	0-6m	2363	Chlorophyta	Occustis	narva	7	9.0877	0.00536267	47 6475	433.006	0.00271772
060	Onondaga Lake	2712058	11/20/2007	South	Grah	Upper Mixed	0.6m	2305	Chlorophyta	Pandorina	morum	26	4 5438	0.04200135	4077 5350	18527 7016	0.11628737
000	Onondaga Lake	2712958	11/20/2007	South	Grab	Upper Mixed	0.6m	2371	Chlorophyta	Saanadaamua	abundana	12.5	4.5450	0.04290133	24 11 22	657 5202	0.00412608
000		2712936	11/20/2007	South	Giab	Upper Mixed	0-011	2404	Chlorophyta	Scelledesillus		12.5	27.2031	0.03019797	24.1163	105 5744	0.00412098
060	Onondaga Lake	2/12958	11/20/2007	South	Grab	Upper Mixed	0-6m	2483	Chlorophyta	Scenedesmus	bijuga	0	9.0877	0.01072534	20.4204	185.5744	0.00116474
060	Onondaga Lake	2712958	11/20/2007	South	Grab	Upper Mixed	0-6m	2488	Chlorophyta	Scenedesmus	denticulatus	14	9.0877	0.01608801	43.9823	399.6977	0.00250866
060	Onondaga Lake	2712958	11/20/2007	South	Grab	Upper Mixed	0-6m	8226	Chlorophyta	Scenedesmus	intermedius	20	4.5438	0.01072534	75.3982	342.5979	0.00215028
060	Onondaga Lake	2712958	11/20/2007	South	Grab	Upper Mixed	0-6m	8303	Chlorophyta	Scenedesmus	opoliensis	40	2.1945	0.0025899	301.5929	661.8358	0.00415395
060	Onondaga Lake	2712958	11/20/2007	South	Grab	Upper Mixed	0-6m	2884	Chlorophyta	Scenedesmus	quadricauda	20	4.5438	0.01072534	134.0413	609.0632	0.00382273
060	Onondaga Lake	2712958	11/20/2007	South	Grab	Upper Mixed	0-6m	8308	Chlorophyta	Scenedesmus	serratus	4	40.8946	0.04826402	8.3776	342.5988	0.00215029
060	Onondaga Lake	2712958	11/20/2007	South	Grab	Upper Mixed	0-6m	2501	Chlorophyta	Selenastrum	minutum	6	9.0877	0.00536267	44.6333	405.6138	0.0025458
060	Onondaga Lake	2712958	11/20/2007	South	Grab	Upper Mixed	0-6m	2910	Chlorophyta	Stichococcus		4	40.8946	0.02413198	7.0686	289.0678	0.00181431
060	Onondaga Lake	2712958	11/20/2007	South	Grah	Upper Mixed	0-6m	2561	Chlorophyta	Tetrastrum	staurogeniaeforme	10	4 5438	0.01072534	63 6696	289 305	0.0018158
060	Onondaga Lake	2712058	11/20/2007	South	Grah	Upper Mixed	0.6m	1731	Chrysophyta	Frkenia	subaequiciliata	10	18 1754	0.01072534	30 2431	549 6801	0.00345002
000	Onondaga Lake	2712958	11/20/2007	South	Crab	Upper Mixed	0.6	2015	Chrysophyta	Crusterener	subacquicinata		21 9060	0.01072534	1102.25	25062 2726	0.00345002
060	Onondaga Lake	2712958	11/20/2007	South	Grab	Upper Mixed	0-611	3013	Сгуріорпуіа	Cryptomonas	erosa	22	51.8009	0.01876951	1102.55	55062.5726	0.22006367
060	Onondaga Lake	2/12958	11/20/2007	South	Grab	Upper Mixed	0-6m	3043	Cryptophyta	Rhodomonas	minuta	8	286.2624	0.16892397	58.9049	16862.2579	0.10583437
060	Onondaga Lake	2712958	11/20/2007	South	Grab	Upper Mixed	0-6m	3041	Cryptophyta	Rhodomonas	minuta	12	368.0517	0.21718798	94.2478	34688.0586	0.21771632
060	Onondaga Lake	2712958	11/20/2007	South	Grab	Upper Mixed	0-6m	4321	Cyanophyta	Synechococcus	elongatus	3	4.5438	0.0026813	1.5708	7.1375	0.0000448
060	Onondaga Lake	2712958	11/20/2007	South	Grab	Upper Mixed	0-6m	4285	Cyanophyta	Synechocystis		1.5	395.3147	0.23327593	1.7671	698.5607	0.00438445
060	Onondaga Lake	2712958	11/20/2007	South	Grab	Upper Mixed	0-6m	7140	Miscellaneous			4	22.7192	0.01340664	30.2431	687.1002	0.00431252
060	Onondaga Lake	2712958	11/20/2007	South	Grab	Upper Mixed	0-6m	6033	Pyrrhophyta	Gymnodinium	sp. 2	16	4.5438	0.0026813	603.1858	2740.7843	0.01720227
060	Onondaga Lake	2712974	11/20/2007	North	Grab	Upper Mixed	0-6m	1076	Bacillariophyta	Cvclotella	meneghiniana	24	2,7431	0.00074552	5428.6721	14891.3059	0.03373729
060	Onondaga Lake	2712974	11/20/2007	North	Grah	Upper Mixed	0-6m	9363	Bacillariophyta	Cyclotella	ocellata	-	7 0998	0.00192958	84 823	602 2231	0.00136438
060	Onondaga Lake	2712974	11/20/2007	North	Grah	Upper Mixed	0.6m	1720	Bacillariophyta	Gyrosiama	occinata	00	2 7/31	0.00074552	12060	35550 3742	0.08054185
000		2712974	11/20/2007	North	C		0-011	1720	Dacinariophyta	Gyrosigina	·	20	2.7431	0.00074332	12900	55550.5742	0.12066120
060	Onondaga Lake	2/129/4	11/20/2007	North	Grab	Upper Mixed	0-6m	1468	Bacillariophyta	Stephanodiscus	aipinus	28	7.0998	0.00192958	8620.5302	61203./112	0.13866128
060	Onondaga Lake	2/129/4	11/20/2007	North	Grab	Upper Mixed	0-6m	9818	Bacillariophyta	Stephanodiscus	medius	24	7.0998	0.00192958	5428.6721	38542.2789	0.08732022
060	Onondaga Lake	2712974	11/20/2007	North	Grab	Upper Mixed	0-6m	9776	Bacillariophyta	Synedra	ulna	216	2.7431	0.00074552	7776	21330.2245	0.04832511
060	Onondaga Lake	2712974	11/20/2007	North	Grab	Upper Mixed	0-6m	2683	Chlorophyta			5.1429	49.6983	0.01350698	76.7446	3814.0787	0.00864106
060	Onondaga Lake	2712974	11/20/2007	North	Grab	Upper Mixed	0-6m	2080	Chlorophyta	Chlamydomonas		6	42.5986	0.01157743	100.0786	4263.2053	0.00965859
060	Onondaga Lake	2712974	11/20/2007	North	Grab	Upper Mixed	0-6m	2171	Chlorophyta	Coelastrum	microporum	16	2.7431	0.00596412	2144.6606	5882.9851	0.01332831
060	Onondaga Lake	2712974	11/20/2007	North	Grab	Upper Mixed	0-6m	2193	Chlorophyta	Crucigenia	tetrapedia	6.6667	21.2993	0.02315483	49.4733	1053.7459	0.00238733
060	Onondaga Lake	2712974	11/20/2007	North	Grab	Upper Mixed	0-6m	2853	Chlorophyta	Lagerheimia	quadriseta	8	7 0998	0.00192958	67 0206	475 8303	0.00107803
060	Onondaga Lake	2712974	11/20/2007	North	Grah	Upper Mixed	0-6m	2861	Chlorophyta	Monomastix	astigmata	4	35 4988	0.00964785	9 4 2 4 8	334 5692	0.00075799
060	Onondaga Lake	2712974	11/20/2007	North	Grah	Upper Mixed	0.6m	2340	Chlorophyta	Monomastia	usuginuu	80	7 0008	0.00385013	4021 2386	28540 8363	0.06468165
000		2712974	11/20/2007	North	Giab	Upper Mixed	0-011	2340	Chlorophyta	Mougeona	•	16.5	7.0998	0.00585915	4021.2360	20349.0303	0.00408103
060	Onondaga Lake	2/129/4	11/20/2007	North	Grab	Upper Mixed	0-611	2303	Chlorophyta	Oocysus	parva	10.5	28.399	0.01545050	289.0205	8208.0772	0.01859597
060	Onondaga Lake	2/129/4	11/20/2007	North	Grab	Upper Mixed	0-6m	2484	Chlorophyta	Scenedesmus	abundans	17.333	21.2993	0.01543675	34.55/5	/36.0501	0.00166757
060	Onondaga Lake	2712974	11/20/2007	North	Grab	Upper Mixed	0-6m	2483	Chlorophyta	Scenedesmus	bijuga	5	7.0998	0.00385913	17.017	120.8166	0.00027372
060	Onondaga Lake	2712974	11/20/2007	North	Grab	Upper Mixed	0-6m	2488	Chlorophyta	Scenedesmus	denticulatus	16	21.2993	0.02315483	128.4562	2736.0253	0.00619866
060	Onondaga Lake	2712974	11/20/2007	North	Grab	Upper Mixed	0-6m	8226	Chlorophyta	Scenedesmus	intermedius	20	14.1995	0.01543656	25.1327	356.8724	0.00080852
060	Onondaga Lake	2712974	11/20/2007	North	Grab	Upper Mixed	0-6m	8303	Chlorophyta	Scenedesmus	opoliensis	50	7.0998	0.00771827	268.0826	1903.3226	0.00431211
060	Onondaga Lake	2712974	11/20/2007	North	Grab	Upper Mixed	0-6m	2884	Chlorophyta	Scenedesmus	quadricauda	30	7.0998	0.00192958	50.2655	356.8731	0.00080852
060	Onondaga Lake	2712974	11/20/2007	North	Grab	Upper Mixed	0-6m	8308	Chlorophyta	Scenedesmus	serratus	5.4	170.3943	0.09261938	22.0435	3756.0864	0.00850968
060	Onondaga Lake	2712974	11/20/2007	North	Grab	Upper Mixed	0-6m	2491	Chlorophyta	Schroederia	iudavi	40	7.0998	0.00192958	67.0206	475.8303	0.00107803
060	Onondaga Lake	2712974	11/20/2007	North	Grah	Upper Mixed	0-6m	2501	Chlorophyta	Selenastrum	minutum	7	21 2993	0.00578871	79 348	1690.0557	0.00382894
060	Onondaga Lake	2712974	11/20/2007	North	Grah	Upper Mixed	0.6m	2538	Chlorophyta	Staurastrum	heracerum	40	7 0008	0.00102058	613 2380	4353 8501	0.00986395
000		2712974	11/20/2007	North	C		0-011	2010			nexacerum	40	(01.5771	0.10522938	7.0696	4017 7061	0.00980395
060	Onondaga Lake	2/129/4	11/20/2007	North	Grab	Upper Mixed	0-6m	2910	Chlorophyta	Sticnococcus	•	4	681.5771	0.18523874	7.0686	4817.7961	0.01091505
060	Onondaga Lake	2/129/4	11/20/2007	North	Grab	Upper Mixed	0-6m	8332	Chlorophyta	Tetraedron	muticum	12	7.0998	0.00192958	424.8	3015.9788	0.00683291
060	Onondaga Lake	2712974	11/20/2007	North	Grab	Upper Mixed	0-6m	2561	Chlorophyta	Tetrastrum	staurogeniaeforme	12	7.0998	0.00771827	63.6696	452.039	0.00102413
060	Onondaga Lake	2712974	11/20/2007	North	Grab	Upper Mixed	0-6m	3015	Cryptophyta	Cryptomonas	erosa	25	56.7981	0.01543656	1206.3716	68519.6082	0.15523595
060	Onondaga Lake	2712974	11/20/2007	North	Grab	Upper Mixed	0-6m	3043	Cryptophyta	Rhodomonas	minuta	8	553.7814	0.15050648	33.5103	18557.3816	0.04204304
060	Onondaga Lake	2712974	11/20/2007	North	Grab	Upper Mixed	0-6m	3041	Cryptophyta	Rhodomonas	minuta	11	851.9714	0.23154843	117.6788	100258.9742	0.2271437
060	Onondaga Lake	2712974	11/20/2007	North	Grab	Upper Mixed	0-6m	4285	Cyanophyta	Synechocystis		1.5	404.6864	0.1099855	1.7671	715.1214	0.00162016
060	Onondaga Lake	2712974	11/20/2007	North	Grab	Upper Mixed	0-6m	7140	Miscellaneous			4	127.7957	0.03473226	30.2431	3864,9385	0.00875629
060	Onondaga Lake	2713469	12/13/2007	South	Grab	Upper Mixed	0-6m	1013	Bacillariophyta	Achnanthes	minutissima	12	5 6798	0.00186255	75 3982	478 2474	0.00176711
060	Onondaga Laka	2713460	12/13/2007	South	Grab	Upper Mixed	0.6m	9212	Bacillariophyte	Cocconeis	nlacentula	20	5 6700	0.00100255	251 3274	1/27 /017	0.00580037
000	Ononda Lake	2712409	12/13/2007	South	Carl	Upper Mixed	0.6	1076	Daeiller	Conductable	Pracentura	20	5.0198	0.00100233	202 (001	1427.4717	0.0000000000000000000000000000000000000
060	Onondaga Lake	2/15469	12/13/2007	South	Grab	Upper Mixed	0-6m	10/0	Басшагюрнуta	Cyclotella	menegniniana	10	5.6798	0.00186255	392.6991	2230.4561	0.00920371

					Sample		Depth						Concentration	Relative	Biovolume	Total Biovolume	Relative Total
Job ID	Lake	Site	Date	Station	Туре	Depth	Note	Taxa Code	Division	Genus	Species	GALD	(natural unit/ml)	Concentration (%)	(um3/unit)	(um3/ml)	Biovolume (%)
060	Onondaga Lake	2713469	12/13/2007	South	Grab	Upper Mixed	0-6m	9363	Bacillariophyta	Cyclotella	ocellata	8	5.6798	0.00186255	201.0619	1141.9933	0.0047123
060	Onondaga Lake	2713469	12/13/2007	South	Grab	Upper Mixed	0-6m	9361	Bacillariophyta	Cyclotella	pseudostelligera	6	5.6798	0.00186255	84.823	481.7785	0.001988
060	Onondaga Lake	2713469	12/13/2007	South	Grab	Upper Mixed	0-6m	1210	Bacillariophyta	Navicula		24	5.6798	0.00186255	603.1858	3425.9804	0.01413689
060	Onondaga Lake	2713469	12/13/2007	South	Grab	Upper Mixed	0-6m	1222	Bacillariophyta	Nitzschia	gracilis	40	5.6798	0.00186255	565.4867	3211.8567	0.01325334
060	Onondaga Lake	2713469	12/13/2007	South	Grab	Upper Mixed	0-6m	1468	Bacillariophyta	Stephanodiscus	alpinus	20	16.4585	0.00539716	3141.5927	51705.9241	0.21335824
060	Onondaga Lake	2713469	12/13/2007	South	Grab	Upper Mixed	0-6m	9818	Bacillariophyta	Stephanodiscus	medius	16	5.6798	0.00186255	1608.4954	9135.9474	0.03769838
060	Onondaga Lake	2713469	12/13/2007	South	Grab	Upper Mixed	0-6m	2683	Chlorophyta			6	34.0789	0.01117533	113.0973	3854.2267	0.015904
060	Onondaga Lake	2713469	12/13/2007	South	Grab	Upper Mixed	0-6m	1000031	Chlorophyta	Ankistrodesmus	falcatus	30	5.6798	0.00186255	28.2743	160.5926	0.00066267
060	Onondaga Lake	2713469	12/13/2007	South	Grab	Upper Mixed	0-6m	2080	Chlorophyta	Chlamydomonas		10	5.6798	0.00186255	502.8643	2856.1734	0.01178565
060	Onondaga Lake	2713469	12/13/2007	South	Grab	Upper Mixed	0-6m	2193	Chlorophyta	Crucigenia	tetrapedia	8	5.6798	0.0074502	60.8	345.3324	0.00142497
060	Onondaga Lake	2713469	12/13/2007	South	Grab	Upper Mixed	0-6m	2484	Chlorophyta	Scenedesmus	abundans	16	5.6798	0.00186255	50.2655	285.4985	0.00117808
060	Onondaga Lake	2713469	12/13/2007	South	Grab	Upper Mixed	0-6m	2884	Chlorophyta	Scenedesmus	quadricauda	16	5.6798	0.0074502	56.5487	321.1858	0.00132533
060	Onondaga Lake	2713469	12/13/2007	South	Grab	Upper Mixed	0-6m	8308	Chlorophyta	Scenedesmus	serratus	6	11.3596	0.0074502	28.2743	321.1853	0.00132533
060	Onondaga Lake	2713469	12/13/2007	South	Grab	Upper Mixed	0-6m	2910	Chlorophyta	Stichococcus		4	408.9463	0.13410376	7.0686	2890.6777	0.01192803
060	Onondaga Lake	2713469	12/13/2007	South	Grab	Upper Mixed	0-6m	1180	Chrysophyta	Mallomonas		16	5.6798	0.00186255	1206.3716	6851.9608	0.02827379
060	Onondaga Lake	2713469	12/13/2007	South	Grab	Upper Mixed	0-6m	3020	Cryptophyta	Chroomonas		6	5.6798	0.00186255	94.2478	535.3095	0.00220889
060	Onondaga Lake	2713469	12/13/2007	South	Grab	Upper Mixed	0-6m	3015	Cryptophyta	Cryptomonas	erosa	20	62.4779	0.02048807	898.4955	56136.1156	0.23163888
060	Onondaga Lake	2713469	12/13/2007	South	Grab	Upper Mixed	0-6m	3069	Cryptophyta	Cryptomonas	rostratiformis	36	5.6798	0.00186255	3769.9112	21412.3773	0.08835558
060	Onondaga Lake	2713469	12/13/2007	South	Grab	Upper Mixed	0-6m	3043	Cryptophyta	Rhodomonas	minuta	8	567.9809	0.1862552	33.5103	19033.2119	0.07853824
060	Onondaga Lake	2713469	12/13/2007	South	Grab	Upper Mixed	0-6m	3041	Cryptophyta	Rhodomonas	minuta	12	363.5078	0.11920334	94.2478	34259.8109	0.14136896
060	Onondaga Lake	2713469	12/13/2007	South	Grab	Upper Mixed	0-6m	4285	Cyanophyta	Synechocystis		1.5	1363.1543	0.44701252	1.7671	2408.8299	0.00993974
060	Onondaga Lake	2713469	12/13/2007	South	Grab	Upper Mixed	0-6m	7140	Miscellaneous			6	68.1577	0.02235062	105.6832	7203.1253	0.02972282
060	Onondaga Lake	2713469	12/13/2007	South	Grab	Upper Mixed	0-6m	6033	Pyrrhophyta	Gymnodinium	sp. 2	16	17.0394	0.00558765	603.1858	10277.9412	0.04241068

Appendix B. Abundance (#/L) x 10 ⁻³ and biomass (µg/L) of microflagellates, Cyanophyta, Chlorophyta, Pyrrophyta, Cryptophyta, Bacillariophyta Euglenophyta, and
Chrysophyta for each sampling date at both north ("N") and south ("S") stations, when taken. Samples taken were integrated upper mixed layer samples. (Data for
the sample collected 12/28/06 were received after the 2006 report was completed.)

Date	Depth	Station	Variable	Bacillario	Chloro	Chryso	Crypto	Eugleno	Cyano	Misc. Micro	Pyrrho
12/28/06	UML	S	Abund	79.324	164.71	653.18	1147.3	2.7431	-	204.47	22.719
			BM	126.74	8.0095	20.404	158.78	8.5832		6.1839	10.828
02/13/07	UML	Ν	Abund	833.80	147.60	272.63	592.97		481.65	245.37	49.982
			BM	557.18	5.3185	8.2452	157.90		0.94906	25.931	25.543
02/21/07	UML	Ν	Abund	637.78	109.05	190.84	381.68		636.14	27.263	45.438
			BM	474.56	4.0806	5.7716	77.631		1.1319	1.3704	25.952
02/28/07	UML	Ν	Abund	786.09	154.49	204.47	381.68		218.10	381.68	15.826
			BM	395.08	7.7783	4.9471	80.935		0.38541	25.940	30.315
03/07/07	UML	Ν	Abund	3705.2	251.85	113.60	221.90		1397.2		11.360
			BM	1132.8	7.9814	2.7063	42.680		2.4691		1.9033
03/13/07	UML	Ν	Abund	1319.9	518.00	190.84	127.23		1099.6	54.526	9.0877
			BM	743.38	18.146	7.1946	12.934		1.9604	4.0232	5.4816
04/10/07	UML	S	Abund	655.39	382.98	19.474	1103.5		707.54	6.4912	58.421
			BM	383.14	76.322	1.1211	409.37		1.3476	0.68601	122.08
04/10/07	UML	Ν	Abund	655.92	87.090	30.292	795.17		3.7865	3.7865	30.292
			BM	462.22	15.240	0.91613	180.10		0.00198	0.15861	139.93
04/24/07	UML	S	Abund	4074.3	378.65	45.439	2771.7			15.146	151.46
			BM	2644.2	71.952	1.3720	632.03			0.45807	681.04
05/08/07	UML	S	Abund	2692.8	229.39	166.61	3014.1			30.292	4.3890
			BM	1190.9	40.951	8.6728	263.11			0.34299	19.031
05/22/07	UML	S	Abund	3185.1	90.877	4011.0	3544.2		408.95		27.108
			BM	1516.8	5.4820	159.13	149.03		0.00072		103.93
06/05/07	UML	S	Abund	2271.9	236.28	5152.7	1254.1		381.68		22.564
			BM	1419.4	44.549	167.30	118.36		0.67447		58.027
06/19/07	UML	S	Abund	13.632	504.37	904.23	849.70		22.719		4.5438
			BM	2.1645	33.943	73.689	60.471				95.166
06/19/07	UML	Ν	Abund	74.896	2378.5	1508.6	590.70		81.789		0
			BM	17.252	79.885	68.697	47.247		0.14453		
07/03/07	UML	S	Abund	54.216	38104	112.82	1999.3				4.3889
			BM	30.657	532.52	42.937	355.54				6.4713
07/17/07	UML	S	Abund	424.09	4007.4	4976.7	3211.0		454.38		8.7778
			BM	88.124	254.57	151.33	471.24		0.80294		22.061
07/31/07	UML	S	Abund	1709.4	3539.4	3100.4	519.30		782.08		3.1350
			BM	216.59	113.52	103.12	281.37		5.2353		7.8790
08/14/07	UML	S	Abund	349.57	5043.7	3997.8	545.26		1049.5		68.158
00/00/05			BM	93.028	125.68	126.30	220.71		16.473		26.266
08/28/07	UML	S	Abund	28.901	1706.0	6087.4	2246.7		555.36		28.901
00/11/07			BM	4.1163	62.157	191.48	73.401		16.446		37.661
09/11/07	UML	S	Abund	738.38	1763.7	454.38	2754.7		259.02		85.197
00/25/07	ING	C	BM	231.39	404.18	15.884	1973.8		29.185	102.24	442.11
09/25/07	UML	2	Abund	241.30	3626.1	11.360	8/4.69		224.06	102.24	56.798
10/00/07	UM	c	BIVI A humd	134.13	2604.5	562.20	020.12		12.341	22.710	69.159
10/09/07	UML	3	Abuna	275.05	2004.5	362.30	920.15 502.86		1/2.81	22.719	08.138
10/00/07	UM	N	BM	159.85	885.27	17.006	592.86		502.44	2.4010	27.408
10/09/07	UML	IN	Aduna	249.91	5558.5 565 77	30.798	180.02		595.44 57.200	0.47582	58.079
10/24/07	UM	c	BIVI A humd	66.002	1159.0	1./1/8	189.93		512.06	0.47385	<u> </u>
10/24/07	UML	3	Abuna	15 421	221.54	4.1508	150.97		342.96		8.2010
11/09/07	I INAT	c	Abund	13.431	231.34	123.32	13.023		1032.0		4.9832
11/08/07	UML	3	Abunu BM	/0.4/4	5245.7 141.00		2138.3		1733.7		2.7431
11/20/07	I INAT	c	Abund	43./90	245.09	18 175	527.90 686.10		300 96	22 710	1.0340
11/20/07	UML	3	Abunu	10.170	240.21	0.170	000.12		0 70570	22.1 13	4.3438
11/20/07	I INAT	N	Abund	20 520	<u>34.283</u> 1174 9	0.04908	1162 6	0	101 60	127 00	2.7408
11/20/07	UML	IN	Abunu BM	29.029	77 254	U	1902.0	U	404.09	3 8640	0
12/12/07	I INAT	c	Abund	61 207	11.304	5 6709	107.34		1362.2	0.0049 68 150	17.020
12/13/07	UML	3	BM	73 100	11 025	6 8520	131 32		2 4088	7 2021	10.039
			DIM	13.180	11.055	0.0020	101.00		2.4000	1.2001	10.270

Appendix C (A). Summary statistics for the zooplankton community of Onondaga Lake sampled 12/29/06 through 12/13/07. Density (#/L), average size (mm), and biomass (µg/L) of the total zooplankton community and density and biomass of cladocerans and copepods.

		Total Zoop	lankton Co	mmunity	Cladoo	cerans	Copepods		
Site	Date	Density	Size	Biomass	Density	Biomass	Density	Biomass	
North Integrated	4/10/07	10.427	0.338	12.375	0.282	0.366	10.145	12.008	
North Integrated	6/19/07	237.003	0.313	199.329	200.839	156.614	36.164	42.715	
North Integrated	10/9/07	34.026	0.419	40.562	33.405	39.768	0.621	0.794	
North Integrated	11/20/07	22.922	0.294	17.630	16.072	15.195	6.850	2.435	
South Integrated	4/10/07	16.252	0.571	46.448	0.431	0.760	15.822	45.688	
South Integrated	4/24/07	20.856	0.329	22.531	0.115	0.176	20.741	22.355	
South Integrated	5/8/07	39.127	0.389	40.874	0.498	0.645	38.628	40.228	
South Integrated	5/22/07	24.299	0.468	32.884	1.882	1.606	22.417	31.278	
South Integrated	6/5/07	113.955	0.329	94.551	69.391	49.382	44.563	45.169	
South Integrated	6/19/07	396.883	0.294	313.963	371.592	278.717	25.292	35.246	
South Integrated	7/3/07	318.505	0.278	214.580	294.316	199.297	24.189	15.283	
South Integrated	7/17/07	12.274	0.467	16.754	9.353	12.723	2.921	4.031	
South Integrated	7/31/07	14.803	0.363	15.100	13.564	14.035	1.239	1.064	
South Integrated	8/14/07	12.217	0.298	9.327	11.275	8.225	0.943	1.103	
South Integrated	8/28/07	27.824	0.323	26.719	27.488	26.539	0.335	0.181	
South Integrated	9/11/07	17.611	0.352	14.815	13.790	12.415	3.821	2.400	
South Integrated	9/25/07	61.330	0.357	58.117	57.350	53.806	3.980	4.311	
South Integrated	10/9/07	30.967	0.456	36.107	30.267	35.491	0.700	0.617	
South Integrated	10/24/07	15.685	0.391	17.202	13.072	14.240	2.613	2.962	
South Integrated	11/8/07	22.289	0.345	22.650	19.090	19.102	3.198	3.548	
South Integrated	11/20/07	9.215	0.300	6.925	6.325	5.471	2.889	1.454	
South Integrated	12/13/07	13.595	0.392	15.983	6.444	6.611	7.150	9.372	
South Integrated	12/29/06	30.169	0.301	23.208	17.946	16.367	12.224	6.841	
North Upper Mixed Layer	2/13/07	1.910	0.261	0.725	0.191	0.168	1.719	0.558	
North Upper Mixed Laver	2/21/07	1.840	0.285	0.966	0.144	0.162	1.696	0.803	
North Upper Mixed Laver	2/28/07	1.431	0.394	1.502	0.180	0.276	1.251	1.226	
North Upper Mixed Laver	3/7/07	1.079	0.416	1.264	0.131	0.157	0.948	1.107	
North Upper Mixed Laver	3/13/07	0.332	0.448	0.451	0.097	0.120	0.235	0.331	
North Upper Mixed Laver	4/10/07	11.400	0.570	27.735	0.649	0.844	10.750	26.891	
North Upper Mixed Laver	6/19/07	817.927	0.269	564.318	801.120	561.971	16.807	2.347	
North Upper Mixed Laver	10/9/07	55,938	0.396	61.458	54.283	59,145	1.655	2.312	
North Upper Mixed Laver	11/20/07	42.577	0.272	29.778	36.465	29.290	6.112	0.488	
South Upper Mixed Laver	4/10/07	14.724	0.684	49.817	0.250	0.411	14.474	49.406	
South Upper Mixed Laver	4/24/07	46.218	0.226	14.071	2.241	3.037	43.978	11.034	
South Upper Mixed Layer	5/8/07	59.842	0.250	19.032	2.865	2.374	56.977	16.658	
South Upper Mixed Laver	5/22/07	32.165	0.358	25.693	7.764	5.925	24.401	19.768	
South Upper Mixed Laver	6/5/07	172.091	0.262	87.321	101.044	64.817	71.047	22.503	
South Upper Mixed Layer	6/19/07	1377.575	0.257	862.854	1309.964	855.644	67.611	7.210	
South Upper Mixed Layer	7/3/07	1029.604	0.267	646.793	967.319	606.357	62.285	40.436	
South Upper Mixed Layer	7/17/07	15.547	0.537	27.351	15.014	26.295	0.533	1.056	
South Upper Mixed Laver	7/31/07	56.381	0.309	45.082	54.449	39.983	1.932	5.099	
South Upper Mixed Laver	8/14/07	17.656	0.315	15.360	16.100	11.985	1.556	3.375	
South Upper Mixed Laver	8/28/07	155.157	0.289	120.918	154.294	119.567	0.862	1.350	
South Upper Mixed Laver	9/11/07	63.962	0.425	73.021	62.591	70.810	1.372	2.211	
South Upper Mixed Laver	9/25/07	128.798	0.346	116.789	127.118	114.053	1.681	2.735	
South Upper Mixed Laver	10/9/07	66.089	0.424	59.968	66.089	59.968	0.000	0.000	
South Upper Mixed Layer	10/24/07	18.454	0.405	21.582	16.024	17.455	2.430	4.127	
South Upper Mixed Layer	11/8/07	23.319	0.303	20.485	22.899	20.347	0.420	0.138	
South Upper Mixed Laver	11/20/07	52.807	0.302	43.080	38.964	37.275	13.843	5.806	
South Upper Mixed Laver	12/13/07	43.417	0.381	49.948	18.674	19.351	24.743	30.597	
South Upper Mixed Layer	12/29/06	28.445	0.331	27.519	21.384	21.224	7.061	6.295	

(A). Total Zooplankton Community, Cladocerans and Copepods
Appendix C. (B) Summary statistics for the zooplankton community of Onondaga Lake sampled 12/29/06 through 12/13/07. Density (#/L), average size (mm), and biomass (µg/L) of individual zooplankton species/taxa.

		<u>Bosmi</u>	na longiros	stris_	<u>Diacy</u>	clops thom	asi
Site	Date	Density	Size	Biomass	Density	Size	Biomass
North Integrated	4/10/07	0.282	0.358	0.366	2.630	0.862	11.682
North Integrated	6/19/07	200.194	0.285	156.375	23.894	0.619	42.133
North Integrated	10/9/07	21.033	0.315	20.154	0.619	0.527	0.794
North Integrated	11/20/07	15.677	0.309	14.753	1.317	0.585	2.104
South Integrated	4/10/07	0.431	0.437	0.760	8.072	0.977	45.269
South Integrated	4/24/07	0.115	0.444	0.176	4.240	0.926	21.269
South Integrated	5/8/07	0.498	0.345	0.645	16.199	0.673	38.568
South Integrated	5/22/07	1.882	0.295	1.606	14.888	0.642	30.878
South Integrated	6/5/07	69.391	0.270	49.382	24.191	0.615	43.751
South Integrated	6/19/07	370.943	0.280	278.265	16.861	0.646	34.799
South Integrated	7/3/07	288.259	0.268	194.193	10.079	0.547	14.360
South Integrated	7/17/07	3.906	0.287	3.003	1.766	0.635	3.680
South Integrated	7/31/07	9.793	0.294	8.339	0.496	0.649	1.038
South Integrated	8/14/07	10.253	0.270	7.191	0.236	0.570	0.302
South Integrated	8/28/07	24.373	0.288	18.548	0.168	0.538	0.168
South Integrated	9/11/07	7.532	0.278	5.672	1.638	0.557	2.286
South Integrated	9/25/07	43.578	0.289	35.790	1.885	0.548	2.573
South Integrated	10/9/07	13 297	0.312	12 469	0 467	0.525	0.598
South Integrated	10/24/07	8 807	0 293	7 549	0.871	0.645	1 834
South Integrated	11/8/07	18 129	0.314	17 464	2 132	0.554	3 492
South Integrated	11/20/07	6 091	0.300	5 333	0.469	0.636	0.911
South Integrated	12/13/07	6 4 4 4	0.318	6 6 1 1	4 061	0.659	9 107
South Integrated	12/20/06	17 946	0.010	16 367	3 901	0.564	6 357
North Upper Mixed Laver	2/13/07	0 101	0.001	0 168	0.267	0.504	0.337
North Upper Mixed Layer	2/10/07	0.131	0.200	0.100	0.207	0.586	0.434
North Upper Mixed Layer	2/28/07	0.144	0.320	0.102	0.501	0.500	1 181
North Upper Mixed Layer	2/20/07	0.100	0.339	0.100	0.049	0.505	1.101
North Upper Mixed Layer	2/12/07	0.131	0.300	0.157	0.513	0.033	1.075
North Upper Mixed Layer	3/13/07 4/10/07	0.097	0.301	0.120	6 4 2 1	0.578	0.524
North Upper Mixed Layer	4/10/07	0.049	0.301	0.044	0.421	0.009	20.017
North Upper Mixed Layer	0/19/07 10/0/07	29.077	0.271	26 176	2.001	0.393	1.010
North Upper Mixed Layer	10/9/07	38.077	0.312	30.170	1.103	0.638	2.305
North Upper Mixed Layer	11/20/07	36.058	0.285	29.072	0.204	0.433	0.118
South Upper Mixed Layer	4/10/07	0.250	0.393	0.411	9.733	0.944	49.131
South Upper Mixed Layer	4/24/07	2.241	0.362	3.037	4.762	0.595	8.368
South Upper Mixed Layer	5/8/07	2.865	0.304	2.374	11.459	0.502	13.092
South Upper Mixed Layer	5/22/07	7.764	0.290	5.925	12.200	0.570	18.811
South Upper Mixed Layer	6/5/07	101.044	0.259	64.817	17.367	0.499	18.517
South Upper Mixed Layer	6/19/07	1309.964	0.260	855.644	8.451	0.368	4.055
South Upper Mixed Layer	7/3/07	960.514	0.262	602.054	29.503	0.506	38.310
South Upper Mixed Layer	7/17/07	3.942	0.296	3.322	0.213	0.512	0.228
South Upper Mixed Layer	7/31/07	47.734	0.266	32.474	1.932	0.708	5.099
South Upper Mixed Layer	8/14/07	15.201	0.275	10.782	0.359	0.506	0.376
South Upper Mixed Layer	8/28/07	148.353	0.274	104.408	0.862	0.637	1.350
South Upper Mixed Layer	9/11/07	31.206	0.295	26.369	0.686	0.761	2.179
South Upper Mixed Layer	9/25/07	103.366	0.293	86.742	0.840	0.816	2.670
South Upper Mixed Layer	10/9/07	29.197	0.311	27.658	0.000		0.000
South Upper Mixed Layer	10/24/07	11.542	0.306	10.908	1.367	0.518	1.816
South Upper Mixed Layer	11/8/07	22.269	0.297	19.643	0.210	0.413	0.121
South Upper Mixed Layer	11/20/07	37.939	0.312	36.521	2.563	0.616	4.952
South Upper Mixed Layer	12/13/07	18.674	0.319	19.351	11.905	0.684	29.589
South Upper Mixed Layer	12/29/06	21.182	0.315	21.149	3.631	0.583	6.089

Site Date Density Size Biomass Density Size Biomass North Integrated 4/10/07 7.515 0.153 0.326 0.000 0.000 North Integrated 6/19/07 12.270 0.158 0.582 0.000 0.000 North Integrated 10/9/07 0.002 0.132 0.000 0.000 0.000 North Integrated 11/20/07 5.533 0.169 0.331 0.000 0.000 South Integrated 4/10/07 7.749 0.157 0.419 0.000 0.000 South Integrated 4/24/07 16.501 0.175 1.086 0.000 0.000 South Integrated 5/22/07 7.529 0.166 0.400 0.000 0.000 South Integrated 6/5/07 20.372 0.193 1.418 0.000 0.000 South Integrated 7/3/07 14.111 0.192 0.924 0.000 0.000 South Integrated 7/3/07 14.411
North Integrated 4/10/07 7.515 0.153 0.326 0.000 0.000 North Integrated 6/19/07 12.270 0.158 0.582 0.000 0.000 North Integrated 10/9/07 0.002 0.132 0.000 0.000 0.000 North Integrated 11/20/07 5.533 0.169 0.331 0.000 0.000 South Integrated 4/10/07 7.749 0.157 0.419 0.000 0.000 South Integrated 5/8/07 22.429 0.184 1.660 0.000 0.000 South Integrated 5/8/07 20.372 0.193 1.418 0.000 0.000 South Integrated 6/5/07 20.372 0.193 1.418 0.000 0.000 South Integrated 7/3/07 14.111 0.192 0.924 0.000 0.000 South Integrated 7/3/07 0.744 0.163 0.022
North Integrated 6/19/07 12.270 0.158 0.582 0.000 0.000 North Integrated 10/9/07 0.002 0.132 0.000 0.000 0.000 North Integrated 11/20/07 5.533 0.169 0.331 0.000 0.000 South Integrated 4/10/07 7.749 0.157 0.419 0.000 0.000 South Integrated 4/24/07 16.501 0.175 1.086 0.000 0.000 South Integrated 5/8/07 22.429 0.184 1.660 0.000 0.000 South Integrated 6/5/07 20.372 0.193 1.418 0.000 0.000 South Integrated 6/19/07 8.431 0.159 0.448 0.000 0.000 South Integrated 7/3/07 14.111 0.192 0.924 0.000 0.000 South Integrated 7/3/07 1.0744 0.163 0.022 0.000 0.000 South Integrated 8/28/07 0.168 0.225
North Integrated 10/9/07 0.002 0.132 0.000 0.000 0.000 North Integrated 11/20/07 5.533 0.169 0.331 0.000 0.000 South Integrated 4/10/07 7.749 0.157 0.419 0.000 0.000 South Integrated 4/24/07 16.501 0.175 1.086 0.000 0.000 South Integrated 5/8/07 22.429 0.184 1.660 0.000 0.000 South Integrated 5/2/07 7.529 0.166 0.400 0.000 0.000 South Integrated 6/5/07 20.372 0.193 1.418 0.000 0.000 South Integrated 6/19/07 8.431 0.159 0.448 0.000 0.000 South Integrated 7/3/07 14.111 0.192 0.924 0.000 0.000 South Integrated 7/31/07 0.744 0.163 0.026 0.000 0.000 South Integrated 8/28/07 0.168 0.225
North Integrated11/20/075.5330.1690.3310.0000.000South Integrated4/10/077.7490.1570.4190.0000.000South Integrated4/24/0716.5010.1751.0860.0000.000South Integrated5/8/0722.4290.1841.6600.0000.000South Integrated5/2/077.5290.1660.4000.0000.000South Integrated6/5/0720.3720.1931.4180.0000.000South Integrated6/19/078.4310.1590.4480.0000.000South Integrated7/3/0714.1110.1920.9240.0000.000South Integrated7/3/071.4.1110.1920.9240.0000.000South Integrated7/31/070.7440.1630.0260.0000.000South Integrated8/14/070.4710.1500.0220.0000.000South Integrated8/28/070.1680.2250.0130.0000.000South Integrated9/25/071.6760.1990.1140.0000.000South Integrated10/24/071.5480.1900.1020.0000.000South Integrated10/24/071.6660.1700.0560.0000.000South Integrated11/20/072.2650.1870.1680.0000.000South Integrated11/20/078.3230.1760.4840.0000.000 </td
South Integrated 4/10/07 7.749 0.157 0.419 0.000 0.000 South Integrated 4/24/07 16.501 0.175 1.086 0.000 0.000 South Integrated 5/8/07 22.429 0.184 1.660 0.000 0.000 South Integrated 5/22/07 7.529 0.166 0.400 0.000 0.000 South Integrated 6/5/07 20.372 0.193 1.418 0.000 0.000 South Integrated 6/19/07 8.431 0.159 0.448 0.000 0.000 South Integrated 7/3/07 14.111 0.192 0.924 0.000 0.000 South Integrated 7/3/07 1.094 0.200 0.097 0.000 0.000 South Integrated 7/3/07 1.094 0.200 0.097 0.000 0.000 South Integrated 8/14/07 0.471 0.150 0.022 0.000 0.000 South Integrated 9/25/07 1.676 0.199
South Integrated 4/24/07 16.501 0.175 1.086 0.000 0.000 South Integrated 5/8/07 22.429 0.184 1.660 0.000 0.000 South Integrated 5/2/07 7.529 0.166 0.400 0.000 0.000 South Integrated 6/5/07 20.372 0.193 1.418 0.000 0.000 South Integrated 6/19/07 8.431 0.159 0.448 0.000 0.000 South Integrated 7/3/07 14.111 0.192 0.924 0.000 0.000 South Integrated 7/3/07 14.111 0.192 0.924 0.000 0.000 South Integrated 7/3/07 14.111 0.192 0.924 0.000 0.000 South Integrated 7/3/07 14.471 0.163 0.022 0.000 0.000 South Integrated 8/14/07 0.471 0.150 0.022 0.000 0.000 South Integrated 9/25/07 1.676 0.199
South Integrated 5/8/07 22.429 0.184 1.660 0.000 0.000 South Integrated 5/22/07 7.529 0.166 0.400 0.000 0.000 South Integrated 6/5/07 20.372 0.193 1.418 0.000 0.000 South Integrated 6/19/07 8.431 0.159 0.448 0.000 0.000 South Integrated 7/3/07 14.111 0.192 0.924 0.000 0.000 South Integrated 7/17/07 1.094 0.200 0.097 0.000 0.000 South Integrated 7/31/07 0.744 0.163 0.022 0.000 0.000 South Integrated 8/14/07 0.471 0.150 0.022 0.000 0.000 South Integrated 8/28/07 0.168 0.225 0.013 0.000 0.000 South Integrated 9/25/07 1.676 0.199 0.130 0.419 0.619 0.491 South Integrated 10/9/07 0.233
South Integrated5/22/077.5290.1660.4000.0000.000South Integrated6/5/0720.3720.1931.4180.0000.000South Integrated6/19/078.4310.1590.4480.0000.000South Integrated7/3/0714.1110.1920.9240.0000.000South Integrated7/17/071.0940.2000.0970.0000.000South Integrated7/31/070.7440.1630.0260.0000.000South Integrated8/14/070.4710.1500.0220.0000.000South Integrated8/28/070.1680.2250.0130.0000.000South Integrated9/11/072.1830.1620.1140.0000.000South Integrated9/25/071.6760.1990.1300.4190.6190.491South Integrated10/9/070.2330.1820.0180.0000.000South Integrated10/24/071.5480.1900.1020.0000.000South Integrated11/8/071.0660.1700.0560.0000.000South Integrated11/20/072.2650.1870.1680.0000.000South Integrated11/20/072.2650.1870.1680.0000.000South Integrated11/20/072.2650.1870.1680.0000.000South Integrated11/20/072.2650.1870.1680.000
South Integrated6/5/0720.3720.1931.4180.0000.000South Integrated6/19/078.4310.1590.4480.0000.000South Integrated7/3/0714.1110.1920.9240.0000.000South Integrated7/17/071.0940.2000.0970.0000.000South Integrated7/31/070.7440.1630.0260.0000.000South Integrated8/14/070.4710.1500.0220.0000.000South Integrated8/28/070.1680.2250.0130.0000.000South Integrated9/25/071.6760.1990.1300.4190.6190.491South Integrated10/9/070.2330.1820.0180.0000.000South Integrated10/24/071.5480.1900.1020.0000.000South Integrated11/8/072.2650.1870.1680.0000.000South Integrated11/20/072.2650.1870.1680.0000.000South Integrated11/20/078.3230.1760.4840.0000.000
South Integrated6/19/078.4310.1590.4480.0000.000South Integrated7/3/0714.1110.1920.9240.0000.000South Integrated7/17/071.0940.2000.0970.0000.000South Integrated7/31/070.7440.1630.0260.0000.000South Integrated8/14/070.4710.1500.0220.0000.000South Integrated8/28/070.1680.2250.0130.0000.000South Integrated9/25/071.6760.1990.1300.4190.6190.491South Integrated10/9/070.2330.1820.0180.0000.000South Integrated10/24/071.5480.1900.1020.0000.000South Integrated11/20/072.2650.1870.1680.0000.000South Integrated11/20/072.2650.1870.1680.0000.000South Integrated11/20/078.3230.1760.4840.0000.000
South Integrated7/3/0714.1110.1920.9240.0000.000South Integrated7/17/071.0940.2000.0970.0000.000South Integrated7/31/070.7440.1630.0260.0000.000South Integrated8/14/070.4710.1500.0220.0000.000South Integrated8/28/070.1680.2250.0130.0000.000South Integrated9/25/071.6760.1990.1300.4190.6190.491South Integrated10/9/070.2330.1820.0180.0000.000South Integrated10/24/071.5480.1900.1020.0000.000South Integrated11/8/072.2650.1870.1680.0000.000South Integrated11/20/072.2650.1870.1680.0000.000South Integrated11/20/078.3230.1760.4840.0000.000
South Integrated 7/17/07 1.094 0.200 0.097 0.000 0.000 South Integrated 7/31/07 0.744 0.163 0.026 0.000 0.000 South Integrated 8/14/07 0.471 0.150 0.022 0.000 0.000 South Integrated 8/28/07 0.168 0.225 0.013 0.000 0.000 South Integrated 9/11/07 2.183 0.162 0.114 0.000 0.000 South Integrated 9/25/07 1.676 0.199 0.130 0.419 0.619 0.491 South Integrated 10/9/07 0.233 0.182 0.018 0.000 0.000 South Integrated 10/24/07 1.548 0.190 0.102 0.000 0.000 South Integrated 11/8/07 1.066 0.170 0.056 0.000 0.000 South Integrated 11/20/07 2.265 0.187 0.168 0.000 0.000 South Integrated 12/13/07 3.090
South Integrated 7/31/07 0.744 0.163 0.026 0.000 0.000 South Integrated 8/14/07 0.471 0.150 0.022 0.000 0.000 South Integrated 8/28/07 0.168 0.225 0.013 0.000 0.000 South Integrated 9/11/07 2.183 0.162 0.114 0.000 0.000 South Integrated 9/25/07 1.676 0.199 0.130 0.419 0.619 0.491 South Integrated 10/9/07 0.233 0.182 0.018 0.000 0.000 South Integrated 10/24/07 1.548 0.190 0.102 0.000 0.000 South Integrated 11/8/07 1.066 0.170 0.056 0.000 0.000 South Integrated 11/20/07 2.265 0.187 0.168 0.000 0.000 South Integrated 12/13/07 3.090 0.194 0.265 0.000 0.000 South Integrated 12/29/06 8.323 </td
South Integrated8/14/070.4710.1500.0220.0000.000South Integrated8/28/070.1680.2250.0130.0000.000South Integrated9/11/072.1830.1620.1140.0000.000South Integrated9/25/071.6760.1990.1300.4190.6190.491South Integrated10/9/070.2330.1820.0180.0000.000South Integrated10/24/071.5480.1900.1020.0000.000South Integrated11/8/071.0660.1700.0560.0000.000South Integrated11/20/072.2650.1870.1680.0000.000South Integrated12/13/073.0900.1940.2650.0000.000South Integrated12/29/068.3230.1760.4840.0000.000
South Integrated8/28/070.1680.2250.0130.0000.000South Integrated9/11/072.1830.1620.1140.0000.000South Integrated9/25/071.6760.1990.1300.4190.6190.491South Integrated10/9/070.2330.1820.0180.0000.000South Integrated10/24/071.5480.1900.1020.0000.000South Integrated11/8/071.0660.1700.0560.0000.000South Integrated11/20/072.2650.1870.1680.0000.000South Integrated12/13/073.0900.1940.2650.0000.000South Integrated12/29/068.3230.1760.4840.0000.000
South Integrated9/11/072.1830.1620.1140.0000.000South Integrated9/25/071.6760.1990.1300.4190.6190.491South Integrated10/9/070.2330.1820.0180.0000.000South Integrated10/24/071.5480.1900.1020.0000.000South Integrated11/8/071.0660.1700.0560.0000.000South Integrated11/20/072.2650.1870.1680.0000.000South Integrated12/13/073.0900.1940.2650.0000.000South Integrated12/29/068.3230.1760.4840.0000.000
South Integrated9/25/071.6760.1990.1300.4190.6190.491South Integrated10/9/070.2330.1820.0180.0000.000South Integrated10/24/071.5480.1900.1020.0000.000South Integrated11/8/071.0660.1700.0560.0000.000South Integrated11/20/072.2650.1870.1680.0000.000South Integrated12/13/073.0900.1940.2650.0000.000South Integrated12/29/068.3230.1760.4840.0000.000
South Integrated10/9/070.2330.1820.0180.0000.000South Integrated10/24/071.5480.1900.1020.0000.000South Integrated11/8/071.0660.1700.0560.0000.000South Integrated11/20/072.2650.1870.1680.0000.000South Integrated12/13/073.0900.1940.2650.0000.000South Integrated12/29/068.3230.1760.4840.0000.000
South Integrated10/24/071.5480.1900.1020.0000.000South Integrated11/8/071.0660.1700.0560.0000.000South Integrated11/20/072.2650.1870.1680.0000.000South Integrated12/13/073.0900.1940.2650.0000.000South Integrated12/29/068.3230.1760.4840.0000.000
South Integrated 11/8/07 1.066 0.170 0.056 0.000 0.000 South Integrated 11/20/07 2.265 0.187 0.168 0.000 0.000 South Integrated 12/13/07 3.090 0.194 0.265 0.000 0.000 South Integrated 12/29/06 8.323 0.176 0.484 0.000 0.000
South Integrated 11/20/07 2.265 0.187 0.168 0.000 0.000 South Integrated 12/13/07 3.090 0.194 0.265 0.000 0.000 South Integrated 12/29/06 8.323 0.176 0.484 0.000 0.000
South Integrated 12/13/07 3.090 0.194 0.265 0.000 0.000 South Integrated 12/29/06 8.323 0.176 0.484 0.000 0.000
South Integrated 12/29/06 8.323 0.176 0.484 0.000 0.000
North Upper Mixed Layer 2/13/07 1.451 0.199 0.124 0.000 0.000
North Upper Mixed Laver 2/21/07 1.317 0.191 0.117 0.000 0.000
North Upper Mixed Laver 2/28/07 0.601 0.194 0.045 0.000 0.000
North Upper Mixed Laver 3/7/07 0.435 0.181 0.032 0.000 0.000
North Upper Mixed Laver 3/13/07 0.061 0.212 0.006 0.000 0.000
North Upper Mixed Laver 4/10/07 4.329 0.174 0.274 0.000 0.000
North Upper Mixed Laver 6/19/07 14.006 0.150 0.730 0.000 0.000
North Upper Mixed Laver 10/9/07 0.552 0.129 0.008 0.000 0.000
North Upper Mixed Layer 11/20/07 5 908 0 178 0 370 0 000 0 000
South Upper Mixed Layer 4/10/07 4 742 0 168 0 275 0 000 0 000
South Upper Mixed Layer 4/24/07 39.216 0.174 2.666 0.000 0.000
South Upper Mixed Layer 5/8/07 45 518 0 183 3 566 0 000 0 000
South Upper Mixed Layer 5/22/07 12 200 0 189 0 956 0 000 0 000
South Upper Mixed Layer 6/5/07 53 680 0 190 3 986 0 000 0 000
South Upper Mixed Layer 6/19/07 59 160 0 161 3 155 0 000 0 000
South Upper Mixed Layer 7/3/07 32 782 0 193 2 126 0 000 0 000
South Upper Mixed Layer 7/17/07 0.213 0.141 0.003 0.000 0.000
South Upper Mixed Layer 7/31/07 0.000 0.000 0.000 0.000 0.000
South Upper Mixed Layer 8/14/07 0.359 0.147 0.013 0.000 0.000
South Upper Mixed Layer 8/28/07 0.000 0.000 0.000 0.000 0.000
South Upper Mixed Layer 9/20/07 0.000 0.000 0.000 0.000 0.000 0.000
South Upper Mixed Layer 9/25/07 0.840 0.152 0.065 0.000 0.000 0.000
South Upper Mixed Layer 10/9/07 0.000 0.000 0.000 0.000 0.000 0.000
South Upper Mixed Layer 10/3/07 0.607 0.217 0.047 0.000 0.000 0.000
South Upper Mixed Layer 11/8/07 0.210 0.215 0.016 0.000 0.000
South Upper Mixed Layer 11/20/07 0.210 0.213 0.010 0.000 0.000 0.000
South Upper Mixed Layer 12/13/07 12.84 0.10 1.01 0.00 0.000
South Upper Mixed Layer 12/19/06 3.43 0.16 0.21 0.20 0.45 0.07

Appendix C (B). Continued

Appendix C(B).	. Continued
----------------	-------------

		<u>Cerc</u>	opagis pens	<u>goi</u>	<u>Daph</u>	nia retrocu	rva
Site	Date	Density	Size	Biomass	Density	Size	Biomass
North Integrated	4/10/07	0.000		0.000	0.000		0.000
North Integrated	6/19/07	0.000		0.000	0.646	0.422	0.239
North Integrated	10/9/07	0.293	1.161	2.424	10.223	0.609	15.325
North Integrated	11/20/07	0.000		0.000	0.263	0.493	0.184
South Integrated	4/10/07	0.000		0.000	0.000		0.000
South Integrated	4/24/07	0.000		0.000	0.000		0.000
South Integrated	5/8/07	0.000		0.000	0.000		0.000
South Integrated	5/22/07	0.000		0.000	0.000		0.000
South Integrated	6/5/07	0.000		0.000	0.000		0.000
South Integrated	6/19/07	0.000		0.000	0.649	0.496	0.453
South Integrated	7/3/07	0.009	1.340	0.102	4.032	0.494	3.954
South Integrated	7/17/07	0.712	1.054	4.879	3.390	0.528	3.469
South Integrated	7/31/07	0.177	1.215	1.660	1.363	0.578	2.140
South Integrated	8/14/07	0.078	1.022	0.482	0.353	0.419	0.131
South Integrated	8/28/07	0.582	1.270	5.950	0.503	0.477	0.321
South Integrated	9/11/07	0.033	1.164	0.276	1.748	0.550	1.822
South Integrated	9/25/07	0.152	1.100	1.132	8.172	0.605	11.222
South Integrated	10/9/07	0.169	1.153	1.419	14.702	0.572	18.514
South Integrated	10/24/07	0.101	1.197	0.927	3.390	0.604	4.849
South Integrated	11/8/07	0.001	1.238	0.009	0.961	0.652	1.629
South Integrated	11/20/07	0.000		0.000	0.234	0.453	0.138
South Integrated	12/13/07	0.000		0.000	0.000		0.000
South Integrated	12/29/06	0.000		0.000	0.000		0.000
North Upper Mixed Laver	2/13/07	0.000		0.000	0.000		0.000
North Upper Mixed Laver	2/21/07	0.000		0.000	0.000		0.000
North Upper Mixed Layer	2/28/07	0.000		0.000	0.000		0.000
North Upper Mixed Layer	3/7/07	0.000		0.000	0.000		0.000
North Upper Mixed Layer	3/13/07	0.000		0.000	0.000		0.000
North Upper Mixed Layer	4/10/07	0.000		0.000	0.000		0.000
North Upper Mixed Layer	6/19/07	0.000		0.000	0.000		0.000
North Upper Mixed Laver	10/9/07	0 204	1 172	1 717	13 795	0 599	18 456
North Upper Mixed Layer	11/20/07	0.000	=	0.000	0 407	0 426	0.218
South Upper Mixed Layer	4/10/07	0.000		0.000	0.000	0.120	0.000
South Upper Mixed Layer	4/24/07	0.000		0.000	0.000		0.000
South Upper Mixed Layer	5/8/07	0.000		0.000	0.000		0.000
South Upper Mixed Layer	5/22/07	0.000		0.000	0.000		0.000
South Upper Mixed Layer	6/5/07	0.000		0.000	0.000		0.000
South Upper Mixed Layer	6/19/07	0.000		0.000	0.000		0.000
South Upper Mixed Layer	7/3/07	0.248	1 109	1 875	6 556	0 391	2 428
South Upper Mixed Layer	7/17/07	1 572	1.100	10 947	7 147	0.572	9 648
South Upper Mixed Layer	7/31/07	0.447	1 103	3 351	3 375	0.372	1 794
South Upper Mixed Layer	8/14/07	0.060	1.100	0.423	0.242	0.401	0.097
South Upper Mixed Layer	8/28/07	1 620	1.005	10 544	1 725	0.422	0.007
South Upper Mixed Layer	0/20/07 0/11/07	1 1 9	1 190	10.544	15 432	0.568	17 983
South Upper Mixed Layer	0/25/07	0.217	1.130	1 4 4 4	18.402	0.500	10 505
South Upper Mixed Layer	10/0/07	0.217	1.043	1.080	35 236	0.517	30 137
South Upper Mixed Layer	10/24/07	0.140	1 1 1 7	0.000	JJ.230 A ADB	0.017	50.137
South Unner Mixed Laver	11/8/07	0.075	1.14/	0.030	4.400	0.000	0.202
South Upper Mixed Layer	11/20/07	0.000		0.000	0.420	0.010	0.293
South Upper Mixed Layer	12/12/07	0.000		0.000	0.709	0.400	0.400
South Upper Mixed Layer	12/29/06	0.000		0.000	0.000		<u>0.000</u>

APPENDIX 4: 2007 MACROPHYTE MONITORING RESULTS AND MACROALGAE DATA SUMMARY

TABLE OF CONTENTS

2007 Macrophyte Monitoring Results

2007 Macroalgae Data Summary

2007 MACROPHYTE MONITORING RESULTS

EcoLogic Memorandum

TO: Dave Snyder
FROM: Mark Arrigo
RE: Onondaga Lake 2007 Macrophyte Monitoring Results
DATE: 11/26/07

This memorandum is a summary of the 2007 Onondaga Lake macrophyte monitoring results. The annual macrophyte monitoring program consists of a combination of aerial photographs and ground truthing. Aerial photographs were taken in August 2007 by Airphotographics Inc. Ten ground truthing sites were marked with large buoys, intending to be visible in the photographs, prior to the flight. The photographs were transferred to digital format, georeferenced and copied to a DVD that was sent to EcoLogic. The digitized photographs were imported into Arcview and the margins of beds delineated.

Within one week of shooting the aerial photographs, a ground truth sampling effort occurred. Onondaga County Department of Water Environment Protection (OCDWEP) staff visited each of the ten ground truthing sites (Map 1) and collected data on species composition and relative abundance. These data were used to verify that objects delineated in the air photographs were macrophyte beds.

In 2007 dense beds were evident along the north and south shores as well as at the mouth of Ninemile Creek. Macrophyte growth appeared to be poorest along the east shore from just north of Ley Creek to the Marina (Maps 2 and 6). The wastebeds also had poor growth compared to past years.

A total of 210 acres of macrophytes were delineated in the 2007 air photographs (Figure 1; Maps 2 through 6). This is slightly more than the 183 acres delineated in August 2006 but less than was delineated in 2005 (378 acres) or 2003 (267 acres). One possible explanation for the reduced amount of macrophyte growth is the effect of taking the photographs in August instead of June or early July like past years. Observations by OCDWEP staff suggest that macrophyte growth during the June/July time period of both 2006 and 2007 was much more extensive than in August. Because of the complications associated with interpreting photos taken during different times of the years it is recommended that the 2008 photos be collected in June or early July.

FIGURE 1. Total acreage of macrophytes in Onondaga Lake from 2000 to 2007 based on areas delineated as macrophytes from digitized aerial photographs. * Note 2006 and 2007 photographs were taken in August, all others were taken in June or early July; this adds an unknown level of variability to the analysis so those two years are depicted seperatly. Observations by OCDWEP staff indicated that macrophyte growth in June and early July of both 2006 and 2007 was comparable to 2003 and 2005.

The ground truthing effort identified eight taxa at ten sites (Table 1). Elodea was the most widely distributed and abundant species, being found at nine of the ten sites and with an overall relative abundance of 30%. Other commonly encountered species (found at greater than 50% of sites) were coontail, curly leaf pondweed (an exotic), and Eurasian water milfoil (an exotic).

Species	Percent of Sites	Relative Abundance	Overall Relative
		When Present	Abundance
Elodea	90%	33%	30%
Coontail	50%	29%	14%
Curly leaf pondweed	50%	13%	7%
Eurasian watermilfoil	50%	28%	14%
Small pondweed	40%	1%	0.4%
Sago pondweed	30%	64%	19%
Southern naiad	30%	24%	7%
Water stargrass	10%	90%	9%

 Table 1. 2007 ground truthing results.

Results of the ground truthing were compared to the digitized macrophytes (Maps 7 through 16). There was good agreement between what was identified as macrophytes on the photographs and what was observed on the ground. Areas delineated as having either sparse or no growth in the aerial photographs were observed to have sparse growth during

ground truthing. Since ground observations are more detailed than photos it is not unexpected that some area delineated as having no growth in the photos were observed to have some plants present. Areas identified as dense growth from the air were documented with moderate growth on the ground. This is also not unexpected as the photos are delineated at a rather course scale, the only options are no growth, sparse growth or dense growth.

One of the purposes of the ground truthing was to determine if areas where metaphyton was growing on the sediment were being mistakenly delineated as macrophytes in the photos. At Site 2 (Map 8) ground observations indicated that only sparse macrophyte growth was present around the sample point and that the bottom was mostly composed of Cladophera. The Cladophera can be seen in the photos as a greenish tint on the sediment. The area around the sample point was delineated as having no growth in the photos, indicating that the difference between macrophytes and metaphyton was successfully differentiated.

Overall, the ground truthing seems to verify that the photo delineations are a reasonable interpretation of lake macrophyte distribution.

Map 7 Ground Truth Buoy Site 1 August 2007, Onondaga Lake

Source: Buoy locations and macrophyte polygons digitized from aerial photographs provided by Airphotographics.

Map 8 Ground Truth Buoy Site 2 August 2007, Onondaga Lake

Source: Buoy locations and macrophyte polygons digitized from aerial photographs provided by Airphotographics.

Map 9 Ground Truth Buoy Site 3 August 2007, Onondaga Lake

Source: Buoy locations and macrophyte polygons digitized from aerial photographs provided by Airphotographics.

Map 10 Ground Truth Buoy Site 4 August 2007, Onondaga Lake

Source: Buoy locations and macrophyte polygons digitized from aerial photographs provided by Airphotographics.

Map 11 Ground Truth Buoy Site 5 August 2007, Onondaga Lake

Source: Buoy locations and macrophyte polygons digitized from aerial photographs provided by Airphotographics.

Map 12 Ground Truth Buoy Site 6 August 2007, Onondaga Lake

provided by Airphotographics.

Map 13 Ground Truth Buoy Site 7 August 2007, Onondaga Lake

Source: Buoy locations and macrophyte polygons digitized from aerial photographs provided by Airphotographics.

Map 14 Ground Truth Buoy Site 8 August 2007, Onondaga Lake

Source: Buoy locations and macrophyte polygons digitized from aerial photographs provided by Airphotographics.

Map 15 Ground Truth Buoy Site 9 August 2007, Onondaga Lake

Source: Buoy locations and macrophyte polygons digitized from aerial photographs provided by Airphotographics.

Map 16 Ground Truth Buoy Site 10 August 2007, Onondaga Lake

provided by Airphotographics.

MACROALGAE DATA SUMMARY

Observation Date	Distance to Shoreli	o Edge of Al ne Bench M	gae Mat to ark (m)	Estimated	Percent Cov	ver (Range)
	Left	Middle	Right	Left	Middle	Right
05-29-07	0	0	0			
06-11-07	0	0	0			
06-19-07	0	0	0			
06-25-07	10	8	10	61-80%	61-80%	61-80%
07-03-07	0	0	0			
07-13-07	0	0	0			
07-17-07	0	0	0			
07-23-07	0	0	0			
07-31-07	0	0	0			
08-06-07	0	0	0			
08-14-07	0	0	0			
08-20-07	0	0	0			
08-28-07	0	0	0			
09-04-07	0	0	0			
09-11-07	0	0	0			
09-19-07	0	0	0			
09-25-07	0	0	0			

Site 1 - Lake Nearshore (Nine Mile Creek)

Site 2 - Lake Nearshore (Harbor Brook)

Observation Date	Distance t Shoreli	o Edge of Al ine Bench M	lgae Mat to lark (m)	Estimated	Percent Cov	ver (Range)
	Left	Middle	Right	Left	Middle	Right
05-29-07	0	0	0			
06-11-07	0	0	0			
06-19-07	0	0	0			
06-25-07	0	0	0			
07-03-07	20	0	0	1-20%		
07-13-07	40	0	0	21-40%		
07-17-07	0	0	0			
07-23-07	0	0	0			
07-31-07	0	0	0			
08-06-07	0	0	0			
08-14-07	0	0	0			
08-20-07	0	0	0			
08-28-07	0	0	0			
09-04-07	0	0	0			
09-11-07	0	0	0			
09-19-07	0	0	0			
09-25-07	0	0	0			

Observation Date	Distance to Shoreli	o Edge of Al ine Bench M	gae Mat to ark (m)	Estimated Percent Cover (Range)		
	Left	Middle	Right	Left	Middle	Right
05-29-07	0	0	0			
06-11-07	0	0	0			
06-19-07	0	0	0			
06-25-07	155	120	203	41-60%	41-60%	61-80%
07-03-07	140	154	184	21-40%	61-80%	61-80%
07-13-07	140	140	112	41-60%	61-80%	61-80%
07-17-07	125	129	119	41-60%	81-100%	41-60%
07-23-07	0	0	0			
07-31-07	0	0	0			
08-06-07	0	0	0			
08-14-07	0	0	0			
08-20-07	0	0	0			
08-28-07	0	0	0			
09-04-07	0	0	0			
09-11-07	0	0	0			
09-19-07	0	0	0			
09-25-07	0	0	0			

Site 3 - Lake Nearshore (Metro/Outfall)

Site 4 - Lake Nearshore (Ley Creek)

Observation Date	Distance to	o Edge of Al	gae Mat to	Estimated	Percent Cov	ver (Range)
Date	Left	Middle	Right	Left	Middle	Right
05-29-07	0	0	0			
06-11-07	0	0	0			
06-19-07	0	0	0			
06-25-07	0	0	0			
07-03-07	123	129	128	1-20%	1-20%	1-20%
07-13-07	0	0	0			
07-17-07	0	0	0			
07-23-07	0	0	0			
07-31-07	0	0	0			
08-06-07	0	0	0			
08-14-07	0	0	0			
08-20-07	0	0	0			
08-28-07	0	0	0			
09-04-07	0	0	0			
09-11-07	0	0	0			
09-19-07	0	0	0			
09-25-07	0	0	0			

Observation	Distance to	D Edge of A	gae Mat to	Estimated	Percent Cov	ver (Range)
Date	Shoreli	ne Bench M	ark (m)			(0 /
	Left	Middle	Right	Left	Middle	Right
05-29-07	0	0	0			
06-11-07	0	0	0			
06-19-07	36	20	10	21-40%	41-60%	41-60%
06-25-07	0	0	0			
07-03-07	0	0	10			1-20%
07-13-07	0	0	0			
07-17-07	0	0	0			
07-23-07	0	0	0			
07-31-07	0	0	0			
08-06-07	0	0	0			
08-14-07	0	0	0			
08-20-07	0	0	0			
08-28-07	0	0	0			
09-04-07	0	0	0			
09-11-07	0	0	0			
09-19-07	0	0	0			
09-25-07	0	0	0			

Site 5 - Lake Nearshore (Eastside)

Site 6 - Lake Nearshore (Willow Bay)

Observation Date	Distance to Shoreli	o Edge of Al ine Bench M	lgae Mat to lark (m)	Estimated	Percent Cov	ver (Range)
	Left	Middle	Right	Left	Middle	Right
05-29-07	0	0	0			
06-11-07	0	0	0			
06-19-07	0	0	0			
06-25-07	0	0	0			
07-03-07	113	110	102	1-20%	21-40%	1-20%
07-13-07	15	20	0	61-80%	61-80%	
07-17-07	50	47	51	21-40%	81-100%	61-80%
07-23-07	91	76	88	1-20%	1-20%	1-20%
07-31-07	52	39	0	41-60%	41-60%	
08-06-07	30	25	0	21-40%	21-40%	
08-14-07	15	10	15	81-100%	81-100%	81-100%
08-20-07	10	10	0	61-80%	61-80%	
08-28-07	0	0	0			
09-04-07	0	0	0			
09-11-07	0	0	0			
09-19-07	0	0	0			
09-25-07	0	0	0			

	、 、	1 5/				
Observation	Distance to	o Edge of Al	gae Mat to	Estimated	Percent Cov	ver (Range)
Date	Shoreli	ne Bench M	ark (m)			
	Left	Middle	Right	Left	Middle	Right
05-29-07	0	0	0			
06-11-07	0	0	0			
06-19-07	0	0	0			
06-25-07	20	0	0	1-20%		
07-03-07	0	0	0			
07-13-07	0	0	0			
07-17-07	0	0	0			
07-23-07	0	0	0			
07-31-07	0	0	0			
08-06-07	0	0	0			
08-14-07	0	0	0			
08-20-07	0	0	0			
08-28-07	0	0	0			
09-04-07	0	0	0			
09-11-07	0	0	0			
09-19-07	0	0	0			
09-25-07	0	0	0			

Site 7 - Lake Nearshore (Maple Bay)

Site 8 - Lake Nearshore (Bloody Brook)

Observation Date	Distance to Edge of Algae Mat to Shoreline Bench Mark (m)			Estimated Percent Cover (Range)		
	Left	Middle	Right	Left	Middle	Right
05-29-07	0	0	0			
06-11-07	0	0	0			
06-19-07	0	0	0			
06-25-07	0	0	0			
07-03-07		220			81-100%	
07-13-07	30	30	30	61-80%	61-80%	61-80%
07-17-07	165	170	155	81-100%	81-100%	81-100%
07-23-07	193	188	178	21-40%	21-40%	21-40%
07-31-07	140	126	135	41-60%	41-60%	41-60%
08-06-07	0	0	0			
08-14-07	0	0	0			
08-20-07	0	0	0			
08-28-07	0	0	0			
09-04-07	0	0	0			
09-11-07	0	0	0			
09-19-07	0	0	0			
09-25-07	0	0	0			
Observation	Distance to Edge of Algae Mat to			Estimated	Percent Cov	ver (Range)
-------------	----------------------------------	------------	---------	-----------	-------------	-------------
Date	Shorell	ne Bench M	ark (m)			
	Left	Middle	Right	Left	Middle	Right
05-29-07	0	0	0			
06-11-07	0	0	0			
06-19-07	0	0	0			
06-25-07	0	0	0			
07-03-07	0	0	0			
07-13-07	0	0	0			
07-17-07	0	0	0			
07-23-07	0	0	0			
07-31-07	0	0	0			
08-06-07	0	0	0			
08-14-07	0	0	0			
08-20-07	0	0	0			
08-28-07	0	0	0			
09-04-07	0	0	0			
09-11-07	0	0	0			
09-19-07	0	0	0			
09-25-07	0	0	0			

Site 9 - Lake Nearshore (Wastebeds)

Figure A4-1. Temporal pattern of macroalgae abundance at nearshore sample locations in Onondaga Lake.

Figure A4-2. Spatial variability (mean square meters with standard deviation, July and August) of macroalgae and nearshore sampling locations.

APPENDIX 5: DAIP

Appendix 5 Data Analysis and Interpretation Plan Onondaga Lake and Watershed Ambient Monitoring Program

Onondaga County Department of Water Environment Protection 650 Hiawatha Boulevard West Syracuse, New York 13204-1194

> Version 2.5 June 2008

Table of Contents

Appendix	5.	Data Analysis and Interpretation Plan (DAIP)	A5-1
A5.1.	OBJ	ECTIVE OF THE DAIP	A5-1
A5.2.	REC	GULATORY BACKGROUND – AMENDED CONSENT JUDGMENT	A5-1
A5.2	2.1.	Required Actions by Onondaga County and NYSDEC	A5-2
A5.2	2.2.	Water Quality Classification and Designated Use	A5-5
A5.2	2.3.	Compliance Assessment	A5-8
A5.3.		Summary of the Onondaga County Ambient Monitoring Program (AMP) .	A5-8
A5.3	3.1.	History of Onondaga County Monitoring Efforts	A5-11
A5.3	3.2.	Design of the AMP: Required Elements	A5-12
A5.3	3.3.	Design of the AMP: Underlying Assumptions	A5-37
A5.3	3.4.	Design of the AMP: Hypothesis Testing and Statistical Power	A5-39
A5.3	3.5.	Design of the AMP: Data Management	A5-46
A5.3	3.6.	Design of the AMP: Metrics to Measure and Report Progress	A5-46
A5.4.		Data interpretation for the biological programs	A5-49
A5.4	4.1.	Sampling design	A5-49
A5.4	4.2.	Species Data	A5-53
A5.4	4.3.	Population Data	A5-56
A5.4	4.4.	Community Data	A5-57
A5.5.	MO	DELING	A5-59
A5.5	5.1.	Conceptual Model	A5-60
A5.5	5.2.	Mass-balance Model	A5-64
A5.5	5.3.	NYSDEC Total Maximum Daily Load (TMDL) Allocation	A5-64
A5.5	5.4.	USGS Onondaga Lake Watershed Model	A5-65
A5.5	5.5.	Three Rivers Water Quality Model (TRWQM)	A5-65
A5.5	5.6.	Onondaga Lake Model	A5-65
A5.6.	LIT	ERATURE CITED	A5-67

Tables

Table A5-1	Summary of Regulatory Classification of Onondaga Lake and Tributary Streams
Table A5-2	Summary of Management Questions and Decision Analysis
Table A5-3	Elements of the AMP in Relation to ACJ-Required Monitoring Objectives
Table A5-4	Detailed Reporting of AMP Program, Data Analysis and Interpretation Strategy
Table A5-5	Summary of Hypotheses Underlying the AMP
Table A5-6	Summary of Metrics
Table A5-7	Summary of Schedule and Methodologies Used for the Biological Monitoring Program
Table A5-8	Summary of Pollution Tolerance Metrics Used for the Biological Monitoring Program

Figures

- Figure A5-1 Regulatory Classifications and Bathymetry of Onondaga Lake
- Figure A5-2 Map of Onondaga Lake showing boundaries of five sampling strata based on a combination of sediment texture and wave energy
- Figure A5-3 Conceptual model of phosphorus dynamics in Onondaga Lake under present conditions
- Figure A5-4 Conceptual model of nitrogen dynamics in Onondaga Lake under present conditions
- Figure A5-5 Conceptual model of dissolved oxygen dynamics in Onondaga Lake under present conditions

Appendix 5. Data Analysis and Interpretation Plan (DAIP)

A5.1. OBJECTIVE OF THE DAIP

Each year Onondaga County Department of Water Environment Protection (OCDWEP) collects and analyzes more than 20,000 water quality samples and hundreds of biological samples collected from Onondaga Lake and its watershed. Results are used to evaluate water quality conditions and assess whether the waters are in compliance with applicable standards, criteria, and guidance values. The biological samples are used to evaluate the nature of the biological community and assess change.

This Data Analysis and Interpretation Plan (DAIP) was prepared to guide program managers and advisors regarding how these thousands of measurements will be analyzed and interpreted. It is a roadmap of how data become information (refer to **Figure 1-1** in the 2007 Annual AMP report: flow chart of decisions and responsibilities). This document will be revised and updated as new information becomes available, new issues emerge, or new tools are developed to help with data analysis and interpretation.

A5.2. REGULATORY BACKGROUND – AMENDED CONSENT JUDGMENT

In January 1998, Onondaga County signed an Amended Consent Judgment (ACJ) committing to a phased program of upgrades and improvements to the County's wastewater collection and treatment system. The ACJ includes three major elements:

- 1. Improvements to the wastewater and stormwater collection systems to abate Combined Sewer Overflows (CSOs).
- 2. Improvements to the Metropolitan Syracuse Wastewater Treatment Plant (Metro) to reduce the concentration of ammonia N, phosphorus, BOD, solids, and bacteria in treated effluent prior to discharge.

3. Monitoring Onondaga Lake, the lake tributaries, and the Seneca River to track their response to the pollution abatement actions.

Improvements to Metro and the CSOs are phased over a 15-year period. One of the factors considered in developing the phasing plan was uncertainty regarding how Onondaga Lake would respond to reductions in the loading of wastewater-related contaminants. Onondaga County was required to design, fund, and implement a monitoring program that would provide the data and information needed to support key decisions regarding adequacy of the pollution abatement measures and the need for additional actions. These key decisions relate to the level of treatment and the location of the Metro discharge; results will provide the foundation for the Metro SPDES permit, which will include the CSOs.

A5.2.1. Required Actions by Onondaga County and NYSDEC

Specific compliance requirements for Onondaga Lake and its watershed are referenced in the ACJ. The following summary was prepared by John Ferrante of Central New York Regional Planning and Development Board; Dr. Ferrante is working under contract to NYSDEC on Onondaga Lake issues.

COMPLIANCE REQUIREMENTS FOR THE AMENDED CONSENT JUDGMENT

The following list contains the primary legal and programmatic actions that are required in the Amended Consent Judgment. This list is not meant to be comprehensive of all ACJ requirements but identifies only those of a technical nature. The Party responsible for implementing each action and bringing it to an acceptable conclusion is identified after each requirement. The source document is the Amended Consent Judgment signed and entered into the Court on January 20, 1998.

SOURCE REQUIREMENT

- Page 4-5: Insure that Onondaga Lake and its tributaries achieve best usage designated for Class B and C water pursuant to 6 New York Code of Rules and Regulations (NYCRR) Parts 701 and 703. Applicable NY State Water Quality Standards and Guidelines:
 - 1. Dissolved Oxygen: 6NYCRR Sec. 703.3
 - 2. Ammonia: 6 NYCRR Sec. 703.5
 - 3. Turbidity: 6 NYCRR Sec. 703.2
 - 4. Floatable Solids: 6 NYCRR Sec. 703.2
 - 5. Phosphorus: 6 NYCRR Sec. 703.2
 - 6. Technical & Operational Guidance Series (TOGS) 1.1.1 Water Quality Standards and Guidelines
 - 7. Nitrogen: 6 NYCRR Sec. 703.2
 - 8. Bacteria: 6 NYCRR Sec. 703.4

Responsible Party: New York State Department of Environmental Conservation

Page 5: The State is required "...to determine, as soon as sufficient data and other information are available, whether water quality standards and guidelines for Onondaga Lake can be achieved with the continued discharge of Metro's effluent into the Lake;..."

Responsible Party: New York State Department of Environmental Conservation

- Paragraph 9: Onondaga County is responsible for complying with the following Stage III effluent discharge limits from the Metro wastewater treatment plant (*or as amended based on revised Total Maximum Daily Load (TMDL)*)
 - 1. Ammonia: 1.2 mg/l (June 1 October 31 [30 day average]) 2.4 mg/l (November 1 – May 31 [30 day average])
 - 2. Phosphorus: 0.02 mg/l [12 month rolling average]

Responsible Party: Onondaga County

Paragraph 10: Report on the ability of the County (based on demonstrated information) to achieve compliance with effluent limitations specified in ACJ, paragraph 9, or as amended based on a revised TMDL allocation.

Responsible Party: Onondaga County

Paragraph 11: Failure to demonstrate ability (per paragraph 10) by February 1, 2009, cease causing or contributing to the violation of water quality standards in Onondaga Lake by diverting

Metro's effluent to the Seneca River <u>or</u> by implementing another engineering alternative which fully complies with the water quality standards no later than December 1, 2012.

Responsible Party: Onondaga County

Paragraph 12: Reassess Total Maximum Daily Load (TMDL) allocation for Onondaga Lake "on or about" January 1, 2009 and modify Stage III effluent limits as needed to reflect revised TMDL.

Responsible Party: New York State Department of Environmental Conservation

Paragraph 13: Metro construction compliance requirements and schedule per paragraphs 5 – 11, Appendix A

Responsible Party: Onondaga County

Paragraph 14: Design, construct, and maintain and modify and/or supplement, as necessary, a CSO control and upgrade program in accordance with DEC CSO guidance, as set forth in TOGS 1.6.3 (CSO Control Strategy).

Responsible Party: Onondaga County

Paragraph 15: Develop and implement an oxygenation demonstration project in Onondaga Lake.

Responsible Party: Onondaga County *{note: this requirement has been suspended pending stipulation that it be withdrawn from the ACJ based on current water quality conditions}.*

Paragraph 16: Monitor conditions in the Lake and its tributaries, and evaluate the effect that alterations in Metro and CSO operations are having on the water quality.

Responsible Party: Onondaga County

Paragraph 24: Enter into an agreement with CNYRPDB and provide funding for an Environmental Benefits Project (as set forth in Paragraph 25.C)

Responsible Party: Onondaga County

A5.2.2. Water Quality Classification and Designated Use

Lakes and streams are classified according to their designated best use (for example, water supply, swimming, fish propagation, aesthetic enjoyment, and fish survival). Onondaga Lake is classified as B and C waters (**Figure A5-1** and **Table A5-1**) The Class B segment encompasses the northern basin; the Class C segments include much of the southern basin and a small area around the mouth of Ninemile Creek. Both B and C waters must exhibit water quality conditions suitable for fish survival and propagation. Class B waters are to be suitable for primary water contact recreation (e.g. swimming) and secondary water contact recreation (e.g. boating). Class C waters shall be suitable for primary and secondary water contact recreation, although other factors may limit the use for these purposes.

The main stems of the lake tributaries are primarily classified as C waters (suitable for fish propagation and secondary water contact recreation) but several small segments are Class B. The Seneca River segment in the vicinity of the Onondaga Lake outflow and downstream is Class B. As summarized in **Table A5-1**, several Class C stream segments within the subwatersheds are required to comply with Class C(T) water quality standards, meaning that dissolved oxygen and ammonia levels shall be suitable for salmonids.

Figure A5-1. Regulatory Classifications and Bathymetry of Onondaga Lake.. (Note: Contour lines are in meters.)

Water body	Description of Segment	Regulatory Classification	Standards
	Enters Onondaga Lake at southeastern end. Mouth to upper end of Barge Canal terminal (0.85 miles)	С	С
Onondaga	Upper end of Barge Canal terminal to Temple Street (1.7 miles)	С	С
Creek	From Temple Street, Syracuse to Tributary 5B (4.4 miles)	В	В
	From Tributary 5B to Commissary Creek (1.9 miles)	С	С
	From Commissary Creek to source	С	C(T)
Ninemile Creek	Enters Onondaga Lake from south. From mouth to Allied Chemical Corp. water intake located on creek to point mid-way between Airport Rd and Rt. 173 bridge at Amboy (3.4 miles).	С	С
	From point mid-way between Airport Rd and Rt. 173 to outlet of Otisco Lake	С	C(T)
Harbor Brook	Enters Onondaga Lake at the southern most point of the lake and within the City of Syracuse. From mouth to upper end of underground section, at Gifford Street (approx. 1.9 miles)	С	С
	From upper end of underground section to City of Syracuse line (1.3 miles)	В	В
	From City of Syracuse City line to source	С	C(T)
	Enters Onondaga Lake 0.2 mile southeast of point where City of Syracuse line intersects east shore of lake. From mouth to Ley Creek sewage treatment plant outfall sewer.	С	С
Ley Cleek	From Ley Creek sewage treatment plant outfall sewer to South Branch. Tribs. 3-1A and 3-lB enter from north approximately 3.0 and 3.1 miles above mouth respectively.	В	В
Bloody Brook	Enters Onondaga Lake 2.25 miles southeast of outlet. From mouth to trib. 1 of Bloody Brook (approximately 0.37 miles from mouth)	В	В
	From trib. 1 of Bloody Brook to source.	С	С
Onondaga Lake (1)	Northwest of a line extending from a point located on the west shore 0.25 miles northwest of the mouth of trib. 5A to a point on the east shore located at a point 0.6 miles southeast of the mouth of Bloody Brook, except portions of the lake designated as items no. 2 and 3.	В	В
Onondaga Lake (2)	Southeast of a line extending from a point located on the west shore 0.25 miles northwest of the mouth of trib. 5A to a point on the east shore located at a point 0.6 miles southeast of the mouth of Bloody Brook, except portions of the lake designated as items numbered 1 and 3.	С	С
Onondaga Lake (3)	Area within 0.25 mile radius of the mouth of Ninemile Creek, except portions designated as items numbered 1 and 2.	С	С

Table A5-1. Summary of Regulatory Classification of Onondaga Lake and TributaryStreams.

Source: NYSDEC (classifications as of July 2004); on-line linkage <u>http://www.dec.ny.gov/regs/4539.html#17588</u>

A5.2.3. Compliance Assessment

The regulatory goal of the ACJ is to bring Onondaga Lake and its tributaries into compliance with best usage designated for Class B and C waters pursuant to 6 NYCRR Parts 701 and 703. Applicable NY State Water Quality Standards and Guidance that will be used to assess the extent to which these actions are successful include the following:

- 1. Dissolved Oxygen: 6NYCRR Sec. 703.3
- 2. Ammonia: 6 NYCRR Sec. 703.5
- 3. Turbidity: 6 NYCRR Sec. 703.2
- 4. Floatable Solids in CSO Discharges: 6 NYCRR Sec. 703.2
- 5. Phosphorus: 6 NYCRR Sec. 703.2
- 6. Water Quality Standards & Guidelines (NYSDEC Technical & Operational Guidance Series TOGS 1.1.1)
- 7. Nitrogen: 6 NYCRR Sec. 703.2
- 8. Bacteria: 6 NYCRR Sec. 703.4

A5.3. Summary of the Onondaga County Ambient Monitoring Program (AMP)

Onondaga County is required by the ACJ to design and implement an annual monitoring program of the lake, the lake tributaries, and portions of the Seneca River adjacent to the Onondaga Lake Outlet. The objective of the Ambient Monitoring Program (AMP) is to provide the data and information needed to assess the effectiveness of the controls at Metro and the CSOs and determine if additional remedial measures are required to bring the waters into compliance with applicable state standards and guidelines and federal criteria.

Onondaga County and its partners rely on an integrated program of monitoring and modeling to determine whether the planned improvements to the Onondaga County wastewater collection and treatment infrastructure are effective in bringing the surface water system into compliance with state and federal requirements. Monitoring is used to measure conditions over the 15-year period of phased improvements to the wastewater collection and treatment system. Modeling is used to describe the interrelationships between physical, chemical, and biological characteristics of the lake and watershed. Models are also valuable tools for interpreting data and understanding underlying mechanisms. Once verified, models can be used to predict future conditions under a range of management scenarios and environmental conditions.

The interrelationship between the management questions, monitoring and modeling, and the spatial and temporal designation of compliance is summarized in Table A5-2.

Management Question:	Decision Analysis Components	Spatial and Temporal Scale of Assessment	Tools for Assessment
Can ambient water quality standards be achieved with continued Metro discharge to Onondaga Lake? Decision date: February 1, 2009	Dissolved Oxygen: 6NYCRR Sec. 703.3 Ammonia: 6 NYCRR Sec. 703.5 Turbidity: 6 NYCRR Sec. 703.2 Floatables: 6 NYCRR Sec. 703.2 Phosphorus: 6 NYCRR Sec. 703.2 TOG 1.1.1 Water Quality Standards & Guidelines Nitrogen: 6 NYCRR Sec. 703.2 Bacteria: CNYCRR Sec. 703.2	<u>Dissolved Oxygen:</u> Upper waters, fall mixing, South Deep <u>Ammonia and nitrite</u> : Upper waters; South Deep, year- round <u>Bacteria</u> : Class B portions of lake	Monitoring: AMP data Modeling CSOs: Use SWMM to confirm: system-wide annual average capture of 85% of combined sewage volume. Modeling Lake: Onondaga Lake model (development began in 2005)
Must Metro effluent meet the Stage III phosphorus and ammonia limits for discharge to Onondaga Lake or the Seneca River in order for the receiving water to achieve compliance with ambient water quality standards? Decision date: February 1, 2009	 6 NYCKK Sec. 703.4 Phosphorus: 6 NYCRR Sec. 703.2 (possibly modified by site-specific guidance value) Trophic state indicators: frequency, intensity and duration of algal blooms Ammonia: TOG 1.1.1 Water Quality Standards & Guidelines (latest revision to NYS standards) NYSDEC revised TMDL for phosphorus and ammonia: January 1, 2009 	Phosphorus and other trophic state parameters: state parameters: Summer average, upper waters, South Deep (per NYSDEC guidance). Dissolved Oxygen: Upper waters, fall mixing, South Deep Ammonia: Upper waters; South Deep, year-round	For lake discharge: • AMP data: <u>Ammonia</u> : effects of Stage 3 limits, met in 2004 <u>TP</u> : effects of Stage 2 limits, met in 2006 • Use lake model to project compliance under critical conditions For Seneca River discharge: TRWQM
Are additional measures needed to ensure compliance with dissolved oxygen standards during fall mixing? Decision date: December 1, 2012	Feasibility analysis of hypolimnetic oxygenation (ENSR 2004). Status: on hold	Focus of compliance for dissolved oxygen: fall mixing, upper waters	 AMP data: profiles and buoy Mass-balance model Onondaga Lake model

Table A5-2. Summary of management questions and decision analysis.

A5.3.1. History of Onondaga County Monitoring Efforts

The AMP is not Onondaga County's first monitoring effort. Following completion of a baseline State of the Lake Report in 1970, Onondaga County conducted an annual program from 1970–1997 to monitor tributaries, quantify external loading, and track lake water quality conditions and trends in response to pollution abatement efforts. When the ACJ was signed in 1998, Onondaga County modified its historical monitoring program to ensure that the data collected would be adequate to evaluate the response of the lake, streams, and river to the planned improvements to the CSOs and Metro. This process of evaluation and modification was a collaborative effort of Onondaga County, Onondaga Lake Technical Advisory Committee (OLTAC), U.S. Geological Survey (USGS), New York State Department of Environmental Conservation (NYSDEC), Environmental Protection Agency (EPA) and Atlantic States Legal Foundation (ASLF). The AMP began in August 1998 and is scheduled to continue through 2012.

The AMP differs from the historical program in several important ways:

- <u>Storm Event Monitoring</u>: The AMP incorporated a storm event program on the CSO-affected tributaries (Onondaga Creek, Harbor Brook, Ley Creek), plus Ninemile Creek. Storm event data are used to evaluate the effectiveness of the CSO remedial measures.
- <u>Stream Mapping</u>: A stream mapping component was added to the AMP to document habitat quality along the CSO-affected tributaries; this program will support evaluation of the effectiveness of CSO controls and has provided additional information regarding nonpoint sources of pollution (particularly sediment).
- <u>Recreational Indices</u>: The AMP was expanded to include monitoring for indices of recreational quality (bacteria and water transparency) at a network of eight nearshore stations (a ninth station was added in 2006).
- <u>In-Situ Buoy</u>: A monitoring buoy has been placed at the South Deep station to provide high-frequency measurements of water temperature, dissolved oxygen and related parameters.
- <u>Precipitation Stations</u>: Onondaga County has expanded its network of precipitation gauging stations.

• <u>Biological Monitoring</u>: The most significant change, however, has been the addition of an extensive biological monitoring program.

A5.3.2. Design of the AMP: Required Elements

The AMP was designed to provide data and information needed to guide management decisions regarding the level of treatment of municipal wastewater (including CSOs) and the location of the Metro discharge.

The AMP includes Onondaga Lake, the lake's tributaries, and the Seneca River in the region of the Onondaga Lake outlet. The program includes measures to evaluate physical and habitat conditions, chemical water quality, and the nature of the biota as summarized in the language from the ACJ listing the required elements of the AMP.

These required elements from Appendix D of the ACJ include measures to:

- Assess compliance with ambient water quality standards in the lake and tributary streams
- Estimate loading of materials to the lake, including the volume and loading of materials from the combined sewer overflows
- Evaluate physical habitat conditions in the lake and tributaries
- Evaluate the lake's trophic state (level of productivity)
- Model the assimilative capacity of the Seneca River in the region of the Onondaga Lake outlet to support a decision regarding diversion of Metro effluent
- Characterize the lake's biological community.

In addition to these specific measures, Appendix D of the ACJ includes requirements to document data integrity (for example, preparation of a detailed Quality Assurance Project Plan). Onondaga County is required to consult with technical experts to ensure that the AMP is designed and implemented in a defensible manner. Data interpretation and reporting is to be open and subject to rigorous technical review. Finally, Appendix D includes specific requirements to ensure that Onondaga County's monitoring program collects data related to habitat quality. The addition of attributes to measure habitat quality highlights the expansion of the program from a traditional water quality monitoring program to one that aims at a more holistic assessment of ecological integrity. Appendix D of the ACJ is abstracted below.

OCDWEP also has an expanded monitoring program on the Seneca River that is not part of the AMP; this program extends into the Oneida River and is used to evaluate performance of other Onondaga County wastewater treatment plants.

An overview of how the AMP is designed to meet ACJ requirements is provided in **Table A5-3**. While the AMP is designed to assure compliance with the specific requirements in the ACJ, Onondaga County collects and analyzes additional data to meet related program objectives. In many cases, additional data are collected that enable a more integrated analysis of water quality conditions and the response of the biota. Details of how data collected through the AMP are used and interpreted is included in **Table A5-4**, which is subdivided into these sections:

- A. Onondaga Lake Chemical/Water Quality Monitoring Program
- B. Onondaga Lake Physical Parameters
- C. Onondaga Lake Chlorophyll-a, Phaeophytin-a, Phytoplankton, Zooplankton, Macrophytes and Littoral Macroinvertebrates.
- D. Onondaga Lake Fisheries Program
- E. Tributary Program Summary
- F. Seneca River Program Summary

AMBIENT MONITORING PROGRAM REQUIREMENTS (Appendix D of the ACJ)

Abstracted from the Amended Consent Judgment, January 1998

I. Tributaries and Lake Water Quality Monitoring Program

- 1. Assess compliance with ambient water quality standards and progress toward use attainment.
- 2. Assess physical habitat for stream and lake biota, and indicators of the biotic response.
- 3. Incorporate flexibility to assess additional chemicals or potential sources as needed
- 4. Concentrate data collection during critical ecological periods (e.g. spring spawning of dominant lake fishes, onset of thermal stratification, fall mixing).
- 5. Define monitoring as a priority at the Department and commit adequate resources
- 6. Increase participation of outside technical experts, e.g., Onondaga Lake Technical Advisory Committee in design and implementation of AMP and interpretation of results.
- 7. Incorporate appropriate QA/QC.
- 8. Maintain data in an electronic format that facilitates summarizing data, reporting results, and depicting results (including graphical depiction)

II. Tributary Monitoring Program

- 1. Quantify external loadings of phosphorus, nitrogen, suspended solids, indicator bacteria, heavy metals, and salts. Utilize FLUX. Events-based schedule.
- 2. High flow monitoring to partition point and nonpoint sources of phosphorus to the Lake (minimum of 5 days).
- 3. Collect storm event data upstream and downstream of CSO discharges to Onondaga Creek, Harbor Brook and Ley Creek.
- 4. Assess compliance with water quality standards in Onondaga Cr, Harbor Br, and Ley Cr.
- 5. Measure attributes of the physical environment in tributaries: (a) velocity; (b) cross-sectional area to map erosional and depositional sections; (c) survey for presence and character of sludge deposits in depositional areas and map; (d) map physical characteristics of the stream bed that could affect spawning habitat from mouth to first barrier; (e) sample macroinvertebrate communities and calculate NYSDEC rapid field biotic index throughout tributaries' length.
- 6. Continue cooperative arrangements with USGS to gauge discharge of the major tributaries.
- 7. Continue data collection, analysis and reporting consistent with historical database (1970 to 1997) to enable statistical trend analysis.

III. Onondaga Lake Monitoring Program

- 1. Assess compliance with ambient water quality standards including bacterial concentrations in nearshore areas.
- 2. Assess trophic status of the Lake.
- 3. Continue data collection, analysis, and reporting consistent with the long-term lake database (1970 1997) to enable statistical trend analysis.
- 4. Complement chemical program with a biological monitoring effort to assess the densities and species composition of phytoplankton, zooplankton, macrophytes, macroinvertebrate, and fish.
- 5. Evaluate success of walleye, bass, and sunfish propagation (quantitative lake-wide nest surveys, recruitment estimates, and juvenile community structure). Coordinate with NYSDEC fisheries management activities on the lake.
- 6. Establish sharing protocols with NYSDEC for County to track contaminants in fish flesh.
- 7. Acquire and track data by others regarding nature of littoral (shallow area) sediments in Onondaga Lake.

IV. Seneca River Program

- 1. Evaluate current water quality of the Seneca River and compliance with water quality standards upstream and downstream of the Onondaga Lake outlet.
- 2. Evaluate and quantify the assimilative capacity of the Seneca River and quantify effects of zebra mussels.
- 3. Monitor critical conditions of warm weather and low flows.
- 4. Test temporal and spatial variability (e.g., diurnal variations in river water quality, and the extent of chemical stratification).

ACJ Statement of Required Program Objective	Ambient Monitoring Program Elements	Data Used To
Quantify external loading of phosphorus, nitrogen, suspended solids, indicator bacteria, and salts. Assess the reduction in loading achieved by the CSO improvements. Design program to evaluate the relative contribution of point and nonpoint sources of pollution to the lake.	Tributary monitoring (Annual Program): biweekly and high flow events – includes locations upstream and downstream of CSOs, urban and rural segments of subwatersheds. Storm event program (Periodic): higher frequency sampling on CSO-affected streams during storms.	Estimate annual external loading to Onondaga Lake Calculate loading from CSO-affected tributaries and compare pre-and post-remedial load of phosphorus, suspended sediment, and bacteria
Assess the tributaries' physical habitat and macroinvertebrate community	Stream mapping using NRCS Visual Stream Assessment Protocol in CSO-subwatersheds (Periodic): Onondaga, Ley and Harbor Brook. Baseline, 2000 and 2002; post-improvements scheduled for 2008 and 2012; note: may be modified based on CSO construction schedule or major hydrologic event Macroinvertebrate surveys (Periodic): CSO- affected subwatersheds every 2 years, even years.	Quantify baseline conditions and provide basis to measure change. Calculate standard indices (using NYSDEC protocols) that use numbers and types of benthic macroinvertebrates to indicate status of water quality and habitat conditions. Test for improvement over time.
Gather data on an adequate temporal and spatial scale to assess compliance with ambient water quality standards	Lake monitoring program (Annual): South Deep Station and nine nearshore stations Tributary monitoring program (Annual) Seneca River monitoring program (Annual)	Assess compliance with numerical and narrative standards for substances listed in TOGS 1.1.1 Calibrate and verify models

Table A5-3. Elements of the AMP in relation to ACJ-Required Monitoring Objectives.

ACJ Statement of Required Program Objective	Ambient Monitoring Program Elements	Data Used To
Evaluate changes in the water quality and trophic state of Onondaga Lake in response to reductions in external loading achieved by the improvements to Metro and the CSOs.	Lake monitoring program (Annual): phosphorus, chlorophyll-a, water clarity, DO status of lower waters Tributary and Metro effluent monitoring (Annual): loads (esp. nutrients) Seneca River monitoring (Annual)	Assess conditions in relation to inputs and trends Calibrate USGS watershed model of land use and nutrient export (using AMP tributary data) Construct conceptual model and mass-balance model Calculate "fish space metrics" to track changes in available habitat for cold water, cool water and warm water fish Develop and calibrate Onondaga Lake model
Through interaction with NYSDEC and appropriate peer reviewers, coordinate data collection and analysis to provide data at an adequate spatial and temporal scale to use in existing or revised lake models	Annual program and supplemental investigations, NYSDEC review and approvals Meetings with OLTAC and work groups	Support conceptual and empirical (mass-balance) model; AMP data will be used to calibrate and verify new lake model (begun in 2005)
Define ambient water quality conditions in the Seneca River between Cross Lake and the Three Rivers junction.	Annual surveys during low flow conditions at Seneca River Buoy 316.	Assess current conditions, provide data for model verification Assess compliance with ambient water quality standards
Evaluate and quantify the assimilative capacity of the Seneca River and quantify effects of zebra mussels. Quantitative Environmental Analysis, LLC. <i>Final</i> <i>Phase 2 Report Three Rivers Water Quality</i> <i>Model.</i> Prepared for: Onondaga County Department of Water Environment Protection Syracuse, NY, Onondaga Lake Cleanup Corp., Syracuse, NY. Job Number: ONOsen: 227. August 2005.	River modeling work group and peer review (Annual program) Surveys during low flow conditions in the fall (depends on hydrologic conditions) Periodic zebra mussel assessment (surveys completed in spring and summer 2007)	Assess current conditions, data set for model verification Support TRWQM model of assimilative capacity of River, including zebra mussel activity. Domain is Cross Lake to Phoenix Dam. Assess current conditions, compile data for model verification

Table A5-3. Elements	of the AMP in relati	ion to ACJ-Required M	Ionitoring Obj	ectives. (continued)
----------------------	----------------------	-----------------------	----------------	----------------------

Table A5-4. Detailed Reporting of AMP Program, Data Analysis and Interpretation Strategy.

A. Onondaga Lake Chemica	l/Water Quality	y Monitoring Program	
--------------------------	-----------------	----------------------	--

Parameter	Data Analysis and Reporting	Data Interpretation Strategy	Sites	Depths	Frequency Sampling Interval	Method
Alkalinity, Total	Concentration	 Charge Balance Trends Compute Hardness 	South Deep North Deep	UML1 composite LWL composite	South Deep: Biweekly (Apr-Dec) and monthly in winter, as conditions allow <u>North Deep</u> : Quarterly Weekly (Feb-Mar) ("winter lake")	Wildco Beta horizontal sampler/ Churn
Bacteria Fecal Coliform, E. Coli	 Abundance of indicator organisms Percent of measurements meeting swimming standards 	 Potential presence of pathogens Compliance with standards Use attainment. Trend analysis Effectiveness of CSO control measures. Model support 	South Deep North Deep Nearshore sites	0m	South Deep: Biweekly (Oct- Apr) and weekly (May-Sept) <u>North Deep</u> : Quarterly Weekly (Feb-Mar) ("winter lake") <u>Nearshore</u> : Weekly (May- Sept)	Grab sample into sterile bottle

¹ UML and LWL composite samples are based on the thermocline depth determined through the field profile (temperature, pH, dissolved oxygen, and specific conductance). Two periods are defined as default conditions that vary depending on the lake's annual stratification and mixing: October 1 – May 31, (not strongly stratified) and June 1 – Sept 30 (strongly stratified). During the October 1 – May 31 period, default UML includes the 0, 3 and 6 m depths; default LWL includes the 9, 12, 15 and 18 m depths. During the June 1 – September 30 period, default UML includes 0 and 3 m depths (always); 6 m may be excluded based on field conditions. The LWL during the summer period typically includes 12, 15, and 18 m; 9m is excluded as it is consistently in the metalimnion. Occasionally, the thermal structure during summer leads the field team to exclude the 12 m depth as well.

Parameter	Data Analysis and Reporting	Data Interpretation Strategy	Sites	Depths	Frequency Sampling Interval	Method
BOD-5	Concentration	 Indicator of oxygen- demanding material Model support Trends 	South Deep North Deep	UML composite LWL composite	South Deep: Biweekly (Apr-Dec) and monthly in winter, as conditions allow <u>North Deep</u> : Quarterly Weekly (Feb-Mar) ("winter lake")	Wildco Beta horizontal sampler/ Churn
Carbon: TOC, TOC-F, TIC	Concentration	 Trends Trophic Status. Indicator of oxygen demanding material. Support models 	South Deep North Deep	Discrete depths (0m, 6m, 12m, 18m)	South Deep: Biweekly (Apr-Dec) and monthly in winter, as conditions allow <u>North Deep</u> : Quarterly Weekly (Feb-Mar) ("winter lake")	Submersible Pump
Mercury: Total and Methyl Mercury (low- level)	Concentration	ComplianceTrends	South Deep North Deep	3m & 18m	April, June, August, October	Teflon Dunker Modified USEPA Method 1669
Metals: Cd, Cr, Cu, Ni, Pb, Se, Zn, As, K	Concentration	 Compliance Charge balance computations (K) 	South Deep North Deep	UML composite LWL composite	Quarterly	Wildco Beta horizontal sampler/ Churn

Table A5-4. Detailed Reporting of AMP Program. (continued)A. Onondaga Lake Chemical/Water Quality Monitoring Program (continued)

Parameter	Data Analysis and Reporting	Data Interpretation Strategy	Sites	Depths	Frequency Sampling Interval	Method
Metals/Salts: Ca, Na, Mg, Mn, Fe, Cl, SO ₄	Concentration	 Charge Balance (data quality) Trends Geochemical Analysis Electrochemical (redox) Density stratification Phytoplankton community structure 	South Deep North Deep	UML composite LWL composite	South Deep: Biweekly (Apr-Dec) and monthly in winter, as conditions allow <u>North Deep</u> : Quarterly Weekly (Feb-Mar) ("winter lake")	Wildco Beta horizontal sampler/ Churn
Nitrogen: NO ₃ , NO ₂	 Concentration Compliance with NYS standard (100 ug/l Nitrite in upper waters for warmwater fishery) 	 Compliance with AWQS². Measure in-lake nitrification and nitrogen cycling Use attainment (warm water fishery) 	South Deep North Deep	UML composite LWL composite	South Deep: Biweekly (Apr-Dec) and monthly in winter, as conditions allow <u>North Deep</u> : Quarterly Weekly (Feb-Mar) ("winter lake")	Wildco Beta horizontal sampler/ Churn

Table A5-4. Detailed Reporting of AMP Program. (continued)A. Onondaga Lake Chemical/Water Quality Monitoring Program (continued)

² AWQS – Ambient Water Quality Standard

Parameter	Data Analysis and Reporting	Data Interpretation Strategy	Sites	Depths	Frequency Sampling Interval	Method
Nitrogen: TKN, NH3-N, Org-N, TKN- Filtered	Concentration	 Compliance with standards Measure in-lake nitrification, nitrogen cycling Compute N:P ratios Habitat for biota Trend analysis TMDL. Analysis Model support 	South Deep North Deep	Discrete Depths (0m, 3m, 6m, 9m, 12m, 15m, 18m)	South Deep: Biweekly (Apr-Dec) and monthly in winter, as conditions allow <u>North Deep</u> : Quarterly Weekly (Feb-Mar) ("winter lake")	Submersible Pump
Phosphorus: TP, SRP, TDP	Concentration	 Trophic status Trends Compliance with NYS guidance value of 20 µg/l summer average, upper waters guidance value (support for site-specific analysis) TMDL analysis Model support Bioavailability 	South Deep North Deep	Discrete Depths (0m, 3m, 6m, 9m, 12m, 15m, 18m) plus 1m, biweekly, June 1 – Sept 30 (NYS guidance value)	South Deep: Biweekly (Apr-Dec) and monthly in winter, as conditions allow <u>North Deep</u> : Quarterly Weekly (Feb-Mar) ("winter lake")	Submersible Pump

Table A5-4. Detailed Reporting of AMP Program. (continued)A. Onondaga Lake Chemical/Water Quality Monitoring Program (continued)

Parameter	Data Analysis and Reporting	Data Interpretation Strategy	Sites	Depths	Frequency Sampling Interval	Method
Silica	Concentration	Trophic levels interaction (potential for silica to limit diatom production)	South Deep North Deep	Discrete depths (0m, 6m, 12m, 18m)	South Deep: Biweekly (Apr-Dec) and monthly in winter, as conditions allow <u>North Deep</u> : Quarterly Weekly (Feb-Mar) ("winter lake")	Submersible Pump
Solids: TS, TSS, VSS, TVS, TDS	Concentration	 Compliance Trend analysis Chemical stratification Correlation with turbidity (water clarity) 	South Deep North Deep	Discrete depths (0m, 6m, 12m, 18m)	South Deep: Biweekly (Apr- Dec) <u>North Deep</u> : Quarterly Weekly (Feb-Mar) ("winter lake")	Submersible Pump
Sulfides	Concentration	 Anoxia Model support (diagenesis) 	South Deep North Deep	Discrete depths (12m, 15m, 18m)	Only when anoxic conditions are present <u>South Deep</u> : Biweekly <u>North Deep</u> : Quarterly	Wildo Beta horizontal sampler

Table A5-4 Detailed Reporting of AMP Program. (continued)A. Onondaga Lake Chemical/Water Quality Monitoring Program (continued)

Parameter	Data Analysis and Reporting	Data Interpretation Strategy	Sites	Depths	Frequency Sampling Interval	Method
Turbidity	Light scattering (NTU)	 Trend analysis Correlation with other indices affecting water clarity 	South Deep	Discrete depths (2m, 6m)	Daily at 15 minute intervals (Apr- Dec)	YSI Buoy
			South Deep North Deep	South Deep: UML composite Discrete depth (0m) <u>North Deep</u> : UML composite	South Deep UML: Biweekly (Apr-Dec) and monthly in winter, as conditions allow South Deep Om: Weekly May-Sept North Deep: Quarterly Weekly (Feb-Mar) ("winter lake")	Wildco Beta horizontal sampler/ Churn

Table A5-4 Detailed Reporting of AMP Program. (continued)**B. Onondaga Lake Physical Parameters**

Parameter	Data Analysis and Reporting	Data Interpretation Strategy	Sites	Depths	Frequency Sampling Interval	Method
Field data: pH, Temperature, Salinity, Conductivity, Dissolved Oxygen, ORP	 Volume-days of Anoxia Rate of depletion from LWL DO during fall mixing Volume-days of hypoxia Fish-space metrics 	 Compliance Stratification (thermal and chemical) Model support Trend analysis Ammonia toxicity. Use attainment.(habitat) Concentration of reduced substances and oxidation status of lake (ORP data) pH indicator of CO2 production and decomposition. 	South Deep North Deep	0.5 m intervals through water column	South Deep: Biweekly (Apr- Dec) and monthly in winter, as conditions allow <u>North Deep</u> : Quarterly Weekly (Feb-Mar) ("winter lake")	YSI (In-situ)
		 Compliance with DO and pH standards. Evidence of mixing processes (seiche) 	South Deep	Discrete depths (2m, 6m, 12m, 15m)	Daily at 15 minute intervals (Apr- Dec)	YSI Buoy

Table A5-4. Detailed Reporting of AMP Program. (continued)**B.** Onondaga Lake Physical Parameters (continued)

Parameter	Data Analysis and Reporting	Data Interpretation Strategy	Sites	Depths	Frequency Sampling Interval	Method
Secchi Disk Transparency	• Average Secchi, percent of measurements meeting 1.2 m (nearshore), 1.5 m (South Deep)	 Secchi disk transparency: Compliance with NYSDOH³ guidance value for bathing beaches (1.2 m or 4 ft). Trends Trophic Status Indicator of water clarity Aesthetics (1.5 m or 5 ft) Use attainment 	South Deep North Deep Nearshore sites	Depth at which the disk is no longer visible from the surface	South Deep: Weekly (May-Sep) Biweekly (Apr, Oct-Dec) <u>North Deep</u> : Quarterly Weekly (Feb-Mar) ("winter lake") <u>Nearshore</u> : Weekly (May– Sep)	Secchi Disk
LiCor Underwater Illumination Profile	• Extinction coefficient	 Trends Trophic Status Indicator of water clarity Aesthetics (1.5 m or 5 ft) Use attainment 	South Deep North Deep	From lake surface to depth at which light is 1% of surface illumination	Biweekly (Apr- Dec)	LiCor Datalogger

Table A5-4. Detailed Reporting of AMP Program. (continued)**B.** Onondaga Lake Physical Parameters (continued)

³ NYSDOH – New York State Department of Health

Parameter	Data Analysis and Reporting	Data Interpretation Strategy	Sites	Depths	Frequency Sampling Interval	Method
Chlorophyll- <i>a</i> & Phaeophytin- <i>a</i>	 Concentration Magnitude and frequency of bloom conditions 	 Use attainment. Aesthetic quality Site-specific guidance Assess trophic status and algal productivity. Trends Compare to phytoplankton and zooplankton. Evaluate variability. Lake model calibration and validation 	South Deep North Deep	UML composite and Photic Zone ⁴	South Deep: In duplicate weekly (May-Sept) and biweekly (April; Oct – Dec) <u>North Deep</u> : Quarterly	³ ⁄4" Tygon tube sampler (Depth- integrated tube samples)
Phytoplankton	 Biovolume Abundance Species composition Annual succession Percent blue green 	 Assess community structure, importance of cyanobacteria Trends in abundance and biomass Aesthetic quality Correlation with chlorophyll Relationship to light penetration 	South Deep North Deep	UML composite	South Deep: Biweekly (Apr– Nov) and monthly in winter, as conditions allow <u>North Deep</u> : Quarterly	³ ⁄4" Tygon tube sampler (Depth- integrated tube samples)

 Table A5-4.
 Detailed Reporting of AMP Program. (continued)

C. Onondaga Lake chlorophyll-a, phaeophytin-a, phytoplankton, zooplankton, macrophytes, and littoral macroinvertebrates

⁴ The Photic Zone is defined as two times the Secchi disk transparency depth measured the day of sampling.

Parameter	Data Analysis and Reporting	Data Interpretation Strategy	Sites	Depths	Frequency Sampling Interval	Method
Zooplankton	 Count Dry weight biomass Identification Abundance Species composition Annual succession Size 	 Trends in abundance and biomass Assess community structure Size structure Correlate data with other regional lakes (Oneida Lake) Test relationship to fish community Infer food web impacts 	South Deep North Deep	UML composite and 15 m tow	South Deep: Biweekly (Apr– Nov) and monthly in winter, as conditions allow <u>North Deep</u> : Quarterly	Vertical Haul 0.5 m diameter net, 80 µm mesh
Macrophytes	Plant distribution	Used to track percent cover during years without field surveys	Entire Lake	-	Annual	Digitize beds from aerial photographs using GIS software
	Lakewide and by strata: • Species richness • Biomass • Percent cover	 Percent cover compared with optimal levels for warmwater fish community (bass) nursery and cover Biomass to support lake model Richness compared with regional lakes Trends 	Transects in littoral strata	From shoreline to depth where plant growth stops (6 m contour standard)	2000, 2005, 2010 (August surveys)	Field surveys

 Table A5-4.
 Detailed Reporting of AMP Program. (continued)

C. Onondaga Lake chlorophyll-a, phaeophytin-a, plankton, macrophytes, and littoral macroinvertebrates (continued)
Parameter	Data Analysis and Reporting	Data Interpretation Strategy	Sites	Depths	Frequency Sampling Interval	Method
Littoral macroinverte- brates	 Lakewide and by strata: NYSDEC indices Percent oligochaetes and chironomids Species richness 	Change from baseline conditions, lakewide and by strata	18 samples, in 5 strata (90 total)	From shoreline to 1.5 m depth	2000, 2005, 2010 (June surveys)	Field surveys

Table A5-4. Detailed Reporting of AMP Program. (continued)*C. Onondaga Lake chlorophyll-a, phaeophytin-a, plankton, macrophytes, and littoral macroinvertebrates (continued)*

Table A5-4. Detailed Reporting of AMP Program. (continued)

D.	Onondaga	Lake	Fisheries	Program
----	----------	------	------------------	---------

Parameter	Data Analysis and Reporting	Data Interpretation Strategy	Sites	Depths	Frequency Sampling Interval	Method
Nesting survey	Count Where possible, identify species	Change over time: lakewide and at five strata used for biological programs	Entire Lake divided into 24 sections	1 m	June	Visual Count around entire littoral zone (along depth contour)
Pelagic Larvae	 Species identification Length frequency	 Community Structure Growth rate, compared to regional lakes and to historical Onondaga Lake data Condition factor Species Richness Pollution tolerance 	South basin North basin	5.5 meter double oblique tow	Biweekly (April-August)	Miller Trawl

Parameter	Data Analysis and Reporting	Data Interpretation Strategy	Sites	Depths	Frequency Sampling Interval	Method
Littoral Juvenile	 Number and species of juveniles captured Catch per unit effort 	 Community Structure Size/length distribution Species Richness Evidence of recruitment Pollution tolerance 	15 sites lakewide	~ 1m	Every three weeks (July-October)	¹ /4" mesh bag seine sweep
Littoral Adults	Number and species capturedCatch per unit effort	 Community Structure Size/length distribution Species Richness Evidence of recruitment Pollution tolerance Index of Biological Integrity 	24 sections	< 1m	May, September, October	Night Electrofishing Angler diary program
Pelagic Adults	 Number and species captured Catch per unit effort 	 Community Structure Size/length distribution Species Richness Evidence of recruitment Pollution tolerance 	5 sites (1 per station)	4-5 m water (2 hour set)	May, October	Littoral - Profundal Gill Nets Experimental: hydroacousti cs Angler diary program
Deformities, Erosions, Lesions, Tumors, Fungal and Multiple Anomalies (DELT-FM)	Number and types of anomalies	Change over time (trend)	Lakewide	All (most are adults captured by electrofishing)	Screening on all captured fish	Visual analysis by trained field teams

Table A5-4. Detailed Reporting of AMP Program. (continued)**D.** Onondaga Lake Fisheries Program (continued)

Parameter	Data Analysis and Reporting	Data Interpretation Strategy	Sites	Frequency Sampling Interval	Method
Alkalinity	Concentration	 Calculate bicarbonate (charge balance) Trends 	Routine ⁵ : Ninemile; Hiawatha; Velasko; Kirkpatrick; Dorwin; Spencer; Adams; Ley; Trib5A; Metro; EF; Outlet High flow: Routine plus Sawmill and Bloody	Biweekly (January- December) High flow events as occur	Depth Integrated Sampling Techniques
Bacteria: Fecal Coliform	Abundance	 Potential presence of pathogens Trends Effectiveness of CSO control measures 	Routine: Ninemile; Hiawatha; Velasko; Kirkpatrick; Dorwin; Adams; Ley; Trib5A; Metro; EF; Outlet (2ft) High flow: Routine plus Sawmill and Bloody	Biweekly (January- December) High flow events as occur	Depth Integrated Sampling Techniques
BOD-5	Concentration	 Load Indicator of oxygen- demanding material 	Routine: Ninemile; Hiawatha; Velasko; Kirkpatrick; Dorwin; Adams; Ley; Trib5A; Metro; EF; Outlet High flow: Routine plus Sawmill and Bloody	Biweekly (January- December) High flow events as occur	Wildco Beta horizontal sampler/chur n

Table A5-4. Detailed Reporting of AMP Program. (continued)*E. Tributary Program Summary*

5 Ninemile – Ninemile Creek at Route 48 Hiawatha, Velasko – Harbor Brook Kirkpatrick, Dorwin, Spencer, Adams – Onondaga Creek Ley – Ley Creek at Park Sawmill – Sawmill Creek Bloody – Bloody Brook; Trib5A – Tributary 5A at State Fair Boulevard Metro - Outfalls 001 and 002 EF – Allied East Flume Outlet - Onondaga Lake outlet at 2 ft and 12 ft depths

Parameter	Data Analysis and Reporting	Data Interpretation Strategy	Sites	Frequency Sampling Interval	Method
Carbon: TOC, TOC-F, TIC	Concentration	 Trends Trophic status Oxygen demand Load 	 Routine: Ninemile; Hiawatha; Velasko; Kirkpatrick; Dorwin; Adams; Ley; Trib5A; Metro; EF; Outlet High flow: Routine plus Sawmill and Bloody 	Biweekly (January- December) High flow events as occur	Depth Integrated Sampling Techniques
Chlorophyll-a	Concentration	Boundary condition for river model	Outlet	Biweekly (January- December)	Discrete samples at 2 ft and 12 ft
Cyanide	Concentration	Compliance	Routine: Ninemile; Hiawatha; Velasko; Kirkpatrick; Dorwin; Adams; Ley; Trib5A; Metro; EF; Outlet High flow: Routine plus Sawmill and Bloody	Quarterly High flow events as occur	Depth Integrated Sampling Techniques
Metals: Cd, Cr, Cu, Ni, Pb, Hg, Zn, As, K	Concentration	 Compliance (if AWQS) Load Data quality (K used in charge balance) 	 Routine: Ninemile; Hiawatha; Velasko; Kirkpatrick; Dorwin; Adams; Ley; Trib5A; Metro; EF; Outlet High flow: Routine plus Sawmill and Bloody Spencer location monitored for K only 	Quarterly High flow events as occur	Depth Integrated Sampling Techniques

Table A5-4. Detailed Reporting of AMP Program. (continued)*E. Tributary Program Summary (continued)*

Parameter	Data Analysis and Reporting	Data Interpretation Strategy	Sites	Frequency Sampling Interval	Method
Metals/Salts: Ca, Na, Mg, Mn, Fe, Cl, SO4, SiO2	Concentration	 Compliance (if AWQS) Load Data quality (major ions used in charge balance) Geochemical analysis 	 Routine: Ninemile; Hiawatha; Velasko; Kirkpatrick; Dorwin; Adams; Ley; Trib5A; Metro; EF; Outlet High flow: Routine plus Sawmill and Bloody Spencer location monitored for Ca, Na, Mg, Cl and SO₄ only 	Biweekly (January- December) High flow events as occur	Depth Integrated Sampling Techniques
Nitrogen: TKN, NH ₃ -N, Org-N, TKN- Filtered	Concentration	TrendsSupport TMDLLoad	Routine: Ninemile; Hiawatha; Velasko; Kirkpatrick; Dorwin; Adams; Spencer; Ley; Trib5A; Metro; EF; Outlet High flow: Routine plus Sawmill and Bloody	Biweekly (January- December) High flow events as occur	Depth Integrated Sampling Techniques
Nitrogen: NO ₃ , NO ₂	Concentration	 Compliance with AWQS Load Trends 	Routine: Ninemile; Hiawatha; Velasko; Kirkpatrick; Dorwin; Adams; Ley; Trib5A; Metro; EF; Outlet High flow: Routine plus Sawmill and Bloody	Biweekly (January- December) High flow events as occur	Depth Integrated Sampling Techniques
Phosphorus: TP, SRP, TDP	Concentration	 Trends Support TMDL Load Bioavailability 	Routine: Ninemile; Hiawatha; Velasko; Kirkpatrick; Dorwin; Adams; Ley; Trib5A; Metro; EF; Outlet High flow: Routine plus Sawmill and Bloody	Biweekly (January- December) High flow events as occur	Depth Integrated Sampling Techniques

Table A5-4. Detailed Reporting of AMP Program. (continued)*E. Tributary Program Summary (continued)*

Parameter	Data Analysis and Reporting	Data Interpretation Strategy	Sites	Frequency Sampling Interval	Method
Solids: TSS, TDS	Concentration	Compliance with AWQS	Routine: Ninemile; Hiawatha; Velasko; Kirkpatrick; Dorwin; Adams; Ley; Trib5A; Metro; EF; Outlet High flow: Routine plus Sawmill and Bloody	Biweekly (January- December) High flow events as occur	Depth Integrated Sampling Techniques
Turbidity	Concentration	Transport dynamics	Routine: Ninemile; Hiawatha; Velasko; Kirkpatrick; Dorwin; Adams; Ley; Trib5A; Metro; EF; Outlet High flow: Routine plus Sawmill and Bloody	Biweekly (January- December) High flow events as occur	Depth Integrated Sampling Techniques
Field data: pH, Temperature, Salinity, Specific conductance, Redox potential, dissolved oxygen	• Fish-space metrics	 Compliance Model support Trend analysis. Use attainment.(habitat) pH indicator of CO2 production and decomposition. 	 Routine: Ninemile; Hiawatha; Velasko; Kirkpatrick; Dorwin; Spencer; Adams; Ley; Trib5A; Metro; EF; Outlet High flow: Routine plus Sawmill and Bloody 	Biweekly (January- December) High flow events as occur	
Stream benthic Macroinvertebrates (BMI) & Stream Characteristics	 NYSDEC water quality Index NRCS Visual Stream Assessment Protocol 	Change from baseline conditions	4 sites in Onondaga Creek 3 sites in Ley Creek 3 sites in Harbor Brook	BMI: every other year, from 1998 – 2012 Stream mapping: baseline assessment in 2000 and 2002, to be repeated in 2008 and 2012	Various methods, most BMI collected using kick screens

Table A5-4. Detailed Reporting of AMP Program. (continued)*E. Tributary Program Summary (continued)*

Table A5-4.	Detailed Reporting of AMP Program. (continued)
F. Seneca R	iver Program Summary

Parameter	Data Analysis and Reporting	Data Interpretation Strategy	Sites	Depths	Frequency Sampling Interval	Method
BOD-5	Concentration	 Indicator of oxygen- demanding material Model support 	16 sites (Seneca, Oneida & Oswego Rivers)	 1 meter below water surface 1 meter above the river sediments 	Monthly (July – September)	Wildco Beta horizontal sampler
Carbon: TOC, TDC	Concentration	 Trends Trophic status Indicator of oxygen- demanding material Model support 	16 sites (Seneca, Oneida & Oswego Rivers)	 meter below water surface meter above the river sediments 	Monthly (July – September)	Wildco Beta horizontal sampler
Chlorophyll-a	Concentration	 Trophic status Trends Model support 	16 sites (Seneca, Oneida & Oswego Rivers)	Through the water column. Tube composite through the photic zone and a grab at 1- meter above the river sediments.	Monthly (July – September)	Tube sampler "Depth Integrated Tube samples"
			Buoy 316 (Seneca River)	Upper waters: 0.86m Lower waters: 3.80 m	Daily at 15 minute intervals (April- Nov)	YSI Buoy

Parameter	Data Analysis and Reporting	Data Interpretation Strategy	Sites	Depths	Frequency Sampling Interval	Method
Metals/Salts: Cl	Concentration	TrendsGeochemical analysisModel support	16 sites (Seneca, Oneida & Oswego Rivers)	 meter below water surface meter above the river sediments 	Monthly (July – September)	Wildco Beta horizontal sampler
Nitrogen: TKN, NH3-N, TKN-Filtered, NO3, NO2	Concentration	 Compliance N dynamics N:P ratios Trends Model support 	16 sites (Seneca, Oneida & Oswego Rivers)	 1 meter below water surface 1 meter above the river sediments 	Monthly (July – September)	Wildco Beta horizontal sampler
Phosphorus: TP, SRP, TDP	Concentration	 Trophic status and algal productivity Trends Model support 	16 sites (Seneca, Oneida & Oswego Rivers)	 meter below water surface meter above the river sediments 	Monthly (July – September)	Wildco Beta horizontal sampler
Solids: TSS, VSS	Concentration	TrendsModel supportIndicator of water clarity	16 sites (Seneca, Oneida & Oswego Rivers)	 meter below water surface meter above the river sediments 	Monthly (July –September)	Wildco Beta horizontal sampler

Table A5-4. Detailed Reporting of AMP Program. (continued)*F. Seneca River Program Summary (continued)*

Parameter	Data Analysis and Reporting	Data Interpretation Strategy	Sites	Depths	Frequency Sampling Interval	Method
Turbidity	Light scattering (NTU) • Trends • Model support • Indicator of water of	TrendsModel supportIndicator of water clarity	16 sites (Seneca, Oneida & Oswego Rivers)	 meter below water surface meter above the river sediments 	Monthly (July – September)	Wildco Beta horizontal sampler
			Buoy 316 (Seneca River)	Upper waters: 0.86m Lower waters: 3.80 m	Daily at 15 minute intervals (April- Nov)	YSI Buoy
Field data: pH, Temperature, Salinity, Conductivity,	Concentration Concentration Complexity Stratif Trends Ammo Redox pH in produc DO in of aqu musse Suppo evalua capaci	 Compliance Stratification regime. Trends Ammonia toxicity. 	16 sites (Seneca, Oneida & Oswego Rivers)	0.5 m increments	Monthly (July – September)	YSI (in-situ)
Dissolved Oxygen, ORP		 Redox status pH indicator of CO2 production/decomposition. DO indicator of suitability of aquatic biota/zebra mussel activity. Support river model and evaluate assimilative capacity 	Buoy 316 (Seneca River)	Upper waters: 0.86m Lower waters: 3.80 m	Daily at 15 minute intervals (April- Nov)	YSI Buoy
Secchi Disk Transparency		 Model support Indicator of water clarity Use attainment 	16 sites (Seneca, Oneida & Oswego Rivers)	Depth at which the disk is no longer visible from the surface		Secchi Disk

Table A5-4. Detailed Reporting of AMP Program. (continued)*F. Seneca River Program Summary (continued)*

Table A5-4.	Detailed Reporting of AMP Program. (continued)
F. Seneca R	iver Program Summary (continued)

Parameter	Data Analysis and Reporting	Data Interpretation Strategy	Sites	Depths	Frequency Sampling Interval	Method
LiCor Underwater Illumination Profile		 Trends Model support Indicator of water clarity 	16 sites (Seneca, Oneida & Oswego Rivers)	Licor data – 20 cm intervals from river surface to depth at which light is 1% of surface illumination	Monthly (July – September) & with diurnal cycles	LiCor Datalogger

A5.3.3. Design of the AMP: Underlying Assumptions

Design of the AMP builds on decades of monitoring within the lake and its watershed. Several important assumptions underlie the monitoring program; these assumptions are based on analysis of the historical data and mass-balance calculations. Among the assumptions are:

> South Deep is representative of lake-wide conditions.

This assumption has been evaluated by comparing data collected at North Deep on a quarterly frequency with the South Deep data. A t-test of paired samples was used to compare data from 1999-2007. There is no systematic difference in trophic status indicator parameters (chlorophyll-a, phytoplankton biomass, and Secchi disk transparency) measured at North and South Deep. Of the other parameters, the N species and Fe are higher at South Deep, which is likely due to the Metro discharge. Fecal coliform bacteria are higher at South Deep; this is attributed to the proximity of major sources (storm water and CSO discharges). Specific conductance and pH were higher at North Deep, likely reflecting the influence of Ninemile Creek. (Appendix 10)

External loading to the lake is assessed by monitoring discharge and concentration of six tributaries plus Metro effluent. In total, approximately 95% of the water flow into the lake is gauged and sampled. It is assumed that this monitoring is sufficient to provide a robust estimate of external loading.

This assumption was tested in 2003, when storm event samples were obtained from two small streams draining the nearshore (ungauged) portion of the watershed. The concentrations of monitored parameters in the two streams, Bloody Brook and Sawmill Creek, were less than or comparable to concentrations measured in the gauged streams. With the very low flow contribution, it was determined that the loading from the nearshore (ungauged) portion of the lake watershed was minimal. That is, the ungauged areas do not contribute a disproportionate load given their drainage area.

Deposition onto the lake surface (including precipitation and dry fall) accounts for a small fraction of the total external nutrient load and can be adequately characterized from regional data.

The mass balance framework developed by Dr. William Walker provides a basis for evaluating the magnitude and importance of precipitation within the lake's phosphorus budget. The lake surface area comprises a very small fraction of the overall drainage basin, and precipitation onto the lake surface represents about 2% of the total water inflow. The concentration of phosphorus in rainwater is variable, but typically well below the concentrations measured in the tributary streams, and an order of magnitude less than the concentration in the Metro effluent. Again looking to Dr. Walker's mass balance framework, precipitation represents < 1% of the total P loading to the lake assuming the regional average TP concentration still represents less than 1% of the current total annual TOP load; for this reason site-specific sampling has not been recommended. The magnitude and importance of atmospheric loading of mercury has not been quantified as part of the AMP.

Groundwater does not represent a significant component of the lake's hydrologic budget.

This assumption can be examined by evaluating the extent to which water and chloride models show reasonable agreement between inputs, outputs, and retention in the lake. Onondaga Creek is influenced by groundwater seepage into the downstream reaches just above the Inner Harbor. Likewise, groundwater flux into Ninemile Creek has been documented. A chloride model of the lake, assuming no groundwater contribution, was constructed (Doerr et al. 1994) and predicted measured concentrations within about 5%. This implies that groundwater input to the lake is likely a minor component (<5%) of the hydrologic budget.

Water quality of the lake may be adequately characterized by examining the lake as a two-layer system during the period of thermal stratification, which typically extends from late May through late October. Furthermore, the photic zone does not extend into the lower water layer.

This assumption will be examined through the Onondaga Lake modeling project, which began in 2005.

A5.3.4. Design of the AMP: Hypothesis Testing and Statistical Power

The elements of the monitoring program were distilled into a series of testable hypotheses. This work product was used as a basis for evaluating the AMP design, allowing the project team and the advisors to determine whether the correct parameters were being measured. A summary of the hypotheses for elements of the monitoring program is presented in **Table A5-5**. There are three types of hypotheses to be tested using data generated by the AMP:

- Is Onondaga County in compliance with the effluent limits required by the State Pollution Discharge Elimination System (SPDES) permit?
- Have ambient water quality standards or guidance values in the receiving water been met?
- Is there a trend or shift in the monitoring data, in both water quality and biological programs?

It is evident from the list of hypotheses that a major focus of the AMP is to differentiate actual trends from natural variability. OLTAC member Dr. William W. Walker Jr. examined the historical monitoring data to characterize the variability of the parameters

used to assess progress (for example, concentrations of ammonia-N, bacteria, chlorophyll-a at the lake's South Deep station). The AMP design was then evaluated to determine what magnitude of "true" change in concentration could be detected at a given level of statistical certainty. The AMP was modified to increase the monitoring frequency for certain parameters that are highly variable (e.g. chlorophyll-a). For the majority of lake water quality parameters the biweekly sampling program was found to be adequate. Dr. Walker summarized his analysis of the power of the water quality monitoring program in the Phase 1 Statistical Framework (January 1999) and an updated Phase 1 Statistical Framework (January 2002). His report evaluating the design of the biological programs and their power to detect change was issued as the Phase 2 Statistical Framework (August 2002).

Dr. Walker has updated the statistical framework for both the water quality and biological programs using recent data. The update was structured to reference these specific hypotheses.

			Type of Hypothes		
Monitoring Parameter	Hypothesis	Compliance with SPDES permit	Compliance with AWQS or guidance value	Significant Trend or Shift in Monitoring Data	Data Used for Assessment
Ammonia-N	Improvements at Metro enable the County to meet Stage III effluent limits for ammonia N	*			Outfall 001 effluent concentrations, calculated for summer and winter (seasonal limits apply)
Annona-N	Reduced ammonia load results in compliance with ambient water quality standards and federal criteria for ammonia in Onondaga Lake		*	*	South Deep station, biweekly monitoring, discrete samples collected at 3-m intervals, with temperature and pH
Nitrite-N	Achievement of Stage III effluent limits for ammonia results in compliance with the NYS ambient water quality standard for nitrite (warm water fish community)		*	*	UML, LWL composite samples, biweekly at South Deep
Phosphorus	Improvements at Metro enable the County to meet final SPDES effluent limits (as set forth in a revised TMDL on or before Jan 1 2009)	*			Outfall 001 effluent concentrations
	Reduced phosphorus load from Metro reduces concentration of phosphorus in Onondaga Lake		*	*	South Deep station Biweekly monitoring TP, SRP and TDP, discrete samples collected at 3-m intervals
	Reduced phosphorus load from Metro brings the lake into compliance with guidance value (or site-specific guidance value)		*	*	TP at South Deep, 1-m depth (biweekly measurements, June – Sept)

Table A5-5.	Summary of	of Hypotheses	Underlying the AMI	כ
	Summing	JI II poureses	Chaoliging the rith	•

			Type of Hypothes		
Monitoring Parameter	Hypothesis	Compliance with SPDES permit	Compliance with AWQS or guidance value	Significant Trend or Shift in Monitoring Data	Data Used for Assessment
	Improvements at Metro enable the County to meet interim effluent limits for BOD	*			Outfall 001 effluent concentrations
Dissolved Oxygen	Improvements at Metro and related nonpoint source phosphorus load reductions bring the lake into compliance with NYS AWQS for DO during fall mixing.		*	*	Weekly or biweekly measurements through water column and high-frequency measurements at buoy at South Deep station
	Improvements at Metro and related nonpoint source phosphorus load reductions reduce the volume-days of anoxia and hypoxia.			*	Weekly or biweekly measurements through water column and high-frequency measurements at buoy at South Deep station
	Improvements at Metro and related nonpoint source phosphorus load reductions reduce the areal hypolimnetic oxygen depletion rate.			*	Weekly or biweekly measurements through water column and high-frequency measurements at buoy at South Deep station
Indicator bacteria	CSO remedial measures and improved stormwater management reduce the loading of fecal coliform bacteria entering the lake from tributaries during high flow conditions.	*		*	Storm event data: baseline and post-improvement rating curves for fecal coliform bacteria (load as a function of total precipitation, and total storm flow)
	Implementation of Stage I and II improvements to the wastewater collection and treatment system (including CSO projects) and progress with stormwater management will reduce concentration of indicator organisms in Onondaga Lake	*	*	*	Indicator bacteria abundance at nearshore stations during summer and following storms. Annual average concentration at South Deep, 0m depth

Table A5-5. Summary of Hypotheses Underlying the AMP. (continued)

			Type of Hypothesi		
Monitoring Parameter	Hypothesis	Compliance with SPDES permit	Compliance with AWQS or guidance value	Significant Trend or Shift in Monitoring Data	Data Used for Assessment
Chlorophyll-a	Metro improvements and watershed phosphorus load reductions result in lower chlorophyll-a concentrations in the lake.			*	Weekly or biweekly measurements at South Deep, photic zone and UML
Secchi disk transparency	Metro improvements and related nutrient load reductions result in improved water clarity (as measured by Secchi disk transparency) in Onondaga Lake			*	Weekly or Biweekly measurements at South Deep and nearshore stations.
	Metro improvements and watershed phosphorus load reductions result in lower biomass of phytoplankton in Onondaga Lake			*	Biweekly samples of UML phytoplankton community, numbers, size and identifications (PhycoTech)
Phytoplankton community	Metro improvements and watershed phosphorus load reductions result in reduced relative abundance of cyanobacteria to the lake's phytoplankton community (measured by percent of total biomass)			*	Biweekly composite samples of UML phytoplankton abundance, biomass, and ID (PhycoTech)
Zooplankton community	Metro improvements and watershed phosphorus load reductions reduce the biomass of zooplankton in Onondaga Lake by reducing the algal food supply			*	Biweekly composite samples of UML and tow (0-15 m), zooplankton abundance, size, biomass, ID (Cornell)
Macroalgae	Metro improvements and watershed phosphorus load reductions result in reduced areal coverage of macroalgae in nearshore areas of Onondaga Lake			*	Weekly surveys during recreational period (June –Sept) at nine nearshore stations.

Table A5-5.
 Summary of Hypotheses Underlying the AMP. (continued)

			Type of Hypothes		
Monitoring Parameter	Hypothesis	Compliance with SPDES permit	Compliance with AWSQ or guidance value	Significant Trend or Shift in Monitoring Data	Data Used for Assessment
Macrophytes	Metro improvements and watershed phosphorus load reductions indirectly result in increased areal coverage of macrophytes in the littoral zone of Onondaga Lake			*	Percent cover, biomass, and maximum depth of growth. Surveys: 2000, 2005, 2010 plus annual aerial photo evaluation (% cover)
	Metro improvements and watershed phosphorus load reductions indirectly result in increased number of macrophyte species in Onondaga Lake			*	Macrophyte species richness Detailed surveys: 2000, 2005, 2010
	Implementation of load reductions at Metro and CSO remediation will increase species richness of littoral benthic macroinvertebrates			*	Littoral macroinvertebrate species richness. Detailed surveys: 2000, 2005, 2010
Littoral macroinvertebrates Note: effects may be in strata 2, 3, and 4	Implementation of load reductions at Metro and CSO remediation will decrease the relative abundance of oligochaetes			*	Littoral macroinvertebrate dominance, percent oligochaetes. Detailed surveys: 2000, 2005, 2010
	Implementation of load reductions at Metro and CSO remediation will improve the NYSDEC Biological Assessment Profile as compared to baseline conditions.			*	NYSDEC calculated index Detailed surveys: 2000, 2005, 2010
	Implementation of load reductions at Metro and CSO remediation will improve the littoral macroinvertebrate HBI as compared to baseline conditions, indicating increased importance of pollution-sensitive organisms in the community			*	Hilsenhoff Biotic Index (HBI) Detailed surveys: 2000, 2005, 2010

Table A5-5. Summary of Hypotheses Underlying the AMP. (continued)

			Type of Hypothes		
Monitoring Parameter	Hypothesis	Compliance with SPDES permit	Compliance with AWQS or guidance value	Significant Trend or Shift in Monitoring Data	Data Used for Assessment
Fish community	Implementation of nutrient load reductions at Metro and nonpoint sources, including CSO remediation, will indirectly increase the number of fish species present in Onondaga Lake			*	Annual monitoring program: Species richness, electrofishing, gill nets, seines
	Implementation of point and nonpoint nutrient load reductions will indirectly increase the number of fish species that are sensitive to pollution in Onondaga Lake			*	<u>Annual monitoring program:</u> Electrofishing, pollution tolerance index (Whittier and Hughes 1998)
	Implementation of point and nonpoint nutrient load reductions will increase the reproductive success of fish in Onondaga Lake			*	Annual monitoring program: Nesting survey, larval tows, larval light traps, littoral seines
	Implementation of point and nonpoint nutrient load reductions will improve the lake's IBI. Note effects may be more evident in Strata 2,3, and 4.			*	Annual monitoring program: Electrofishing
	Implementation of point and nonpoint nutrient load reductions will increase the habitat available for the coolwater fish community			*	Fish space metrics: dissolved oxygen and temperature profiles at South Deep station

 Table A5-5.
 Summary of Hypotheses Underlying the AMP. (continued)

A5.3.5. Design of the AMP: Data Management

The AMP produces an extensive dataset; more than 20,000 water quality measurements are obtained each year in Onondaga Lake, its tributary streams, and the Seneca River. Dr. Walker has developed an integrated database to manage the data. This effort has resulted in a powerful tool for the County and other stakeholders to evaluate specific results by parameter, depth, and date. The database is also used to screen for outliers and test for trends; it generates plots for data exploration and reporting.

A5.3.6. Design of the AMP: Metrics to Measure and Report Progress

Analytical and field data are submitted on a quarterly basis to the NYSDEC. Screened and validated data are provided annually and are included in the OCDWEP Annual AMP Report. The process of turning data into information occurs continually through the year and is formalized in the Annual AMP report. Results and findings of the complete monitoring effort are documented in this report is reviewed by OLTAC members and NYSDEC. The County is required to submit an approvable annual AMP report to NYSDEC by December 1 each year.

A series of metrics have been developed to organize and report the extensive AMP dataset. As defined by EPA, metrics are attributes of the physical, chemical and/or biological ecosystem that respond to human disturbance. For the Onondaga Lake watershed, metrics are designed to indicate progress towards compliance with applicable standards and guidelines, and progress towards attaining a desired use.

Selected metrics may relate directly to an impairment of the lake or watershed; relate to a resource of interest; or correspond to a published standard that, in turn, reflects the requirements of public health or the aquatic biota. Candidate metrics can be measured and interpreted with relative ease to answer basic questions such as: "is the lake getting better?" and "is it safe for my family to swim here?"

Metrics selected to interpret and report on the AMP data are listed in **Table A5-6**. Note that the metrics are grouped into categories that address human uses and ecosystem function:

- (1) water contact recreation;
- (2) aesthetics;
- (3) aquatic life protection; and
- (4) sustainable recreational fishery

Metrics for water contact recreation are straightforward: New York State Department of Health and EPA have standards and guidance values for indicator bacteria and water clarity that are designed to be protective of human health and safety. Selecting metrics for aesthetics is slightly more judgmental, as they relate to perceived attributes such as water color and clarity, odors, and the visible extent of weed and algal growth. Water quality conditions needed to support aquatic life are fairly well defined in federal criteria and state standards. Onondaga County AMP metrics are designed to track water quality and habitat conditions during critical periods for reproduction and survival of young animals.

Table A5-6. Summary of Metrics.

Desired Use	Metrics	Measured By				
Water contact recreation	Indicator Bacteria	Fecal coliform bacteria abundance measured at stations within the Class B segment of Onondaga Lake (includes nearshore and North Deep station)				
	Water Clarity	Secchi disk transparency at nearshore stations.				
Aesthetics	Water Clarity	Secchi disk transparency at South Deep.				
	Bloom frequency and magnitude	Percent of chlorophyll- <i>a</i> measurements greater than 15 μ g/l (USEPA threshold for public perception as impaired for recreational use)				
		Percent of chlorophyll- <i>a</i> measurements greater than $30 \ \mu g/l$ (threshold for public perception of nuisance bloom).				
	Algal community structure	Percent of algal community represented by cyanobacteria (blue-green taxa)				
	Macroalgae proliferation	Percent cover of littoral zone, measured at nine nearshore stations June 1 – August 31 annually				
Aquatic Life Protection	Ammonia N	Percent of measurements in compliance with standards.				
	Nitrite N	Percent of measurements in compliance with standards.				
	Dissolved Oxygen	DO at fall mixing.				
		Duration of DO concentrations < 4 mg/l (data source: measurements at 15-minute intervals from probe on buoy)				
	Integrated metrics	"Fish space" metrics, volume-days with suitable conditions of DO and temperature for cold water and cool water fish communities				
		(Note: this metric does not account for other requirements such as habitat and forage base)				
	Species assemblage	Percent intolerant or moderately intolerant of pollution				
Fish Reproduction	Number of species with documented reproduction and recruitment ⁶	Nesting surveys, larval sampling (Miller tows), young-of-year sampling (littoral and pelagic) adult survey (electrofishing, gill netting), hydroacoustical survey.				
	Habitat quality	Percent cover of macrophytes: scaled to optimal level for largemouth bass (40 - 60% cover is target).				

⁶ Sampling captures young-of-the-year (YOY) fish in the lake. It is assumed that the majority of these small fish originated in the lake, given their size and limited mobility of the early life stages. However, the presence of YOY fish that originated in the Seneca River or tributaries to Onondaga Lake cannot be ruled out.

A5.4. Data interpretation for the biological programs

Analysis and interpretation of the biological components of the AMP is challenging. There are no equivalent promulgated standards as cited for the water quality parameters. The plan for analysis and interpretation of the biological data is primarily focused on changes over time. There are also limited comparisons with reference systems such as Oneida Lake, and comparisons to benchmark conditions considered desirable for various functions and values of the aquatic ecosystem.

One way to interpret the fish data is to compare the current community to the fish community present in Onondaga Lake at two critical periods: (1) during the early years of European settlement, and (2) during the early 1960s. The nature of the early fish community can provide insight into the natural condition, while the community during the 1960s likely represents the worst conditions of water quality and habitat degradation.

However, the biological data, including fish, must be evaluated with respect to the rest of the ecosystem. For example, the reproductive success of some fish species is influenced by macrophyte coverage, planktivorous fish can alter zooplankton community assemblages, and zebra mussels can alter trophic interactions. In order to fully understand and interpret changes to one aspect of the biological community it is necessary to describe the biological components that interact and influence the community in question. This important effort will continue as the AMP progresses through 2012.

A5.4.1. Sampling design

Biological sampling in Onondaga Lake occurs both nearshore (fish, macroinvertebrates, macrophytes) and offshore (larval fish, zooplankton, phytoplankton). Because of the variability of the lake's nearshore habitat conditions, the littoral habitat was divided into five strata based on a combination of substrate type and wave energy, both of which influence aquatic macrophytes and macroinvertebrates and, in turn, fish distribution. These five strata are displayed in **Figure A5-2**:

Stratum 1. Oncolite substrate with low wave energy (NW portion of the lake).

Stratum 2. Wastebed substrate with moderate wave energy (SW shore)

Stratum 3. Soft substrate with high wave energy (South end)

Stratum 4. Oncolite substrate with high wave energy (SE shore)

Stratum 5. Oncolite substrate with medium wave energy (NE shore)

The current schedule for biological monitoring through the 15-year AMP program is summarized in **Table A5-7**. This schedule may change as completion dates for CSO projects become firm or new issues arise. This table will be updated with subsequent revisions of the DAIP.

Table A5	5-7.	Summary	of	Schedule	and	Method	ologies	Used	for the	ne	Biological	Monitori	ing
Program	(Sub	oject to anni	ıal N	YSDEC re	view	and appr	roval; la	st upde	ated M	lar	ch 2005)		

Program	Component	Methods	Schedule	Comments
		Littoral Electrofishing	Annual	Entire lake shoreline, transects alternate between collecting all fish encountered and gamefish only, 2 surveys; May, Sept.
	Adult	Littoral- profundal Gill Nets	Annual	One net each stratum, set on bottom at 5m depth, 2 events; May, Sept.
Fich		Angler Diaries	Annual	Dependant on number of diaries returned
F ISH	Young-of- the-Year	Littoral Seines	Annual	15 sites, three sites per stratum, every 3 weeks, May-Oct, 8 events total
	Larvae	Pelagic Miller High Speed Trawls	Annual	Daytime samples, 4 transects N/S, oblique tows, ~surface to 5m depth, bi-weekly, May-Aug., 8 events total
	Nests	Visual Observation	Annual	Entire Shoreline, June
	Lake Littoral Zone	Petite Ponar	2000 2005 2010	Five sites, one in each stratum, June, 18 replicates, identified to species level
Macroinvertebrates	Tributary	Kick Net and Jab Net	Bi-annual	Four sites in Onondaga Creek, three sites in Ley Creek and Harbor Brook, July samples, 4 replicates, identified to species level
	As part of Tributary Mapping	Kick Net	2000 2008 2012	One site per mile of stream, 26 sites in Onondaga Creek, 9 in Ley Creek, 7 in Harbor Brook, one sample per site, identified to family level in the field
	Field Survey	Quadrats along Line Transects	2000 2005 2010	20 line transects, four per stratum, $1/2m^2$, quadrats spaced every other m along the transect, from shore to 6m depth, species presence, percent coverage and biomass, August
Triaci opnytes	Lakewide Survey of Cover	Aerial Survey	Annual (if water clarity permits)	Low altitude aerial photographs of entire lake, color film, digital images. Includes ground-truthing. Images are imported to GIS and areas of macrophyte growth delineated.

Program	Component	Methods	Schedule	Comments
Zooplankton	Lake	Vertical Net Haul	Annual	Bi-weekly at South Deep, April to Nov., Quarterly at North Deep, UML sample plus 15m vertical net haul. Winter sampling if possible.
Phytoplankton	Lake	Tygon tube	Annual	Bi-weekly at South Deep, April to Nov., Quarterly at North Deep, UML sample. Monthly in winter, as conditions allow

Table A5-7. Summary of Schedule and Methodologies Used for the Biological Monitoring

 Program. (continued)

A5.4.2. Species Data

Species data collected during the biological monitoring programs are used to evaluate pollution tolerance of the biological community, the presence of exotic or invasive species, nuisance species that affect best usage of the lake, and evaluate the status of those species highlighted in the ACJ.

- <u>Pollution tolerance</u>. Organisms have varying degrees of sensitivity to disturbances in their environment. Those most sensitive to disturbance are the first to be extirpated and the last to re-colonize. Dominance and distribution of pollution-tolerant or pollution-sensitive organisms can indicate relative degree of impact between locations. Changes in the distribution of these communities can be tracked over time. The AMP utilizes several ways of examining pollution tolerance, including metrics specifically derived to quantify this property of the community (Table A5-8).
- <u>Exotic/invasive species</u>. Onondaga Lake is directly connected to the Barge Canal system, therefore it is highly susceptible to invasion by exotic species. Invasive species often take advantage of disturbance to establish populations. Once established they can dramatically alter habitat, water quality, and trophic structure. The AMP has detected the early stages of invasion of several important species. For example, the exotic zooplankton Cercopagis pengoi was first detected in Onondaga Lake during routine sampling in 2000. Once exotic species are

detected, the program can be tailored to track their progress and effects on the ecosystem.

- <u>Associated with nuisance conditions</u>. Some species can be considered to be a nuisance to humans. Some of these are directly perceptible, such as blue-green algal blooms, others become apparent to lake users through indirect effects in the food web. For example, the recent dramatic increase in the fish species alewife (Alosa pseudoharengus) has reduced the population of large-sized zooplankton (their preferred food source) in the lake; this reduction in large-sized zooplankton decreased the effective grazing pressure on algae. As a result, water clarity has declined.
- <u>Included in management/rehabilitation plan</u>. Some species have special meaning within the context of the ACJ and/or future management plans. This is most common with the fish program. For example, the ACJ states the County should "evaluate the success of walleye, bass and sunfish propagation (quantitative lakewide nest surveys, survival and recruitment estimates, and juvenile community structure) in the lake" (ACJ Appendix D, IV.5). These species are given special consideration within the biological monitoring program.

Table A5-8.	Summary	of	Pollution	Tolerance	Metrics	Used	for	the	Biological	Monitoring
Program.										

Program	Component	Pollution Tolerance Metric	Comments		
	Adult	Pollution Tolerance Index	Based on the Index published by Whittier and Hughes (1998). These investigators compiled data from 169 lakes to develop an overall rating based on tolerance to eutrophication, turbidity, human activity in the watershed and species introductions. Their tolerance categories include: intolerant, moderately intolerant, moderately tolerant, and tolerant.		
Fish		Indicator Species	Indicator species are those that can be used to assess environmental condition. Presence of organisms known to be tolerant or sensitive to environmental degradation offer important information. Adult fish as indicator species are most useful if populations exist and are less useful if only a few individuals are encountered.		
	Young-of- the-Year	Indicator Species	Young-of-the-year organisms are excellent indicators of environmental change, as the early life history stages are usually most susceptible to disturbance and pollution.		
	Lake Littoral	NYSDEC Biological Assessment Profiles	NYSDEC Biological Assessment Profiles are an Index of Biotic Integrity developed specifically for macroinvertebrates in New York State. An overall assessment of water quality for each site is calculated by averaging results of four individual metrics obtained through a scaled ranking of the index values. After all index values for a site are converted to a common scale value, they are averaged to obtain a score denoting overall assessment of water quality. The score results in a designation of one of four categories: non-impacted, slightly impacted, moderately impacted, or severely impacted.		
Macroinvertebrates	Zone & Tributary	HBI	The Hilsenhoff Biotic Index (HBI) is considered by many investigators to be the most reliable index of composition of the macroinvertebrate community and water quality status (Novak and Bode 1992). HBI indicates the effects of organic pollution and is based on species-specific tolerance levels.		
		Percent Oligochaetes	As oligochaetes are often found in high relative proportions in areas impaired by organic enrichment, their percent contribution to the community can be a good measure of the relative amount of organic enrichment at different locations. More importantly, the change in the percent contribution of oligochaetes over time, will be a good measure of the change in organic enrichment at the study sites.		

Program	Component	Pollution Tolerance Metric	Comments
Macroinvertebrates (continued)	As part of Tributary Mapping	FBI	The Family Level Index (FBI) is based upon the tolerance values and theories the HBI but is conducted in the field with family level identifications.
Macrophytes	Field Survey	Indicator Species	Determination of environmental impact based on macrophytes is difficult. However some species have known tolerances to water quality variables. For example <i>Potamogeton pectinatus</i> (a species that has been common in Onondaga Lake since at least the early 1990's) is more tolerant of salinity than many other macrophytes. Knowledge of these types of tolerances can help in understanding the current lake community as well as the changes that occur.

Table A5-8. Summary of Pollution Tolerance Metrics Used for the Biological MonitoringProgram. (continued)

A5.4.3. Population Data

Population data collected during the biological monitoring programs are used to evaluate individual size, abundance and reproductive success in Onondaga Lake and the tributaries.

- <u>Average size of individuals</u>. Size of individuals is monitored for fish and zooplankton in the AMP. The size that animals attain is a function of both the genetics of the organism as well as the environmental conditions the organism has been subjected to throughout its life. Changes in the ecosystem are often reflected by changes in growth, thus making analysis of size of certain organisms a potential valuable monitoring tool. For example, growth may be density dependant, so populations with poor recruitment may be characterized by fast-growing individuals. In addition, the size structure of some organisms can have dramatic cascading effects throughout the trophic structure of the lake. Average size of some organisms can also be compared to other regional lakes.
- <u>Abundance</u>. Abundance measures are difficult to quantify in biological populations due to their inherent spatial and temporal variability. However,

changes in abundance can provide useful information in the AMP because change in population size is the mechanism underlying changes in many community metrics. Expected changes in abundance due to improving water quality or habitat may not always be positive. Some species exploit disturbed conditions and their abundance can be expected to decrease with improving conditions. As the dynamics of the lake community change, the lake will become more hospitable to some species and less to others, gradually abundance of species will change to reflect the new lake condition.

• <u>Reproductive success</u>. Monitoring reproduction and recruitment of the fish community is particularly useful because the early life history stages are often very sensitive to disturbance. Reproductive success is affected by both biotic and abiotic factors. For example, reduction in ammonia concentration in the water column during the spring is likely to increase survival of sensitive early life stages (abiotic factor). Any effects of improved water quality on the fish community will likely first be reflected in the early life history stages. However, the food web effects must also be considered. Predation by fish such as alewife will reduce survival of larval fishes (biotic factor). The AMP monitors nesting of fish, larval fish, and juveniles.

A5.4.4. Community Data

Community data collected during the biological monitoring programs are used to evaluate richness, diversity, and relative abundance of indicator species in Onondaga Lake and the tributaries.

<u>Richness</u>. Richness, the number of different taxa (usually species) found in a community, is calculated for all components of the biological monitoring program. Richness may not be correlated with water or habitat quality. In fact, richness can increase with disturbance; for example, invasive species may become established without eliminating native species. Richness measurements can be used to detect substantial changes in community structure, if the sampling effort is

held relatively constant. If changes in richness are detected, the underlying mechanism will be investigated to analyze the potential significance.

• <u>Diversity</u>. The distribution and abundance of different organisms, and how these attributes vary both spatially and temporally, play a major role in determining how an ecosystem functions to process energy and materials (Hooper et al. 2005). The numbers and types of organisms present (sometimes referred to as biodiversity) act together with the effects of climate, resource availability, and disturbance regimes to influence ecosystem properties (Hooper et al. 2005). Species composition, richness, evenness, and interactions respond to and influence ecosystem properties (Hooper et al. 2005). A high biodiversity can be interpreted as indicating functional stability (Karr 1968, Margalef 1968, Odum 1969). Biodiversity can be expressed in terms of numbers of entities (how many genotypes, species, or ecosystems), the evenness of their distribution, the differences in their functional traits, and their interactions (Hooper et al. 2005).

The Onondaga Lake biological monitoring program utilizes the Shannon-Weiner diversity index as a measure of biodiversity. Shannon-Weiner diversity is a function of both the number of species present (richness) and the equitability of distribution of individuals within these species (evenness) (Washington 1984). Shannon-Weiner diversity is greatest when large numbers of taxa are represented in equal proportions. Shannon-Weiner diversity can help determine if disparity occurs between different sites within the same waterbody or over time. However, care should be taken to not compare Shannon-Weiner diversity values between waterbodies as this metric is expected to differ depending on size and connectedness of the waterbody. Shannon-Weiner diversity is usually utilized with other more descriptive indices that, taken together, can yield a more complete view of the community. This group of metrics is used to document change at the community level. If changes are observed, species-level information is examined to determine the source of those changes and whether they might be attributed to changes in habitat or water quality.

 Presence and relative abundance of indicator organisms. One important characteristic of macroinvertebrates is their differential tolerance to various types of pollution; these different tolerances can influence the species composition and relative abundance of organisms in stream segments affected by various types of pollution. Several indices have been developed to examine the macroinvertebrate community and infer water quality and habitat conditions. Benthic macroinvertebrates are good indicators of localized conditions due to their limited migration patterns and sessile mode of life.

The tolerance of benthic macroinvertebrates to various types of pollution has been investigated, including organic (oxygen-demanding) waste, nutrients, sediment, salts, metals, and temperature. Both point sources and nonpoint sources (runoff) can cause these types of pollution to reach streams and rivers.

The AMP includes two macroinvertebrate sampling efforts to evaluate if the stream biota changes as CSO improvements are brought on line. The first is the biennial tributary macroinvertebrate program; macroinvertebrates are collected and identified to the lowest possible taxon (ideally, the species level) at three or four sites on the CSO-affected streams (Onondaga Creek, Ley Creek, and Harbor Brook). The second effort is associated with the periodic stream mapping program; macroinvertebrates are collected and identified to family at one site per stream mile on the three CSO-affected streams. Results are used to calculate standard indices that assess whether a stream segment is impaired, and what type of pollution is most likely responsible.

A5.5. MODELING

An integrated program of monitoring and modeling will provide the information needed to determine whether the improvements to Metro and the CSOs are sufficient to bring the surface waters (Onondaga Lake, the tributary streams, and a segment of the Seneca River) into compliance with state and federal requirements. Data from the AMP are used to construct and verify models. There are conceptual models of the lake and its watershed that describe how energy and materials cycle. Mathematical models, which are quantitative formulations of mechanisms and interactions that affect water quality, are under development.

A5.5.1. Conceptual Model

A conceptual model describes the interrelationships between physical, chemical, and biological characteristics of the lake and watershed; it provides a tool for interpreting data and understanding underlying mechanisms. The conceptual model also provides a valuable tool to evaluate the adequacy of the monitoring program itself and determine whether the appropriate questions are being asked of the ecosystem and the data set. Finally, the conceptual model provides the foundation for development of a predictive mathematical model.

A conceptual model of the phosphorus, nitrogen, and dissolved oxygen dynamics in Onondaga Lake was drafted by QEA, LLC and first presented in the Onondaga County 2001 Annual AMP report. Figures from the 2001 AMP Annual Report are included below:

- **Figure A5-3** is the phosphorus cycle
- **Figure A5-4** is the nitrogen cycle
- **Figure A5-5** is the dissolved oxygen (DO) cycle.

Figure A5-3. Conceptual model of phosphorus dynamics in Onondaga Lake under present conditions. Seasonal importance of primary pathways indicated by colors: Summer, Fall.

Figure A5-4. Conceptual model of nitrogen dynamics in Onondaga Lake under present conditions. Seasonal importance of primary pathways indicated by colors: Summer, Fall.

Figure A5-5. Conceptual model of dissolved oxygen dynamics in Onondaga Lake under present conditions. Seasonal importance of primary pathways indicated by colors: Summer, Fall.

A5.5.2. Mass-balance Model

The development and structure of a mass-balance modeling framework for Onondaga Lake is described in the Onondaga County AMP Annual Reports. The framework facilitates computation and analysis of mass balances for nutrients and other water quality components using hydrologic and water quality data collected in the Lake and its tributaries since 1986. Lake water and mass balances are formulated on yearly and seasonal (May-September) time scales. Results provide a basis for:

- 1. Estimating the magnitude and precision of loads from each source;
- 2. Assessing long-term trends in load and inflow concentration from each source and source category (point, nonpoint, total);
- 3. Evaluating the adequacy of the monitoring program, based on the precision of loads computed from concentration and flow data;
- 4. Developing and updating an empirical nutrient loading model that predicts eutrophication-related water quality conditions (as measured by nutrient concentrations, chlorophyll-a, algal bloom frequency, transparency, and hypolimnetic oxygen depletion) as a function of yearly nutrient loads, inflows, and lake morphometry;
- 5. Developing simple input/output models for other constituents; and
- 6. Developing data summaries to support integration and interpretation of monitoring results in the County's annual AMP reports.

A5.5.3. NYSDEC Total Maximum Daily Load (TMDL) Allocation

The ACJ requires that NYSDEC issue a revised Total Maximum Daily Load (TMDL) allocation for ammonia and phosphorus inputs to Onondaga Lake on or about January 1, 2009. The TMDL will define the total loading of ammonia and phosphorus that can be assimilated by the lake while maintaining compliance with water quality standards. The total required reductions in point and nonpoint source loading will be defined. To complete this task, NYSDEC requires a reliable model of how the lake responds to loading, plus an accurate allocation of the sources of ammonia and phosphorus.

A5.5.4. USGS Onondaga Lake Watershed Model

One of the projects funded by the Onondaga Lake Partnership is a watershed model of the lake. USGS is developing this model which will be used to estimate nonpoint source loads of materials to Onondaga Lake under various hydrologic conditions and land use practices. The tributary loading estimates developed through the AMP are the basis for model calibration.

A5.5.5. Three Rivers Water Quality Model (TRWQM)

A water quality model of the Three Rivers system was developed by QEA, LLC to assess the waste load assimilative capacity of the Seneca River. The model quantifies the River's assimilative capacity and accommodates respiration of zebra mussels, as set forth in the AMP Requirements (ACJ Appendix D, item IV.2). The model will serve as the basis for a TMDL allocation for oxygen-demanding materials and will be used to determine if diversion of Metro effluent to the Seneca River is a viable alternative.

Onondaga County funded development of the TRWQM. The model domain extends from Cross Lake to the Phoenix Dam. A peer review of the TRWQM has been completed.

The model simulates water quality conditions in the river in response to various environmental conditions, including upstream water quality conditions, point source discharges, water temperature, and zebra mussel growth.

A5.5.6. Onondaga Lake Model

Onondaga County has completed a Request for Proposals and selection process for development of a water quality/eutrophication model of Onondaga Lake. QEA, LLC will complete the lake model that will be used for the NYSDEC TMDL allocation and final effluent limits. This water quality model will link the watershed model and the TRWQM. The model will be developed using data from the AMP and will be the primary means of determining the level of treatment and location of the Metro discharge. Model development will be a collaborative effort that includes Onondaga Lake Partnership as well as expert peer reviewers. While the primary focus is on water quality, the model will be to

develop a tool that can help assess water quality improvements from both the bottom-up effects (i.e. reduced loading of nutrients and organic material) and the top-down effects (i.e. food web interactions).

A5.6. LITERATURE CITED

- Doerr, S.M., S.W. Effler, K.A. Whitehead, M.T. Auer, M.G. Perkins and T.M. Heidke. 1994. Chloride model for polluted Onondaga Lake. Water Res. 28:849-861.
- Hooper, D.U., F.S. Chapin III, J.J. Ewel, A. Hector, P. Inchausti, S. Lavorel, J.H. Lawton, D.M. Lodge, M. Loreau, S. Naeem, B. Schmid, H. Setala, A.J. Symstad, J. Vandermeer, and D.A. Wardle. 2005. Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecol. Mono. 75(1) 3-35.
- Karr, J. R. 1968. Habitat and Avian Diversity on Strip-mined Land in East Central Illinois. Condor 70(4): 348-57.
- Klemm, D.J., P. A. Lewis, F. Fulk, J. M. Lazorchak. 1990. Macroinvertebrate field and laboratory methods for evaluating the biological integrity of surface waters. United States Environmental Protection Agency. EPA/600/4-90/030.
- Novak, M.A., and R.W. Bode. 1992. Percent model affinity: a new measure of macroinvertebrate community composition. N. Am. Benthol. Soc. 11(1): 80-85).
- MacArthur, R.H. 1955. Fluctuations of Animal Populations, and a Measure of Community Stability. Ecology 36: 522-36.
- Margalef, D. R. 1968. Perspectives in Ecological Theory. Univ. Chicago Press, Chicago.
- Odum, E. P. 1969. The Strategy of Ecosystem Development. Science 164: 262-70.
- Walker, William W. Jr. 2002 2003 Phase 1 and Phase 2 Statistical Framework. Reports prepared for Onondaga County Department of Water Environment Protection, Syracuse NY.
- Washington, H.G. 1984. Diversity, biotic and similarity indices. A review with special relevance to aquatic systems. Water Res. 18(6):653-694.
- Whittier, T.R. and R. M. Hughes. 1998. Evaluation of fish species tolerance to environmental stressors in lakes in the northeastern United States. N.A. J. Fish. Mngt. 18:236-25.

APPENDIX 6: 2007 DREISSENID MUSSEL SURVEY

TABLE OF CONTENTS

A6-1 Seneca River	A6-1
A6-2 Onondaga Lake	A6-2
A6-3 River and Lake Biological Laboratory Processing	A6-4
A6-3.1 Length Frequency	A6-4
A6-3.2 Weight and Density Determination (Estimate)	A6-4
A6-4 Seneca River Data	A6-4
A6-5 Onondaga Lake Data	A6-5

LIST OF TABLES

Table A6-1.	Seneca River Dreissenid Mussel Survey Fall 2007 - Length and Weight
	Data Summary
Table A6-2.	Seneca River Dreissenid Mussel Survey - Fall 2004, Fall 2005, Fall 2006
	and Fall 2007 Comparison of Mean Weight (g/m ²) and Mean Density
	$(\#/m^2)$
Table A6-3a.	Seneca River Dreissenid Mussel Survey Fall 2007 - Zebra Mussel Raw
	Length (mm) Data
Table A6-3b.	Seneca River Dreissenid Mussel Survey Fall 2007 – Quagga Mussel Raw
	Length (mm) Data
Table A6-4.	Onondaga Lake Dreissenid Mussel Survey Fall 2007 - Length and Weight
	Data Summary
Table A6-5.	Onondaga Lake Dreissenid Mussel Survey - Fall 2002, Fall 2005, Fall
	2006 and Fall 2007 Comparison of Density (#/m ²)
Table A6-6a.	Onondaga Lake Dreissenid Mussel Survey Fall 2007 – Zebra Mussel Raw
	Length (mm) Data
Table A6-6b.	Onondaga Lake Dreissenid Mussel Survey Fall 2007 - Quagga Mussel
	Raw Length (mm) Data

LIST OF FIGURES

- Figure A6-1. Seneca River Dreissenid Mussel Survey Length Frequency Distribution by Transect (04'-07')
- Figure A6-2. Seneca River Dreissenid Mussel Survey Fall 2007 Length Frequency Distribution by Transect for Zebra and Quagga Mussels
- Figure A6-3. Onondaga Lake Dreissenid Mussel Survey Fall 2007 Length Frequency Distribution by Zone (All Transects) and Depth Range/Category (All Depths) for Zebra and Quagga Mussel
- Figure A6-4. Onondaga Lake Dreissenid Mussel Survey Fall 2002, 2005, 2006 and 2007 Comparison of Length Frequency Distribution by Zone (All Transects) and Depth Range/Category (All Depths)
- Figure A6-5. Onondaga Lake Dreissenid Mussel Survey Fall 2002, 2005, 2006 and 2007 Comparison of Length Frequency Distribution by Zone (All Transects) and Depth Range/Category

APPENDIX 6 – Seneca River and Onondaga Lake Dreissenid Mussel Survey (Revised)

During the fall of 2007, OCDWEP staff completed a Seneca River and Onondaga Lake dreissenid mussel survey in support of the model and/or validation needs for the Three Rivers Water Quality Model (TRWQM) and Onondaga Lake Water Quality Model (OLWQM). The Dreissenid mussels include both zebra and quagga mussels.

<u>Note:</u> A re-evaluation of the 2007 Dreissenid Mussel Survey was performed due to the identification of an abundant quagga mussel (*Dreissena bugensis*) population in both the Seneca River and Onondaga Lake samples collected during the 2008 Dreissenid Mussel survey. A review of the archived samples from 2007 identified several transects that contained quagga mussels, requiring modification to the tables and figures contained herein.

A6-1 Seneca River

The October 10, 2007, monitoring event included the collection and estimation of dreissenid mussels at key locations recommended by QEA to provide a measure of length frequency distribution and density ($\#/m^2$ and grams/ m^2). The monitoring locations include the following four (4) habitat zones:

- Zone III State Ditch Cut 3 Transects, 3 samples per transect.
- Zone X Near Buoy Marker 334– 3 Transects, 3 samples per transect.
- Zone XIII Near Buoy Marker 260 5 Transects, 3 samples per transect.
- Zone XIV Onondaga Lake Outlet– 2 Transects, 3 samples per transect.

Map of General Seneca River Dreissenid Mussel Transect Locations

Three (3) samples were collected along each transect. One (1) at approximately mid-channel (Middle), and one (1) between the channel marker buoy and shoreline on each side of the river (Red and Green). The boat was anchored to provide a fixed position, and the technicians record the date, time, water depth (ft), composition of the field crew, general weather conditions, and GPS coordinates. The Green and Red locations are designated by the channel marker buoys.

A single grab sample was collected at each depth interval with a petit ponar dredge, which has a sample area of $35 \text{ in}^2 (226 \text{ cm}^2)$. The impact with the bottom activates the closing mechanism, and the dredge is then slowly brought to the surface.

Once at the surface, all substrate within the sampler is carefully placed into the wash bucket with the mesh screen. Lake water is used to rinse any remaining material into the wash bucket. Fine sediments were rinsed through the wash bucket, and all remaining material was placed in a labeled zip-lock bag. Following field sample collection, all samples were placed in a cooler with ice until transported to a refrigerator at the HCBF laboratory. Label information included date and location (i.e. Zone III, Transect A, Location G).

Thirty-nine (39) samples were collected from the Seneca River during the 2007 field effort.

A6-2 Onondaga Lake

The October 19 and 25, 2007, monitoring event on Onondaga Lake included the collection and estimation of dreissenid mussels within habitat zones identified by Stantec during the 2002 Onondaga Lake Zebra Mussel Assessment Program, and transects and water depth intervals recommended by QEA in 2005. The 2007 effort provided a limited measure of length frequency distribution and density ($\#/m^2$ and grams/ m^2) in Onondaga Lake. The monitoring locations include the following eight (8) habitat zones:

- Zone A 2 Transects, 3 samples per transect, at 0-1.5 m, 1.5 3 m, and 3 4.5 m.
- Zone B 1 Transect, 3 samples per transect, at 0-1.5 m, 1.5 3 m, and 3 4.5 m.
- Zone C 2 Transects, 3 samples per transect, at 0-1.5 m, 1.5 3 m, and 3 4.5 m.
- Zone D 2 Transects, 3 samples per transect, at 0-1.5 m, 1.5 3 m, and 3 4.5 m.
- Zone E 1 Transect, 3 samples per transect, at 0-1.5 m, 1.5 3 m, and 3 4.5 m.
- Zone F 1 Transect, 3 samples per transect, at 0-1.5 m, 1.5 3 m, and 3 4.5 m.
- Zone G = 1 Transect, 3 samples per transect, at 0-1.5 m, 1.5 3 m, and 3 4.5 m.
- Zone H 2 Transects, 3 samples per transect, at 0-1.5 m, 1.5 3 m, and 3 4.5 m.

Map of General Onondaga Dreissenid Mussel Transect Locations

Three (3) samples were collected along each transect. The first at a water depth of approximately 0 to 1.5 meters, the second at a water depth of approximately 1.5 to 3.0 meters, and the third at a water depth of approximately 3.0 to 4.5 meters. The boat was anchored to provide a fixed position, and technicians recorded the date, time, actual water depth (ft), field crew, general weather conditions, and GPS coordinates.

A single grab sample was collected at each depth interval with a petit ponar dredge, which has a sample area of $35 \text{ in}^2 (226 \text{ cm}^2)$. The impact with the bottom activates the closing mechanism, and the dredge is then slowly brought to the surface.

Once at the surface, all substrate within the sampler is carefully placed into the wash bucket with the mesh screen. Lake water is used to rinse any remaining material into the wash bucket. Fine sediments were rinsed through the wash bucket, and all remaining material was placed in a labeled zip-lock bag. Following field sample collection, all samples were placed in a cooler with ice until transported to refrigerator at the HCBF laboratory.

The sample was rejected if the dredge was only partially filled with substrate sediment. Possible causes of less than a full sample included non-vertical deployment, premature triggering of the closing mechanism, an object stuck in the jaws of the ponar, or hard sediments that are impenetrable by the petite ponar. If the sampling team observed bottom material draining from the dredge as it is brought out of the water, the sample was rejected. If a sample was rejected, the procedure was repeated.

Thirty-six (36) samples were collected in Onondaga Lake during the 2007 field effort.

A6-3 River and Lake Biological Laboratory Processing

At the HCBF biological laboratory, all mussels in the sample were carefully removed from the substrate material. Laboratory measurements of the collected samples were completed within two (2) weeks of sample collection. The entire sample was sorted to remove the live mussels. Care was taken to distinguish between zebra and quagga mussels that are similar in appearance for young-of-year mussels. The mussels were then blotted dry with paper towels.

<u>Note:</u> For those locations that contained quagga mussel, only the lengths were re-measured for each species as part of this revision. The weights were not re-evaluated since the specimens had been preserved. As a result, the data tables provide weight, and weight based density (g/m^2) , for combined Dreissenid Mussels (quagga and zebra mussels). Where length frequency and quantity based density (no./m²), was calculated for each species.

A6-3.1 Length Frequency

Using the blotted samples, technicians randomly select 100 mussels from the sample for length measurement. Using the digital caliper, the technicians recorded the length of each mussel (nearest 1 mm) on the Log Sheet for Mussel Length. If a sample results in less than 150 mussels for any given transect (because of the lack of mussels in some individual samples), additional randomly selected mussels were then measured in those samples within the transect with more than 100 mussels (if such were available), with the goal of at least 150 measurements per transect.

A6-3.2 Weight and Density Determination (Estimate)

Upon completion of the length measurements for the sample, technicians used the 100 randomly selected mussels (or using all the mussels samples that were measured for those sample locations that did not contain 100 mussels) for a batch weigh per sub-sample. Technicians recorded the number of mussels in the sub-sample and the weight of the sub-sample on the Log Sheet for Weight and Density Determination (weight was recorded to the nearest 0.1 grams). The technicians then combined the sub-sample mussels with the remaining mussels in the sample for a total weight for the entire sample. The calculation for the estimated total number of mussels per sample as follows:

Total # of Mussels per Sample = (<u># mussels per sub-sample*weight per entire sample</u>) weight per sub-sample

<u>Note:</u> For those locations where quagga mussels were present, the actual counts (number of each species) were used in the density $(no./m^2)$ determination/calculation.

A6-4 Seneca River Data

On October 10, 2007, OCDWEP technicians collected the dreissenid mussel samples at the designated locations. Samples were collected and measured in accordance with the standard procedures unless otherwise noted. In general, all locations sampled contained a significant quantity of dreissenid mussel shell fragments requiring considerable laboratory effort to distinguish between the dead and live mussels.

During 2007, the survey identified several locations that contained quagga mussels. Quagga mussels were identified in four (4) of the Seneca River Transects (IIIA, XB, XIIIA, and XIIIE), and both of the Lake outlet locations (XIVA and XIVB). The quagga mussels represented 6% of the number of Seneca River dreissenid mussels sampled, and nearly 15% of the number of Lake Outlet dreissenid mussels sampled.

The Seneca River and Onondaga Lake outlet locations have continued to identify fluctuating dreissenid mussel densities and numbers. Particularly noteworthy during 2007, is the decline $(g/m^2 \text{ and } \#/m^2)$ in all zones (except XIIIA) outside of the lake outlet (XIVA and XIVB). The lake outlet locations had a 101% increase in the estimated $\#/m^2$ and a 40% increase in the g/m^2 from the 2004 mean values (following considerable declines in 2005 and 2006).

The fluctuation in dreissenid mussel density may be a function of annual variability in the mussel populations (mortality vs. distribution of year classes), a change in water quality conditions (increased clarity), a function of comparing results from different sampling methodologies (SCUBA diver collected vs. petit ponar dredge), or a combination of each.

<u>Note:</u> The 2004 data utilized scuba divers for sample collection, and the 2005, 2006 and 2007 data utilized the petit ponar dredge for sample collection.

A6-5 Onondaga Lake Data

On October 19 and 25, 2007, OCDWEP technicians collected the dreissenid mussel samples at the designated locations. Two (2) days were necessary to collect the samples due to a change in weather conditions during the first day of sampling. Samples were collected and measured in accordance with the procedures unless otherwise noted. In general, most locations sampled contained a significant quantity of dreissenid mussel shell fragments requiring considerable laboratory effort to distinguish between the dead and live mussels.

During 2007, the survey identified several zones that contained quagga mussels. Quagga mussels were identified in three (3) of the zones (A, C, and D), with water depths ranging from 0 to 4.5 meters. Although the greatest densities were in the 3 to 4.5 meter depth range. The quagga mussels represented 3.5% of the number of Onondaga Lake dreissenid mussel samples.

Particularly noteworthy is that in one year the lake had a 434% increase in the mean estimated number of mussels per m^2 , and a 667% increase in the mean weight (g/m²). The largest increase was in the 1.5 to 3.0 m and the 3.0 to 4.5 m ranges. Zone C (NW Shore above Ninemile Creek), Zone D (Wastebeds 1-8), Zone F (Wastebed B) and Zone G (Southern End/Metro) had the greatest increase in the number of dreissenid mussels compared to the 2006 data.

The fluctuation in dreissenid mussel density may be a function of annual variability in mussel populations (mortality vs. distribution of year classes), a change in water quality conditions (increased clarity), a function of comparing results from different sampling methodologies (SCUBA diver collected vs. petit ponar dredge), or a combination of each.

<u>Note:</u> The 2002 data utilized scuba divers for sample collection, and the 2005, 2006 and 2007 data utilized the petit ponar dredge for sample collection.

TABLES

Zone	Transect	Transect Coordinates	Channel	Water	Number of	Weight Per	Weight Per	Total Weight	Mean Weight	Median	Mean Mussel	Total Number of	Estimated Total	Mean Estimated
			Location	Depth (m)	Mussels Per	Sub-Sample	Entire	(a/m ²)	(a/m ²) per	Mussel	Length (mm)	Mussels Per	Number of	Number of Mussels
					Sub-Sample	(g)	Sample (g)	(3,)	Transect	Length (mm)		Sample	Mussels per m ²	per m ² by Transect
			Green	4.4	58	0.2	0.2	8.8	8.8	3	2.9	58.0	2566.4	1608
111	Α	N 43 06.480, W 76 26.440	Middle	13.7	48	0.3	0.3	13.3		3	3.5	48.0	2123.9	
			Red	4.1	3	0.1	0.1	4.4		3	3.8	3.0	132.7	
			Green	3.7	52	0.3	0.3	13.3	61.9	3	3.1	52.0	2300.9	4241 (74)
III	В	N 43 06.606, W 76 26.426	Middle	12.8	100	2.8	3.0	132.7		3 (7)	3.5 (7.7)	107 (5)	4734.5 (221.2)	
			Red	5.1	100	0.7	0.9	39.8		3	3.5	128.6	5689.0	
			Green	4.6	38	0.2	0.2	8.8	10.3	3	3.1	38.0	1681.4	1740
111	С	N 43 06.741, W 76 26.379	Middle	14.3	7	0.1	0.1	4.4		4	3.4	7.0	309.7	
			Red	5.6	73	0.4	0.4	17.7		3	3.0	73.0	3230.1	
			Green	9.0	1	0.1	0.1	4.4	1.5	4	3.9	1.0	44.2	15
Х	A	N 43 09.682, W 76 20.697	Middle	13.9	0	0.0	0.0	0.0		0	0.0	0.0	0.0	
			Red	5.8	0	0.0	0.0	0.0		0	0.0	0.0	0.0	
			Green	8.7	0	0.0	0.0	0.0	8.8	0	0.0	0.0	0.0	88.5 (15)
Х	В	N 43 09.572, W 76 19.759	Middle	13.5	0	0.0	0.0	0.0		0	0.0	0.0	0.0	
			Red	8.7	7	0.6	0.6	26.5		7 (14)	7.4 (13.6)	6 (1)	265.5 (44.2)	
			Green	12.4	0	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0	0
Х	С	N 43 09.336, W 76 19.747	Middle	12.7	0	0.0	0.0	0.0		0	0.0	0.0	0.0	
			Red	9.3	0	0.0	0.0	0.0		0	0.0	0.0	0.0	
			Green	5.5	1	0.1	0.1	4.4	308.3	0 (17)	0 (17)	0 (1)	0 (44.2)	959 (251)
XIII	Α	N 43 09.472, W 76 16.738	Middle	18.4	0	0.0	0.0	0.0		0	0.0	0.0	0.0	
			Red	6.0	81	20.8	20.8	920.4		10 (16)	10.6 (16.7)	65 (16)	2876.1 (708.0)	
			Green	4.1	0	0.0	0.0	0.0	1.5	0	0.0	0.0	0.0	29
XIII	В	N 43 07.482, W 76 15.496	Middle	20.7	2	0.1	0.1	4.4		9	9.0	2.0	88.5	
			Red	14.9	0	0.0	0.0	0.0		0	0.0	0.0	0.0	
			Green	8.1	3	0.4	0.4	17.7	19.2	6	8.0	3.0	132.7	118
XIII	С	N 43 07.596, W 76 15.489	Middle	15.7	5	0.9	0.9	39.8		12	12.0	5.0	221.2	
			Red	4.9	0	0.0	0.0	0.0		0	0.0	0.0	0.0	
			Green	6.7	0	0.0	0.0	0.0	1.5	0	0.0	0.0	0.0	29
XIII	D	N 43 07.307, W 76 15.538	Middle	15.5	0	0.0	0.0	0.0		0	0.0	0.0	0.0	
			Red	5.6	2	0.1	0.1	4.4		6	5.9	2.0	88.5	
			Green	10.3	100	15.6	29.0	1283.2	427.7	9 (15)	9.3 (14.7)	154 (28)	6814.2 (1238.9)	2271 (413)
XIII	E	N 43 07.475, W 76 15.101	Middle	17.1	0	0.0	0.0	0.0		0	0.0	0.0	0.0	
			Red	8.6	0	0.0	0.0	0.0		0	0.0	0.0	0.0	
			Green	6.1	100	12.3	34.6	1531.0	2166.7	7 (10)	8.2 (9.9)	417 (21)	18451.3 (929.2)	21211 (811)
XIV	A	N 43 07.245, W 76 14.979	Middle	15.9	100	15.2	102.0	4513.3		7 (12)	8.2 (11.7)	897 (34)	39690.3 (1504.4)	
			Red	5.9	100	8.3	10.3	455.8		7	7.4	124.1	5491.0	
			Green	6.4	100	13.9	69.8	3088.5	4246.3	9 (15)	9.0 (14.0)	556 (22)	24601.8 (973.5)	24676 (929)
XIV	В	N 43 07.038, W 76 14.712	Middle	15.3	100	13.5	137.9	6101.8		9 (13)	10.1 (12.4)	810 (24)	35840.7 (1061.9)	
			Red	7.3	100	19.5	80.2	3548.7		8 (13)	11.0 (13.5)	307 (17)	13584.0 (752.2)	

Note: Petit Ponar Dredge Sample Area is 226 cm².

Results expressed as Zebra mussel (Quagga mussel) when Quagga mussels are present.

Samples were preserved before a recount for quagga mussels. Therefore, the weight represents the combined Dreissenid, Zebra and Quagga Mussel, weight. Number of Mussels per sample are actual counts when quagga mussels were present.

Table A6.2. Seneca River Dreissenid Mussel Survey - Fall 2004, Fall 2005, Fall 2006 and Fall 2007 Comparison of Mean Weight (g/m²) and Mean Density (#/m²)

		Мо	an Waight	(a/m^2) por T	ransoct	Mean Est	imated Num	nber of Mus	sels per m ² by
Zone	Transect	IVIE		(g/m) per m	ansect		Tr	ansect	
		2004	2005	2006	2007	2004	2005	2006	2007 ¹⁾
	A	4025.8	140.7	808.0	8.8	11987	15433	5760	1608
	В	2569.0	327.1	789.1	61.9	9691	5525	6638	4241 (74)
	С	1392.2	66.2	413.0	10.3	17860	12133	6449	1740
Х	A	549.0	284.4	236.0	1.5	1500	1796	546	15
Х	В	444.9	176.5	311.2	8.8	1692	546	619	88.5 (15)
Х	С	0.0	1.8	0.0	0	0	88	0	0
XIII	A	477.2	0.0	19.2	308.3	1909	0	44	959 (251)
XIII	В	563.3	151.9	272.9	1.5	2012	826	560	29
XIII	С	0.0	14.4	35.4	19.2	0	162	2581	118
XIII	D	308.6	0.3	2.9	1.5	1815	59	162	29
XIII	E	958.0	1272.8	986.7	427.7	5042	3290	4869	2271 (413)
XIV	A	1532.1	0.0	23.6	2166.7	8157	0	3053	21211 (811)
XIV	В	3042.7	146.2	1991.2	4246.3	15445	796	10041	24676 (929)

¹⁾ The 2007 results are expressed as Zebra mussel (Quagga mussel) when Quagga mussels are present.

Zone		Zone III			Zone III		Zone III			Zone X			Zone X			Zone X		2	Zone XIII		
Transect	T	ransect A		Tr	ransect B		Tr	ansect C		Tr	ansect A		T	ransect B		Т	ransect C		T	ransect A	
Location	Green	Middle	Red	Green	Middle	Red	Green	Middle	Red	Green	Middle	Red	Green	Middle	Red	Green	Middle	Red	Green	Middle	Red
Median Length	3	3	3	3	3	3	3	4	3	4	0	0	0	0	7	0	0	0	0	0	10
Mean Length	2.9	3.5	3.8	3.1	3.5	3.5	3.1	3.4	3.0	3.9	0.0	0.0	0.0	0.0	7.4	0.0	0.0	0.0	0.0	0.0	10.6
1	4.2	3.8	5.4	7.2	5.2	2.9	2.8	6.3	2.9	3.9	0	0	0	0	11.3	0	0	0	0	0	8.6
2	2	2.5	3.3	6.2	1.2	2.9	2.8	4.4	4.8						8.3						9.7
3	3.6	2.3	2.8	6.3	3	2.6	4.4	3.7	6.2						7.6						8.9
4	4.6	4.9		6.1	4.8	5	2.1	3.5	3.4						7.3						11.1
5	3.9	2.7		4.7	2.7	3	2.6	2.1	4.8						6						11.8
6	3.8	3.9		4.5	2.5	5.3	2.5	2.4	5.7						3.9						8.5
7	6	1.5		4.5	4.9	3.3	3.9	1.7	6.7												6.4
8	3.5	4.5		3.8	2.7	3.7	2.6		4.2												8.3
9	3	2.8		3.9	3.9	3.4	4.2		2.5												6.4
10	2.8	7		4.4	2.4	4.1	2.7		3.1												7.6
11	2.7	3.3		3.5	2.4	4.7	3.2		4.7												10.3
12	7.2	3.2		2.9	3.7	3.6	3.8		2.8												10.3
13	5.2	3.5		3	2.3	7.4	2.5		2.2												9.4
14	2.8	2.9		4	3.2	2.7	5.3		2.8												11.3
15	1.9	2.6		3.7	2.4	4.3	4.1		4												11.1
16	2	3.2		3.2	2.5	6.3	1.9		3.7												8.8
17	2.7	5.7		3.1	2.2	6.7	1.8		3.5												11.8
18	2.7	4.8		2.9	3.1	4	3		2.7												11.6
19	2.5	4.5		2.6	1.1	4.6	3.7		6.9												10
20	4	4.3		3.2	3	2.8	3.9		1.8												14.1
21	3.9	4.3		3.9	2.4	2.3	4.6		3.5												6.7
22	3.4	4.6		2.4	2.4	5.1	3.9		2.7												11.3
23	3.5	3.2		2.2	3.4	3.3	2.8		3.9												11.6
24	2.2	5.1		2.4	2.4	3	3.2		3												6
25	3.7	3.4		2.9	1.7	3.4	4.3		3.4												10.4
26	4.5	2.1		2.6	4.6	3.9	2.5		3.3												7.2
27	4.1	3.2		2.8	2.5	3.2	2.1		3.1												22.5
28	2.1	3.1		3.2	2.3	3.1	1.9		1.6												23.6
29	6.1	3.9		4	15.4	2.1	2.1		1.9												12.8
30	1.2	4.3		2.9	2.8	3	2.8		2.7												10
31	2	1.7		2.7	4.5	3.2	3.2		1.6												8.8
32	2.4	2.7		3.1	1.8	3.1	2.8		1.6												9.3
33	1.6	4.1		2.4	3.3	2.8	2.7		5.2												13.1
34	1.4	3.7		2.4	3.8	2.6	2.8		3.8												10.7
35	2.1	2.5		1.9	2.5	5.6	3.3		5.9												14.6
36	1.4	2.3		2.2	3.6	3.2	4.3		4.6												11.3
37	2.5	3		2.9	2.9	4	3.1		3.7												10.7
38	1.2	4.2		2.9	3.6	2.8	1.9		2.2												11.6
39	2.6	4.8	<u> </u>	3	2.6	4			3												10.4
40	1.9	3.6		1.6	3.9	4.1			4.5												10.1
41	2.4	3.2		2	3	4.6			2.8												12.6
42	2.6	2.7		2.1	1.6	2.7			3												14
43	3.7	2.7		1.5	3.9	4.1			2.6												12.8
44	2.2	2.2		2.2	2.9	2.4			2.9								I				10.1

Zone		Zone III	Zone III				Zone III			Zone X			Zone X			Zone X			Zone XIII		
Transect	Т	ransect A		Tr	ransect B		Tr	ansect C		T	ansect A		Т	ransect B		Т	ransect C		Т	ransect A	
Location	Green	Middle	Red	Green	Middle	Red	Green	Middle	Red	Green	Middle	Red	Green	Middle	Red	Green	Middle	Red	Green	Middle	Red
45	2	2.4		2.3	2.1	3.1			2.2												8.7
46	3.3	5.8		2.2	2	3.3			3.3												7.4
47	3	1.7		2.1	2.9	3.4			1.2												8.2
48	2.2	1.4		2.7	2.1	2.8			1.3												10.4
49	2.1			2.6	4.6	4.9			4.5												9.2
50	2.2			1.6	3.3	5.3			2												8
51	2.4			1.5	3.2	3.2			3.3												10.2
52	2.5			1.4	2.8	2.9			5.3												10.7
53	2.7				3.7	3.3			2.5												12.3
54	2.7				2.4	2.3			1.9												17.1
55	2				2.3	3.3			1.6												10.3
56	1.7				2.1	2			2.7												6.3
57	1.7				4.4	2.5			2.6												7.7
58	1.9				12.6	3.1			2.6												9.1
59					10	3.3			2.1												12.9
60					11.3	4.6			1.4												8.8
61					2.3	3.4			2.6												9.2
62					3.4	2.8			1.6												9.8
63					2.2	5			1.2												9.1
64					3.5	2.9			1.3												11.8
65					4	2			2												10.4
66					4.3	3			3.6												
67					5.4	6.1			2.1												
68					4.6	3.9			2.9												
69					1.2	3.2			2.7												
70					5.4	2.4			1.3												
71					3.1	4.6			1.3												
72					1.6	2.9			1.3												
73					3	3.9			1.9												
74					1.8	2.1															
75					2.3	3.1															
76					2.2	5.7															
77					1.5	3.6															
78					3.1	2.4															
79					2.7	2.2															
80					4.4	2.5															
81					9.7	2.6															
82					2.2	3.2															
83					3.4	2.5															
84					3.1	2.3															
85					3.3	6.1															<u> </u>
86					2.4	2.4															<u> </u>
87					2	3.5															<u> </u>
88					7.2	2.6															───
89					4.1	2.2															───
90					3.3	3															

Zone		Zone III			Zone III			Zone III			Zone X			Zone X			Zone X			Zone XIII	
Transect	T	ransect A		Tr	ransect B		Tr	ansect C		TI	ansect A		Т	ransect B		Т	ransect C		Т	ransect A	
Location	Green	Middle	Red	Green	Middle	Red	Green	Middle	Red	Green	Middle	Red	Green	Middle	Red	Green	Middle	Red	Green	Middle	Red
91					4.2	3.6															
92					5.6	2.7															
93					3	4.2															
94					2.1	4.8															
95					1.1	4															
96					2	3.7															
97					1.6	3.5															
98					2.3	1.7															
99					4.1	2															
100					2.2	1.4															
101																					
102																					
103																					
104																					
105																					
106																					
107																					
108																					
109																					
110																					
111																					
112																					
113																					
114																					
115																					
116																					
117																					
118																					
119																					
120																					
121																					
122																					
123																					
124																					
125																					
126																					L
127																					L
128																					L
129																					
130	ļ				ļ	<u> </u>			<u> </u>												
131	ļ				ļ	<u> </u>			<u> </u>												
132																					I
133																					I
134																					I
135																					I
136																					

Table A6-3a. Seneca River Dreissenid Mussel Survey Fall 2007 - Zebra Mussel Raw Length (mm) Data

Zone	Zone III				Zone III			Zone III			Zone X			Zone X			Zone X			Zone XIII	
Transect	Т	ransect A		Tr	ansect B		Tr	ansect C		Ті	ansect A		Т	ransect B		Т	ransect C		Т	ransect A	
Location	Green	Middle	Red	Green	Middle	Red	Green	Middle	Red	Green	Middle	Red	Green	Middle	Red	Green	Middle	Red	Green	Middle	Red
137																					
138																					
139																					
140																					
141																					
142																					
143																					
144																					
145																					
146																					
147																					
148																					
149																					
150																					

Zone	Z	one XIII		Z	one XIV			Zone XIV										
Transect	Т	ansect B		Tr	ansect C		Tr	ansect D		Tr	ansect E		Tr	ansect A		Т	ransect B	
Location	Green	Middle	Red	Green	Middle	Red												
Median Length	0	9	0	6	12	0	0	0	6	9	0	0	7	7	7	9	9	8
Mean Length	0.0	9.0	0.0	8.0	12.0	0.0	0.0	0.0	5.9	9.3	0.0	0.0	8.2	8.2	7.4	9.0	10.1	11.0
1	0	5.4	0	14.7	18.7	0	0	0	7.9	9.7	0	0	25.5	25.3	21	24.1	23.8	26.5
2		12.5		5.8	14.4				3.9	11.3			25.7	10.9	14.3	14.7	19.5	21.2
3				3.5	11.8					23.3			13.9	6.7	12.8	18.7	28.9	8.5
4					10.6					15.7			14.4	4.3	10.6	25.1	21.8	12.7
5					4.6					17.1			16.6	4.4	12.4	18.6	15.1	15.4
6										11.3			14.2	5.9	12.1	11.6	26.4	9.8
7										11.5			9.6	6.7	19.6	13.3	17.5	10.2
8										8.7			11.9	9.9	12.6	13.8	17.7	6.8
9										11.1			12	1.2	11.6	18.1	14.8	7.4
10										15.2			11.8	4.4	11.8	14.5	13.7	8.8
11										15.9			7.4	3.5	6.9	11	11.5	7.3
12										8.8			7.1	7.7	7.2	9.4	9.3	7.3
13										8.7			12.3	1.9	12	11.9	7.2	5.9
14										8.5			14.4	2.3	6.7	9.8	8.6	5
15										9.1			7.1	2.3	9.8	7.2	9.5	4.6
16										10.6			6.4	4.7	11.1	8.5	14.2	6.5
17										11.5			9.8	12.3	3.9	11.8	11.1	3.2
18										9.7			3.6	20.9	6.3	10.3	9.4	6.7
19										15			4.8	11.6	8.7	9.1	5.6	11.9
20										6.4			5.1	24.3	10.6	9.4	18.2	26.9
21										12.1			4.1	6.4	9.3	10.7	5.4	17.5
22										9.1			4.7	11.1	12.1	7.4	12.4	7.7
23										9.2			4.3	13.6	10.5	12.5	6.6	7.5
24										11.7			8.9	15.7	5.6	9.9	9.8	12
25										9.7			7.4	19.5	3.6	9	12.2	6.6
26										8.6			14.5	5.5	2.7	13.4	2.4	13.6
27										11			12.9	6.1	6.9	7.6	11.5	19.7
28										10.7			5	4.8	6.1	10	18.3	6.3
29										10.3			5.9	3.3	11.3	10.6	3.4	10.6
30										8.2			9.9	6.4	7.7	7.9	9.6	6.1
31										11.9			4.8	11.1	11.2	7.7	18.8	4.9
32										8.2			15.6	15.7	5.2	10.5	2.1	21.3
33										13.4			14.5	10.3	4.9	11.8	15.6	23.3
34										5.4			12.5	6.7	5.2	8.7	11.7	18.7
35										5.2			10.3	6.6	11.3	8.8	4.3	12.7
36										9.4			4.2	10.5	7.8	8.4	3.4	20.4
37										10.7			3.1	16.7	6.6	7.3	8.2	23.4
38										9.7			3.1	4.3	6.5	4.6	10.1	6.2
39										7.7			5.6	7.6	9	5.2	7.4	7.7
40										4.8			4.9	8.8	9.6	5.1	9.3	6.5
41										8			2.1	2.9	8.7	10.2	4.7	3
42										6.5			2.3	15.4	10.3	9.6	11.2	3.9
43										10.1			7.1	19.4	3.8	10.8	12	21.9
44										5.9			2.6	4.5	3.9	7.9	9.2	21.7

Zone	Z	one XIII		Z	one XIV			Zone XIV										
Transect	Tr	ansect B		Tr	ansect C		Tr	ansect D		Tr	ansect E		Т	ansect A		Т	ransect B	
Location	Green	Middle	Red	Green	Middle	Red												
45										6.3			4.7	3.3	3.2	8.3	6.9	5.3
46										4			3.6	3.2	3.3	4.4	7.8	6.6
47										9.3			14.7	5.5	2.8	5.6	11	5.9
48										8.6			12.3	6.1	6.5	4.9	7.6	4.6
49										9.5			13.6	7.4	3.7	7.7	7.3	22.1
50										7.6			8.8	8.3	5.7	8.2	4	7.2
51										8			8.8	8.8	6	8.9	9.4	6.9
52										9.5			4.5	8.3	4	8.5	11.1	7
53										11.5			3.3	9.9	4.2	7	6.2	5.1
54										8.4			2.6	12.3	9.9	5	5.5	19.6
55										9.9			2.1	2.6	4.3	6.5	8	5.9
56										7.8			3.4	3.3	6.4	9.6	7.1	4.2
57										10.5			5.7	6.6	7.3	7.6	4.8	11
58										10.6			7.6	7.2	6.2	6	6.9	15.1
59										12.7			8.1	5.3	6.6	6	6.1	7.8
60										9.9			8	5.2	5.8	6.2	8.1	10.7
61										10.1			13.8	4.3	6.8	5.3	10.7	19.7
62										7.1			15.4	6.7	5.5	4.5	12	20.4
63										9.6			7.3	7.5	5.7	5.8	9.3	7.7
64										14.2			6	8.1	10.9	4.9	21.9	4.7
65										12.2			5.4	6.9	8.4	7.4	28	6.5
66										10			6.3	4.1	6.2	4.7	11	11.9
67										9.8			3	9.8	4.9	5.1	7.1	22.7
68										7.5			1.3	10.7	4.4	8.9	11.7	20.6
69										10.8			1.9	10.2	2.1	10.3	8.4	20
70										6.8			2.4	25.6	4.7	11	10	16.5
71										6			3.5	4.1	5.7	3.7	10.2	9.2
72										4.7			7.1	6	8.6	5.1	8.3	9.5
73										6.6			5.4	7.3	6.2	11.6	6.1	6.4
74										14			7.2	3.5	5	5.2	9.1	21.1
75										15.7			6.8	7.7	3.9	11	7	5.4
76										10.7			10.6	7.7	3.9	8.6	3.5	13.2
77										9.9			12.7	3.5	4.3	10	8.1	20.9
78										11.6			4.7	6.7	10.1	11.6	4	19.9
79										8			5.4	6.2	7.7	10.5	8.8	8.4
80										11.2			3.4	8.2	3.3	7	11.5	11.8
81										10.1			2.9	12.6	5.8	10.9	12.2	12.8
82										13.2			5.6	1.3	2.7	7.8	9.4	11.4
83										10.9			3.7	8.9	4.9	10.1	7.7	18.3
84										12.6			11.3	4.4	3.1	7.6	9.3	7.4
85										10.5			12.2	16.7	4.6	7.4	4.7	4.7
86										11.6			8.8	10	6.5	9.7	3.1	12.9
87										15.5			7.8	13.4	4.5	7.7	5.8	5.9
88										8.6			12.8	4.4	10	10.1	5.6	4.4
89										8.1			6.8	3.8	5.2	6.5	10.6	6.5
90										8.4			6	5.2	5.2	7	12.8	7.1

Zone	Z	one XIII		Z	one XIV		2	Zone XIV										
Transect	Tr	ansect B		Tr	ansect C		Tr	ansect D		Tr	ansect E		TI	ansect A		Т	ransect B	
Location	Green	Middle	Red	Green	Middle	Red												
91										9.3			4.3	4.7	9.7	7.4	9.1	3.9
92										8.5			3.7	7.9	5.6	8	5.6	8.6
93										7.7			4.4	8.4	10.8	4.8	7.8	10
94										9.1			12.9	8.4	12.1	7.1	2.2	18.4
95										5.7			14.7	7.6	4.8	8.5	15.4	3.4
96										4.9			16.1	3.2	7.6	6.1	12.6	6.5
97										9.9			12.3	4.7	7.7	2.9	13.5	4.3
98										10			7.7	8.8	9.3	2.5	5.9	5.2
99										11.7			11.5	21.4	5.6	10	3	5.6
100										12.3			11.6	5.9	7.7	6.8	6.7	5.2
101										5.6								
102										10.7								
103										12.9								
104										10.6								
105										6.6								
106										8.9								
107										8.8								
108										10.1								
109										7.6								
110										8								
111										6.8								
112										6.9								
113										8.2								
114										4.2								
115										4.3								
116										5.9								
117										10.7								
118										5.2								
119										4.5								
120										10.6								
121										7.7								
122										9.1								
123										5.6								
124										10.1								
125										8.3								
126										8.9								
127										6.1								
128										8.6								
129										6.5								
130										9.8								
131										14.2								
132										9.3								
133										6.9								
134										10.5								
135										6.8								
136										10.2								

Table A6-3a. Seneca River Dreissenid Mussel Survey Fall 2007 - Zebra Mussel Raw Length (mm) Data

Zone	Zone XIII			Z	Zone XIII		Z	one XIII		Z	one XIII		Z	Cone XIV			Zone XIV	
Transect	Tr	ansect B		TI	ransect C		Tr	ansect D		Tr	ansect E		TI	ransect A		Т	ransect E	3
Location	Green	Middle	Red	Green	Middle	Red	Green	Middle	Red	Green	Middle	Red	Green	Middle	Red	Green	Middle	Red
137										9.7								
138										9.6								
139										7.4								
140										9.3								
141										12								
142										4.2								
143										5.2								
144										10.1								
145										6.7								
146										5.6								
147										4.1								
148										3.5								
149										6								
150										8.9								

Zone	Zone III Zone III				Zone III			Zone X			Zone X			Zone X		Z	Zone XIII				
Transect	T	ransect A		T	ransect B		Tr	ansect C		Tr	ansect A		Т	ransect B		T	ransect C		T	ransect A	
Location	Green	Middle	Red	Green	Middle	Red	Green	Middle	Red	Green	Middle	Red	Green	Middle	Red	Green	Middle	Red	Green	Middle	Red
Median Length	0	0	0	0	7	0	0	0	0	0	0	0	0	0	14	0	0	0	17	0	16
Mean Length	0.0	0.0	0.0	0.0	7.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	13.6	0.0	0.0	0.0	17.0	0.0	16.7
1	0	0	0	0	16.5	0	0	0	0	0.0	0	0	0	0	13.6	0	0	0	17	0	30.7
2					9.5																13.5
3					6.5																18.1
4					5																18.4
5					0.8																15.8
6																					16.7
7																					14.7
8																					21.1
9																					17.7
10																					15.6
11																					17.2
12																					16.1
13																					13.6
14																					14.1
15																					14.8
16																					9.1
17																					
18																					
19																					
20																					
21																					
22																					
23																					
24																					
25																					
26																					
27																					
28																					
29																					
30					Ī													1			
31					1	I												1			
32					1	I												1			
33						İ															<u> </u>
34					i	Ì															

Zone	Zone XIII			Z	one XIII		Z	one XIII		Z	one XIII		Z	Cone XIV			Zone XIV	
Transect	T	ansect B		Tr	ansect C		Tr	ansect D		Tr	ansect E		Tı	ransect A		Т	ransect B	\$
Location	Green	Middle	Red	Green	Middle	Red	Green	Middle	Red	Green	Middle	Red	Green	Middle	Red	Green	Middle	Red
Median Length	0	0	0	0	0	0	0	0	0	15	0	0	10	12	7	15	13	13
Mean Length	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	14.7	0.0	0.0	9.9	11.7	7.4	14.0	12.4	13.5
1	0	0	0	0	0	0	0	0	0	14.8	0	0	16.7	15.1	7.4	15.5	10.1	20.8
2										18.1			13.6	13.4		16.2	9.4	18.8
3										13.8			13.5	13.1		13.6	14.6	14.2
4										17.3			14.3	13.4		14.8	16.7	14.1
5										14.6			17.2	10.6		15.1	12.8	11.2
6										16.9			12.2	8.6		10	11.7	18.4
7										13.7			13.9	13.5		15.2	12.4	13.8
8										19.3			12.6	14.3		14.7	14.1	13.1
9										19.4			8.7	15.2		16.9	14.3	12.1
10										18.4			7.7	13.3		16.1	12.8	11.6
11										14			7.9	12.2		11.4	13.4	14.4
12										16.2			9.8	11.2		17.5	12.8	13
13										14.7			7.1	14.9		13.4	12.3	12.8
14										17.4			5.6	12.9		12.7	13.5	9.3
15										20.6			4.2	13.2		14.5	8.5	9.9
16										14.8			3.1	14.1		10.4	13.6	10.7
17										14.5			2.4	14.1		15.9	9.4	10.6
18										14.5			16.6	12.9		12.6	12.1	
19										11.1			13.6	11.4		7.3	10.9	
20										17.9			2.6	6.2		13.5	6.3	
21										13.5			3.8	11.1		14.8	15.6	
22										13.9				13.4		15	16	
23										12.6				12.1			14.2	
24										11.5				14.6			10.5	
25										16.7				12				
26										9.3				11.3				
27										7.7				11.7				
28										3.9				9.5				
29														10.6				
30														9.9				
31														10.9				
32														3.4				
33														7.7				
34														6.7				

Zone	Transect	Transect Coordinates	Water Depth	Water Depth	Number of	Weight Per	Weight Per	Total Weight	Mean Weight	Mean Weight	Median	Mean Mussel	Total Number	Estimated Total	Mean Estimated	Mean Estimated
			at Sample	Section/Range	Mussels Per	Sub-Sample	Entire	(a/m ²)	(g/m ²) per	(a/m ²) per	Mussel	Length (mm)	of Mussels	Number of	Number of Mussels	Number of Mussels
			Collection (m)	(m)	Sub-Sample	(g)	Sample (g)	,	Transect	Zone	Length (mm)		Per Sample	Mussels per m ²	per m ² by Transect	per m ² by Zone
			0.9	0-1.5	100	11.9	29.3	1296.46	470.5	1150.4	5	7.4	246.2	10894.6	5578	14559 (229)
Α	1	N 43 06.238, W 76 13.193	2.5	1.5-3.0	17	0.3	0.3	13.27			4	4.2	17.0	752.2		
			4.0	3.0-4.5	100	2.0	2.3	101.77			5	5.1	115.0	5088.5		
			1.2	0-1.5	100	6.6	45.2	2000.00	1830.4		7 (13)	7.8 (13.3)	554 (9)	24513.3 (398.2)	23540 (457)	
Α	2	N 43 06.630, W 76 13.732	2.4	1.5-3.0	100	15.1	77.5	3429.20			12 (14)	12.3 (13.7)	936 (18)	41415.9 (796.5)		
			3.9	3.0-4.5	100	1.4	1.4	61.95			4 (4)	4.1 (4.0)	106 (4)	4690.3 (177.0)		
			1.0	0-1.5	100	6.0	20.2	893.81	337.8	337.8	6	6.4	336.7	14896.8	12148	12148
В	1	N 43 06.884, W 76 14.236	2.4	1.5-3.0	100	0.5	2.4	106.19			3	3.1	480.0	21238.9		
			4.1	3.0-4.5	7	0.3	0.3	13.27			4	5.6	7.0	309.7		
			0.8	0-1.5	13	0.6	0.6	26.55	3215.3	1747.8	7	7.1	13.0	575.2	19366 (2316	12396 (2522)
С	1	N 43 06.366, W 76 14.539	2.8	1.5-3.0	100	12.8	93.0	4115.04			9 (16	9.5 (16.3)	581 (48)	25708.0 (2123.9)		
			4.0	3.0-4.5	100	12.6	124.4	5504.42			9 (16)	9.4 (15.5)	732 (109)	32389.4 (4823.0)		
			0.7	0-1.5	100	8.1	13.6	601.77	280.2		7	7.1	167.9	7429.3	5426 (206	
С	2	N 43 05.548, W 76 13.909	2.0	1.5-3.0	100	3.1	4.0	176.99			5 (5)	5.1 (5.2)	143 (11)	6327.4 (486.7)		
			4.3	3.0-4.5	61	1.4	1.4	61.95			4 (7)	4.6 (6.7)	57 (3)	2522.1 (132.7)		
			0.5	0-1.5	37	8.1	8.1	358.41	318.6	1442.5	9	9.9	37.0	1637.2	26032 (89)	18791 (281)
D	1	N 43 05.256, W 76 13.049	2.3	1.5-3.0	NA	NA	NA	NA			7 (6)	6.8 (9.1)	153 (6)	6769.9 (265.5)		
			3.8	3.0-4.5	100	0.4	6.3	278.76			2	2.6	1575.0	69690.3		
			0.6	0-1.5	100	51.5	87.5	3871.68	2191.7		15 (16	16.3 (15.2)	185 (6)	8185.8 (265.5)	11549 (472)	
D	2	N 43 04.897, W 76 12.618	2.1	1.5-3.0	41	0.8	0.8	35.40			5	5.3	41.0	1814.2		
			4.0	3.0-4.5	100	10.9	60.3	2668.14			14 (6)	14.6 (6.2)	557 (26)	24646.0 (1150.4)		
			0.9	0-1.5	100	4.5	20.8	920.35	348.1	348.1	5	6.1	462.2	20452.3	7806	7806
E	1	N 43 04.319, W 76 12.292	2.3	1.5-3.0	14	1.3	1.3	57.52			4	3.8	14.0	619.5		
			4.2	3.0-4.5	53	1.5	1.5	66.37			5	5.7	53.0	2345.1		
_			1.0	0-1.5	100	17.8	27.2	1203.54	2585.5	2585.5	9	9.6	152.8	6761.5	13211	13211
F	1	N 43 04.118, W 76 11.736	2.3	1.5-3.0	100	23.5	142.0	6283.19			8	9.6	604.3	26737.0		
			3.8	3.0-4.5	100	4.4	6.1	269.91			7	6.6	138.6	6134.4		
~			1.3	0-1.5	8	0.1	0.1	4.42	64.9	64.9	4	4.0	8.0	354.0	2383	2383
G	1	N 43 04.046, W 76 10.903	2.0	1.5-3.0	100	2.8	4.3	190.27			4	3.8	153.6	6795.2		
			3.5	3.0-4.5	0	0.0	0.0	0.00			(0.0	0.0	0.0		
			1.4	0-1.5	74	11.5	11.5	508.85	551.6	457.2	6	7.3	74.0	3274.3	3127	2463
н	1	N 43 04.862, W 76 11.115	1.7	1.5-3.0	45	7.5	7.5	331.86			10	10.0	45.0	1991.2		
			3.8	3.0-4.5	93	18.4	18.4	814.16	000.0		10	10.4	93.0	4115.0		-
1	2	N 40 OF 600 W 76 40 070	1.1	0-1.5	83	16.4	16.4	/25.66	362.8		12	10.4	83.0	3672.6	1799	
н	2	IN 43 US.603, W 76 12.076	2.1	1.5-3.0	13	3.7	3.7	163.72				6.8	13.0	5/5.2		
			4.1	3.0-4.5	26	4.5	4.5	199.12				8.2	26.0	1150.4		

Note: Petit Ponar Dredge Sample Area is 226 cm².

Results expressed as Zebra mussel (Quaga mussel) when Quagga mussels are present. Samples were preserved before a recount for quagga mussels. Therefore, the weight represents the combined Dreissenid, Zebra and Quagga Mussel, weight.

Number of Mussels per sample are actual counts when quagga mussels were present.

Zone	Water Depth Section/Range	Mean Esti	mated Total	Number of M Depth	ussels per m ² by	м	ean Estima	ted Numbe	r of Mussel	s per m ² by Zone
	(m)	2002	2005	2006	2007		2002 (0-4.5 M)	2005 (0-4.5 M)	2006 (0-4.5 M)	2007 (0-4.5 M)
	0 -1.5	2036.2	66.4	774.4	17704.0 (199.1)					
Α	1.5 - 3.0	3465.5	3385.0	6216.4	21084.2 (398.3)		1834	1187	5465	14559 (229)
	3.0 - 4.5	0.0	110.6	9403.5	4889.4 (88.5)					
	0 -1.5	0.0	0.0	13877.7	14896.8					
В	1.5 - 3.0	0.0	221.2	531.0	21238.9		0	133	4803	12148
	3.0 - 4.5	0.0	177.0	0.0	309.7					
	0 -1.5	754.7	44.8	3340.7	4002.3					
С	1.5 - 3.0	788.6	2013.3	2522.2	16017.7 (1305.3)		514	1040	1991	12396 (2522)
	3.0 - 4.5	0.0	951.3	110.6	17455.8 (2477.9)					
	0 -1.5	3941.9	1017.7	199.1	4911.5 (132.8)					
D	1.5 - 3.0	124.8	774.4	221.2	4292.1 (132.8)		1356	907	774	18791 (281)
	3.0 - 4.5	0.0	929.2	1902.7	47168.2 (575.2)					
	0 -1.5	225.0	575.2	2522.1	20452.3					
E	1.5 - 3.0	4154.5	442.5	619.5	619.5		1460	752	1549	7806
	3.0 - 4.5	0.0	1238.9	1504.4	2345.1					
	0 -1.5	3069.8	929.2	88.5	6761.5					
F	1.5 - 3.0	351.7	8274.3	88.5	26737		1141	3319	59	13211
	3.0 - 4.5	0.0	752.2	0.0	6134.4					
	0 -1.5	0.0	0.0	0.0	354					
G	1.5 - 3.0	0.0	44.2	0.0	6795.2		0	15	0	2383
	3.0 - 4.5	0.0	0.0	0.0	0					
	0 -1.5	2650.6	22.1	2500.0	3473.5					
н	1.5 - 3.0	655.9	2256.7	1371.7	1283.2		1102	789	1667	2463
	3.0 - 4.5	0.0	88.5	1128.3	2632.7					
Total 0	-1.5 M	12678	2655	23302	72556 (332)					
Total 1	.5 to 3.0 M	9541	17411	11570	98068 (1836)					
Total 3	.0 to 4.5 M	0	4248	14049	80935 (3142)					
Total 0	to 3.0 M	22219	20067	34873	170624 (2168)					
Total 0	to 4.5 M	22219	24314	48922	251559 (5310)	Sum	7406	8142	16307	83757 (3032)

Table A6.5. Onondaga Lake Dreissenid Mussel Survey - Fall 2002, Fall 2005, Fall 2006 and Fall 2007 Comparison of Density (#/m²)

Note: Results expressed as Zebra mussel (Quagga mussel) when Quagga mussels are present.

The 2002 data utilized scuba divers for sample collection, and the 2005, 2006 and 2007 data utilized the petit ponar dredge for sample collection.

Zone		Zone A			Zone A			Zone B			Zone C			Zone C			Zone D			Zone D	
Transect	Т	ransect	1	Т	ransect	2	Т	ransect	1	Т	ransect	1	Т	ransect	2	Т	ransect	1	Т	ransect	2
Water Depth	0 - 1.5	1.5 - 3	3 - 4.5	0 - 1.5	1.5 - 3	3 - 4.5	0 - 1.5	1.5 - 3	3 - 4.5	0 - 1.5	1.5 - 3	3 - 4.5	0 - 1.5	1.5 - 3	3 - 4.5	0 - 1.5	1.5 - 3	3 - 4.5	0 - 1.5	1.5 - 3	3 - 4.5
Median Length	5	4	5	7	12	4	6	3	4	7	9	9	7	5	4	9	7	2	15	5	14
Mean Length	7.4	4.2	5.1	7.8	12.3	4.1	6.4	3.1	5.6	7.1	9.5	9.4	7.1	5.1	4.6	9.9	6.8	2.6	16.3	5.3	14.6
1	16	3.7	9.4	23.5	23.2	4.6	3.9	2.1	7.9	6.6	13.2	16.5	6.3	3.3	11.4	21.1	13.7	6.2	22.1	9.6	25.1
2	16	3.8	3.9	20.8	12.2	4.4	17.3	1.9	3.9	8.6	14.3	19.2	10.1	10.8	8.8	20.1	13	1.7	22.8	5.3	20.6
3	3.6	3.9	7.7	7.8	18.9	5.4	9.6	4.3	3.9	6.6	9.5	11	2.7	1	10.1	20	12.8	1	24.7	5	18.5
4	2.9	5.2	2.7	6.7	22.4	5.6	12.2	6.8	0.8	9.4	6.7	13.6	5.9	1.4	8.2	17.8	9.2	1.4	23	3.8	15.5
5	4.5	5.4	6.9	14.9	16.6	4.6	9.2	2.4	8.5	8.1	11.8	11.3	9	1.2	8.3	16.7	10.7	1.6	16.1	5.3	19.6
6	13.8	4	9.7	7.9	16.2	10.3	5.3	2.6	3.6	8.4	12.4	9.1	12.4	7.2	8.4	15.6	10.8	1.2	10.8	5.8	22.2
7	3.7	3.6	3.8	7.2	17.3	2.1	7.6	3.1	10.3	6.4	10.8	10.6	5.3	4	8.6	6.7	9.7	3.3	23.8	5.1	17.6
8	17.7	3.9	5	9.5	15.4	5.9	3.9	1.7		9.3	7.7	10.3	9.1	4.3	7.9	2.5	10.1	2	24.9	4.7	13.7
9	1.7	5.6	6.7	6.5	19.5	2.3	2.6	1.9		5.2	12.7	10.8	11.5	14.3	7.4	13.1	4.9	1.9	16.6	5.8	14.9
10	17.9	4.4	9.3	8.8	19.1	1.8	10.7	5.3		6.4	10.5	18.1	4.2	9.6	7.7	3.8	6.4	2.6	13.6	4.9	14.1
11	2.2	5.1	6	5.4	19.2	9.4	6.4	6.6		6.6	6.3	10.3	6.9	1.1	7.8	12.5	5.2	6.3	23.2	8.5	15.9
12	12.8	2.1	6.8	6.7	19.3	5.1	7.7	6.6		5.9	7	7.7	3.7	5.9	8.2	12.2	7.6	1	26.3	4.9	16.5
13	2.3	3.4	7.9	13.3	10.5	2.2	12.6	3.7		4.7	9.8	9.6	6	1.6	7.4	11.1	10.9	1.4	16.8	5.8	19.9
14	2.9	6.7	6.2	11.3	17.9	1.7	2.1	2.6			12.2	8.7	7.2	6	7.1	8.3	8	1.7	28	6.3	20.3
15	17	4.5	7.4	11	15.6	2.9	2.1	1.7			6.4	19	7.4	8.8	7.2	5.1	8.7	2	27.4	7.6	17
16	6.7	2.5	7.6	9	6.2	3.5	12	2.8			11	8.6	6.8	3	6.2	11.2	11.2	1.2	24.2	5.9	16.3
17	11.6	4.4	7.9	11.2	18.4	3.4	7.2	1.6			9.8	17.4	5.2	4.4	5.9	9.5	9.7	1	26.1	2	16.4
18	4.6		9.6	6.3	18.2	8.8	5.7	2.7			8.3	5.1	6	2.4	6.2	10.6	10.1	3.2	22.8	2.1	18.4
19	5.2		6.6	8.6	16.3	5.1	3.8	3.2			7.6	9.9	6.5	8	6.5	6.6	4.4	1.6	17.2	7	14.8
20	3.5		5.5	12.6	11.6	5.7	5.4	4.2			9.4	6.7	3.6	6.5	5.7	9.1	6.1	1.6	4.5	5.5	14.8
21	10.1		3.6	10	8	2.9	2.9	1.9			10	8.5	4.8	10.1	5.4	6.5	8.7	1	14	4	17.3
22	5.5		7.1	7.4	14.7	4.4	1.2	2			8.6	4.5	5.2	0.8	4.7	8.3	11.3	3.1	12.5	7.4	17
23	3.3		7.5	3.6	16.9	4	11.9	2.5			10.9	11.4	8	4.7	4.9	9.3	14.2	2.6	13.4	5.2	18.4
24	9.5		7.5	0	4.7	4.0	4.7	2.7			0.C	13.7	4.9	1.0	4.1	0.3	10.5	2.1	27.0	5.9	17.4
25	0.7		2.4	7	0.Z	1.0	0.7	1.0			11.7	1.1	7.1	4.9	4.0	3.5	2.3	4.0	23.3	0.2	14.0
20	2.1		2.2	67	13.0	1.0	2.0	4.2			4.9	10.0	7.3	24	J.1 / 8	5.8	10.3	1.3	14.4	4.1	16.2
21	12.0		4.0	5.4	16.8	2.3	2.2	2.0			7.5		5.0	2.4	4.0	5.0	9.5	4	14.0	4.5	10.7
20	2.3		6.2	0.7	10.0	2.0	7.9	2.0			7.1	0.2	7.2	6.3	5.0 1	5.9	9.0	2	10.6	36	15.2
30	31		1.7	6.7	14.9	3.5	4.3	2.7			8.4	10.1	8.4	9.5	31	1.9	10	93	17.8	3.6	17.6
31	16.8		2.7	5.4	10.5	2.1	3.8	3.1			16.7	6	5.7	7.7	3.9	11.7	.0	2.6	13.7	5.4	14.1
32	2		4.4	7.3	12.3	5.7	4.3	3.9			11	10.6	15.7	2.3	3.1	7.6	3.2	2.3	11.8	9.2	16
33	12.8		2.7	15.9	3.2	4.3	7.8	1.6			12.9	10	5.3	6.4	3	6	9.3	1.9	14.6	4.3	16.1
34	4.6		2.5	8.1	2.4	1.9	3	1.3			5.3	6.1	7.9	2.4	3.2	14.5	7.2	1.6	16.4	4.9	14.4
35	7.4		5.1	5.3	24.4	2.7	5.4	2.1			8.6	6.8	9.1	5.6	2.6	8.7	9.2	2	14.5	6.1	15.7
36	2.6		4.5	6.6	13.9	1.6	1.8	2.9			8.7	9.1	4.7	5.2	2.7	6.4	9.5	1	16.1	6.2	13.3
37	2.5		5.1	12.6	10.7	2.2	3.4	3.3			7.9	13.5	16.4	5.9	2.1	9.3	6.5	1.6	13.2	4	14.1
38	1.8		6.2	6.4	12.9	4.6	3	2.1			10.5	10.2	7.1	11.8	2.1		11.6	2.7	21.6	3.3	14.7
39	4.4		8.9	8.2	8.9	11.2	2.9	2.6			8.8	9.1	6.2	2.7	2.3		5.3	2.8	28.4	3.9	16.5
40	6.1		4.8	5.4	18.3	7.1	2.3	3.8			7.4	9.2	4.5	1.3	2.2		8.8	4.2	26.9	3.6	14.7
41	2.4		6.7	7.1	5.8	2.6	2.5	3			8	8.3	6.4	13.1	2.6		12.3	1.7	19.2	5.9	16.9
42	11		3.4	6	8.6	5.8	3.4	1.9			9.3	9.6	9.4	2.4	2.3		11.4	1.9	14		15

Zone		Zone A			Zone A			Zone B			Zone C			Zone C			Zone D			Zone D	
Transect	Т	ransect	1	Т	ransect	2	Т	ransect	1	Т	ransect	1	Т	ransect	2	Т	ransect	1	Т	ransect	2
Water Depth	0 - 1.5	1.5 - 3	3 - 4.5	0 - 1.5	1.5 - 3	3 - 4.5	0 - 1.5	1.5 - 3	3 - 4.5	0 - 1.5	1.5 - 3	3 - 4.5	0 - 1.5	1.5 - 3	3 - 4.5	0 - 1.5	1.5 - 3	3 - 4.5	0 - 1.5	1.5 - 3	3 - 4.5
43	12.7		3.8	6.5	8.6	3.6	2.9	1.6			11	5.6	7.2	7.1	2.4		4.8	4.7	22.8		15.2
44	3.1		3.7	6.1	14.4	6.5	2	1.5			8.3	10.1	8.4	7.6	2.5		3.9	2.3	13.4		14.4
45	11.8		5	11	18.1	3.2	5.6	1.8			6.3	13.5	11.9	12.9	2.6		4.1	2	15.3		14.9
46	18.9		4.7	12.8	16.2	3.5	10.1	1.5			14.1	16.4	3.1	7	1.8		8.3	1.5	7.4		15.1
47	2		4.4	6.7	9.3	6.8	10.8	5.2			9.9	14.1	6.7	5.8	2.4		3.2	2	15.6		16.4
48	15.7		4.6	5.8	17	5	7.2	5.6			7.6	10.6	4.2	13.4	2.6		2.9	1.3	20.5		15.1
49	2.6		3.9	8.1	6.7	1.8	9.8	5.9			7.5	10.3	7.5	12.9	1.9		4.6	3.2	13.5		16.3
50	14.1		8	9.3	13.3	1.8	3.6	6.7			8.6	11.6	3.4	2.6	1.6		2.2	1.2	14.1		14.4
51	6.9		5.4	5.1	17.2	5.3	14.6	2.3			3.2	7.2	6.3	0.8	2.3		11.1	2.4	11.3		12.7
52	5.5		7	9.1	12.5	6.9	4.7	2.9			7	7.6	1.8	11.5	1.9		8.5	1.8	8.7		13.4
53	3.2		3.2	7	17	7.4	9.1	2.6			8.6	9.9	16.9	1.3	2.4		11.3	2	23.9		14.3
54	13		2.7	8.7	7.7	2.7	2.1	2.9			8.9	12.9	4.7	1.2	1.8		5.6	4.3	18.8		15
55	2.2		5.3	9.6	11.5	3.5	4.6	2.9			8.6	8.8	1.8	1.1	1.7		2.9	1.9	21.3		13.9
56	1.9		3.6	13.8	14.7	2.6	9	2.7			10.3	13.3	4.9	1.8	1.8		3.3	1.6	13.8		15.8
57	15.7		3.5	8.5	10.9	1.5	4.2	3.3			7	11.1	6.4	1.4	1.4		2.8	2.3	18		11.4
58	13.7		4	10.7	13.3	2.7	5.9	2.2			6.5	9.5	2.4	0.8			2.2	2.7	1/		15.4
59	9		5.1	4.9	6.3	6	8.7	4.7			7.4	7.4	12.9	0.7			5.5	8.2	14.6		14.6
60	7.9		4.5	9.3	13.1	4.4	5.8	3.3			10	7.3	10.5	0.6			3.2	2	16.7		13.8
61	5.9		5.3	6.7	5.6	2.5	9.9	3.3			12.8	8.2	13.5	5.3			6.6	1	13.7		12.7
62	12		3.8	7.6	3.0	3.0	4.7	2.8			9.4	74	13	2.2			2.9	3.0	18.1		14.4
63	4.8		0.7	7.1	14.7	2.7	1.9	2.0			10.6	7.1	1.2	9.6			0.4	1.9	15.9		12.5
65	12.1		51	0.4	10.0	3.2	5.0	0.4			7.4	9.5	3.0	1.4			2.9	1.2	12.9		12.9
66	13.1		0.1 // 3	9.1	9.9	3.1	2.0	4			1.4	1.5	2.2	1.3			0.7	3.9	13.3		13.0
67	2.5		4.5	7.1	33	0	12.5	2.1			10.5	10 8	10.1	3.0			2.6	1.8	10.5		12.0
68	2.5		6.4	8.2	43	2.0	8.4	2.0			5.5	9.7	11.5	6.4			2.0	2.4	15.5		13 3
69	16.5		3.7	6.2	11	5.1	4.5	1.9			7.5	9.9	4.2	27			4.6	17	15.6		15.6
70	6.7		4.2	3.9	11.9	5.8	2.1	1.9			11.2	11	2.7	6.3			6.6	2	10.0		15
71	1.9		3.9	4.3	10.3	4.1	2.1	3.7			13.8	7.8	2.5	4.8			5.3	1	13.9		14.3
72	7.1		6.1	6.9	7.6	1.5	5.9	5			11	6.4	11.4	3.8			8.8	2.4	11.4		14
73	8.1		4.9	4.4	9	1.5	8.5	1.8			10	4.5	4.1	6.5			9	6.2	12.4		14.4
74	6.5		4.8	7.5	2.6	4.9	5.7	2.6			12.2	13.5	5.7	1.8			7.2	2.2	24.4		13.4
75	3.3		4.6	7.3	14	6.5	6	1.9			12.9	7.8	13.1	3.3			6.2	3.1	18.2		12.1
76	3.6		6.3	4.6	4	3.7	11.2	2			10.2	5.1	5.2	3.7			6.1	4.8	17.9		12.8
77	14.2		6.6	5.1	17.5	5.2	8.9	2.8			12.5	9.1	7.8	6.4			8	4.2	15.1		12.1
78	4.2		7.3	7.1	2.4	3.2	9.7	2.5			21	16.1	7.8	3.1			6.7	2.1	15.9		13.8
79	6.4		4.7	4.8	11.1	5.7	7.9	2.2			10.7	8.5	7.1	4.2			1.6	5.2	11.3		12.9
80	6.6		2.9	7.1	6.4	7	10.3	3.1			9.6	5.7	7.6	1.6			2	2.7	15.3		14.4
81	4		1.5	5.2	10.5	4.6	3.2	3.2			10.2	7	8.7	2.2			3	3.4	15.1		10.9
82	3.2		2.7	4.4	8.6	4.4	9.8	2.1			14.2	7.3	9.6	8.4			1.6	2.4	11.9		12.3
83	1.6		2.3	4.6	8.8	4.3	8.8	3.2			6.9	8.4	5.8	8.5			1.7	2.6	14.2		11
84	2.6		6	8.3	12.5	2.2	4.4	4.5			5.8	5.5	6.4	6			1.5	5.5	15.5		13.4
85	13.7		5.3	9.3	5.1	2.5	1.8	2.7			9.4	10.6	8.3	10.1			3.7	3.3	13.6		11.2
86	10.7		7.5	5.8	5.9	2.5	10	4.3			9.2	8.9	4.7	1.6			5.1	3.4	13.7		11

Zone		Zone A			Zone A			Zone B			Zone C			Zone C			Zone D			Zone D	
Transect	Т	ransect	1	Т	ransect	2	Т	ransect	1	Т	ransect	1	Т	ransect	2	Т	ransect	1	Т	ransect	2
Water Depth	0 - 1.5	1.5 - 3	3 - 4.5	0 - 1.5	1.5 - 3	3 - 4.5	0 - 1.5	1.5 - 3	3 - 4.5	0 - 1.5	1.5 - 3	3 - 4.5	0 - 1.5	1.5 - 3	3 - 4.5	0 - 1.5	1.5 - 3	3 - 4.5	0 - 1.5	1.5 - 3	3 - 4.5
87	3.8		3.8	4.3	5	13	5.4	2.7			11.2	8.4	10.9	9.2			5.5	3	12.9		13.6
88	3.7		2.3	5	15.1	2.4	10.7	3.5			10.3	6.7	9.6	5.2			6.4	2	14.4		15
89	5.2		4.6	4.7	15.1	3.3	5.7	3.1			9.1	7.6	5.1	2.4			6.1	1.5	12.7		12.9
90	12.2		4.8	9.3	8.5	2.6	7.8	4.2			13.4	4.4	11.4	4.2			7.6	3.8	13.2		13.6
91	2.5		5.6	4.9	10	2.6	9.3	2			12.2	5.3	7.6	7.2			3.3	5.5	11.1		13.4
92	4.6		4.2	8.8	9.2	2.8	5.7	3			7.4	5.8	2.7	1.7			5.2	1.4	14.2		11.1
93	1.8		6.5	7.3	8.3	5.3	2.1	2.2			3.7	4.3	5.7	1.6			6.6	1.1	11		11.5
94	4.4		3.2	5.1	19.5	4.8	7.3	2.7			6.4	9.2	8.4	1.2			4.5	1.4	11.9		10.1
95	15.6		5.4	4.9	18.3	2.3	4.1	2.1			7.8	6.5	9.8	5.5			4.4	6.3	10.8		12.9
96	10.2		6.6	6.8	9.5	3.6	2.6	2.2			4.8	6.4	2.4	7.7			6.8	2.5	11.1		8.7
97	15.6		3.8	5.7	10.3	2	8.1	5.5			4	9.1	12.6	9.7			5.8	1.4	11.2		7.8
98	3.5		3	4.5	9.1	2.5	7.2	4.2			13.6	7.9	9.3	5.3			2.6	2.7	13.9		11.4
99	2.6		3.1	5.5	16.4	5.4	9.7	4			12.5	7.2	3.2	10.9			3.8	1.6	12.2		9
100	11.8		3.5	5.4	21.2	3.9	5.6	2.4			11.4	9.5	2.6	4.9			2.4	2	11.7		11.8

Zone	Zone E			Zone F			Zone G			Zone H			Zone H		
Transect	Т	ransect	1	Т	ransect	1	Т	ransect	1	Т	ransect	1	Т	ransect	2
Water Depth	0 - 1.5	1.5 - 3	3 - 4.5	0 - 1.5	1.5 - 3	3 - 4.5	0 - 1.5	1.5 - 3	3 - 4.5	0 - 1.5	1.5 - 3	3 - 4.5	0 - 1.5	1.5 - 3	3 - 4.5
Median Length	5	4	5	9	8	7	4	4	0	6	10	10	12	7	7
Mean Length	6.1	3.8	5.7	9.6	9.6	6.6	4.0	3.8	0.0	7.3	10.0	10.4	10.4	6.8	8.2
1	12	5.1	9.9	22.3	6.3	7.8	4.6	3.7	0	7.8	7.5	19.2	14.1	13.8	13.4
2	3.2	4.3	8.6	22.7	13.4	6.1	4.5	4		23.1	8.4	18.2	18.7	8.8	12.9
3	8.8	8.7	6.1	18.1	14.7	5.9	4.2	5.2		17.4	12.1	13.1	13.2	4.8	13.3
4	10.6	3.1	4.5	12.2	5.5	6.5	5.6	5.6		21.9	9	18.5	14.1	6.6	10.4
5	8.8	1.1	7.5	15.7	10.9	5.5	3.1	4.2		22.9	8.9	10.3	17.3	5	13.2
6	3.9	6.6	4.9	15.8	5.7	2.7	3.2	4.3		21.9	8.3	14.2	12	6.6	5.8
7	11	5.4	9.4	17.1	18	5.5	4.4	4.5		6.5	6.2	10.5	14.8	5.2	13.1
8	4.1	3.2	9.7	13.4	1.7	8.2	2.2	4.4		11.3	10.9	21.3	12.4	5.9	12
9	3.3	1.6	4.6	16.4	1.5	9.5		3.4		5.5	8.8	12.9	12.3	7.9	10.5
10	8.1	2.4	7.4	10.5	12.8	10.8		3.3		6.7	13.4	9.8	12.3	7.1	5.8
11	10.1	1	7.8	13.5	7.6	5.2		3.1		6.4	7.4	13.6	12.4	6.6	8.2
12	6	4.7	7.9	9.7	10.2	3.8		4.1		6.1	13.6	11.7	16.9	6	/
13	7.3	2.5	1.1	10.4	6.8	4.2		2.9		6.7	13.2	17.6	13.1	4.6	6.2
14	3.9	4	8.1	9.8	0.0	8.2		3.5		3.3	3.5	8.3	10.7		5.9
15	3.2		7.9	0.7	21.5	1.0		3.4		19.7	13.5	13.9	13.2		7.5
10	0.0		5.2	13.9	24.1	10.2		3.0		0.5	12.4	12.0	14.0		5.2
17	4.2		5.Z	0.2	24.1 10.4	0.1		3.4		4.4 2.8	12.7	10.7	12.7		5.5
10	2.0		0.3	7.0	19.4	6.2		4.3		2.0	12.7	17.2	13		56
20	3.0		4.2	7.3	28	5.6		4.0		4.3	11.3	14.7	14 1		6.2
20	11			7.8	5.9	43		3.6			11.1	85	12.1		6.4
22	72		6	12.9	6.9	4.0 7		4.5		4.6	61	10.6	12.1		6
23	5.8		7.5	11.6	2.8	7.8		3.4		5.2	12.9	9.1	8.8		4.2
24	8.3		7.7	10.3	4.5	5.5		3.4		4.8	13.4	9.4	15.4		4.9
25	8.1		6.5	9.2	6.1	5.9		3.5		3.9	8.3	11.8	11.6		7
26	3		6.2	11.7	5.1	5.8		3.8		7.6	10.1	7.3	13.1		5.9
27	5.3		7.3	12.7	11.1	6.3		3.3		6.7	17.3	10.9	14.2		
28	14.2		7.5	9.7	17.7	6.7		3.1		13.5	8.9	9.5	15.6		
29	2.1		5.7	9.6	7.1	4.9		3.1		8.9	7.4	10.2	12.6		
30	5.4		4.4	12.7	8.6	3.8		3.5		6.6	10.5	10.1	12.6		
31	3.1		4.6	5.2	6.7	12		3.6		6.1	12.5	8.5	13.6		
32	6.2		5.2	10.8	7.5	6.7		3.5		6.2	9.3	8.6	12.3		
33	2		6	5.6	5.5	6.5		3.6		6.4	9.6	12.1	9.8		
34	4.3		5	11.7	5.2	5.3		3.2		8	5.4	6	12.5		
35	3.7		6.7	11.1	5.3	5.8		3.6		7.9	9.2	8.2	13.5		
36	2.3		5.2	7.8	4.7	11.4		3.6		3.9	10.4	10.7	11.6		
37	3.1		3.5	4.3	6.8	6.9		3.8		6.2	10.7	6.9	11.5		
38	4.1		3.3	5.9	17.7	5.8		3.8		5.8	12.3	9.4	10.6		
39	9.5		4.6	10.2	18.9	2.9		3.1		4.2	9.7	6.9	15.8		
40	7.4		6.3	11.7	17.6	8.5		2.4		6.5	9.7	14.4	13.5		
41	4.5		6	3.6	2.5	4.5		2.5		7.7	10.9	10.3	11.4		
42	5.2		4.2	9	6.3	6.3		3.3		6.6	7.9	9	15		

Zone	Zone E				Zone F			Zone G			Zone H			Zone H	
Transect	Т	ransect	1	Т	ransect	2									
Water Depth	0 - 1.5	1.5 - 3	3 - 4.5	0 - 1.5	1.5 - 3	3 - 4.5	0 - 1.5	1.5 - 3	3 - 4.5	0 - 1.5	1.5 - 3	3 - 4.5	0 - 1.5	1.5 - 3	3 - 4.5
43	4.5		4.3	5.6	10.5	5.2		5.4		7.6	7.9	9.6	10.7		
44	6.3		4.5	15.5	4.1	12.7		3.1		6.8	8.2	11	12.1		
45	3.5		4.1	7.1	12.7	9.2		2.5		5.9	7.6	10.3	13.3		
46	6.7		3.7	16	5.9	5.8		2.7		7.6		10.3	10.1		
47	5.2		3.1	9	5.4	9.7		3		8.5		8.3	12		
48	6.8		2.5	8.3	6.7	7.4		3		6.9		9.2	11.6		
49	8.9		3.8	7.2	8.3	3.4		3.1		3.8		13.2	10.5		
50	9.4		3.7	10.7	7.3	6.5		2.6		10.2		8.1	8.6		
51	3.7		3.1	7.5	17.8	5.2		3.6		3.9		13.5	10.9		
52	3.6		3	15.8	9.2	3.5		2.5		3.4		13.1	8.8		
53	2.1		3.3	12.8	20.7	3.1		4.5		6.7		10	7		
54	11.7			9.1	9.2	9.5		11.6		4.7		7.9	8.5		
55	4.8			7.1	20.2	8.7		9.1		7.1		6.9	9.1		
56	2.6			7.9	8.5	5.8		5.9		4.5		7.1	8.5		
57	7.3			6.9	10.1	9		5.8		4.3		7.4	9.1		
58	6.7			6.7	5.9	2		8.4		8.2		6.9	7.9		
59	13.3			6.6	16.5	8.7		5.7		10.2		6.7	10.2		
60	2.1			6.8	22.6	7.9		4.8		5		12.1	8.4		
61	12.8			10	12.5	4.7		4.4		9.3		8.3	6.9		
62	6.2			10	5.3	3.8		4.5		2.6		9	6.1		
63	7.8			4.5	5.5	7.3		4.5		3.2		9.1	6.2		
64	3.7			5	7.8	8.6		4.8		5.6		8.1	7.6		
65	3.4			7.2	18.2	7.3		4.7		4.4		7.9	7.2		
66	4.6			3.6	8.4	9.4		4.2		6.7		12.1	7		
67	3.7			14.5	10.3	3.8		3.9		7.5		10.7	5.2		
68	8.2			5.7	9.3	3.7		3.6		5.2		8.6	5.6		
69	7			4.8	12.6	11.7		5.2		3.8		9.2	3.8		
70	6.9			6.9	3	9.6		2.6		6		10.4	5		
71	7.4			7.8	18.8	5.1		2.7		4.8		8.3	5		
72	9.5			7.4	23.1	5.1		5.5		5.4		11.6	7		
73	4.4			6.6	14.5	8.5		5.6		4.7		8.3	5.1		
74	9.3			9.8	19.8	7.7		4		3.9		12.6	5.2		
75	6.8			8.3	14.4	6.5		5.3		4.9		11.2	5		
76	6.9			5.2	5.2	7.1		4.6				12.7	3.8		
77	5.3			7.6	8.5	8.6		2.5				9.2	7.7		
78	4.2			8.1	8.4	3.1		2.4				13.8	5.4		
79	7			4.5	12.5	7.4		4.4				8.5	4.9		
80	6.4			5.7	7.8	5.1		4.3				15.8	4.6		
81	3.5			6.5	12.6	2.9		2.3				7.3	4.2		
82	5.3			8.5	5.5	7		2.4				7.2	4.5		
83	5.2			11.9	8.9	6.7		3				8.1	3.1		
84	7			2.7	6.8	7.6		3.1				7.7			
85	5.5			9	7.6	2.4		4.5				7			
86	4.1			8.9	12.1	5.8		3.1				10.3			

Table A6.6a. Onondaga Lake Dreissenid Mussel Survey Fall 2007 - Zebra Mussel Raw Length (mm) Data.

Zone		Zone E			Zone F			Zone G			Zone H			Zone H							
Transect	Т	ransect	1	Т	ransect	2															
Water Depth	0 - 1.5	1.5 - 3	3 - 4.5	0 - 1.5	1.5 - 3	3 - 4.5	0 - 1.5	1.5 - 3	3 - 4.5	0 - 1.5	1.5 - 3	3 - 4.5	0 - 1.5	1.5 - 3	3 - 4.5						
87	4			15.6	5.3	6.7		2.8				8.3									
88	11.4			11.2	6	8		2.9				6.7									
89	2.2			12.9	7.3	7.1		3				9.3									
90	6.1			9.6	5.1	7.7		2.9				6.2									
91	4.4			7.3	12	7.7		3				6.3									
92	3			8.4	7.5	2.7		2.9				6									
93	6.1			8.8	6.6	3.8		3.6				6.1									
94	7.6			9.3	3.5	5.3		2.2													
95	4.8			17	4.9	3.4		3.1													
96	9			9.2	10.9	9		2.6													
97	4.5			8.2	5.2	12.2		2.7													
98	5			7.4	4.2	9.8		2.6													
99	8.8			7.7	7.3	8.7		2.7													
100	3.9			6.1	2.3	6.8		3													
Zone	Zone A		Zone A			Zone B			Zone C			Zone C				Zone D		Zone D			
---------------	---------	---------	---------	---------	---------	---------	------------	---------	---------	------------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------
Transect	Т	ransect	1	Т	ransect	2	Transect 1			Transect 1			Т	ransect	2	Т	ransect	1	Т	ransect	2
Water Depth	0 - 1.5	1.5 - 3	3 - 4.5	0 - 1.5	1.5 - 3	3 - 4.5	0 - 1.5	1.5 - 3	3 - 4.5	0 - 1.5	1.5 - 3	3 - 4.5	0 - 1.5	1.5 - 3	3 - 4.5	0 - 1.5	1.5 - 3	3 - 4.5	0 - 1.5	1.5 - 3	3 - 4.5
Median Length	0	0	0	13	14	4	0	0	0	0	16	16	0	5	7	0	6	0	16	0	6
Mean Length	0.0	0.0	0.0	13.3	13.7	4.0	0.0	0.0	0.0	0.0	16.3	15.5	0.0	5.2	6.7	0.0	9.1	0.0	15.2	0.0	6.2
1	0	0	0	12.1	15.2	6.8	0	0	0	0	18.9	21	0	4.7	8.2	0	17.5	0	18.5	0	9.2
2				12.1	17.9	3.6					14.6	17.1		8.5	6.6		17.6		13		10
3				13.4	8	1.9					13.2	14		7	5.2		5.3		10.5		6.8
4				12.5	15.6	3.7					17.2	13.9		4.5			5.7		16.9		6.1
5				15.9	17.7						17	16.7		4.9			4		15.7		7.7
6				17.3	11						16.3	19.3		5.5			4.7		16.5		7.3
7				11.5	13.3						16.1	19.9		3.8							5.7
8				11.8	13.7						14.7	16.4		3.6							6.8
9				13.1	14.5						17.3	19.2		3.5							5.5
10					13.5						16.1	14.3		6.9							5.7
11					14.3						16.3	16.8		4.2							7.2
12					13.4						13.3	17.4									5.1
13					15.7						15.6	19									6.2
14					12.1						17.2	15.1									5.7
15					13.8						17.6	15.6									6.8
16					12.5						16.2	16.1									5.7
17					12.8						16.6	19.3									5.3
18					11.3						17.7	17.3						-			4.7
19											17.2	14.3									5.7
20											17	15.9									5
21									-		19.4	10.5									0.2
22									-		14.2	15 0									4.3
23											14.5	14.7									5.1
24											10.3	14.7									6.2
26											19.5	15.2									4.5
27											16.8	14.4									
28											19.6	16.2									
29											17.8	15.9									
30											17.8	16.1									
31											17	15.8									
32											16.2	16.5									
33				1					1	1	17	16.2									
34									I		15.7	12.8									
35											16.2	19.6									
36				1					1	1	16.9	15.9									
37				1					1	1	14.7	15.2									
38									1		15.4	13.9									
39									1		16.6	16.3									
40											12.9	17.4									

Zone	Zone A		Zone A		Zone B		Zone C			Zone C			Zone D			Zone D					
Transect	Т	ransect	1	Т	ransect	2	Transect 1		Т	ransect	1	Т	ransect	2	Transect 1			Transect 2			
Water Depth	0 - 1.5	1.5 - 3	3 - 4.5	0 - 1.5	1.5 - 3	3 - 4.5	0 - 1.5	1.5 - 3	3 - 4.5	0 - 1.5	1.5 - 3	3 - 4.5	0 - 1.5	1.5 - 3	3 - 4.5	0 - 1.5	1.5 - 3	3 - 4.5	0 - 1.5	1.5 - 3	3 - 4.5
41											14.1	17									
42											13.6	14.6									
43											18.5	13.9									
44											15.5	16									
45											11	15.2									
46											15.7	15.1									
47											14.2	12.3									
48											15.7	13.9									
49												15.7									
50												17									ļ
51												15.9									
52												13.3									ļ
53												16.6									
54												17.2									ļ
55												13.8									ļ
56												16									
57												15.2									
58												17.8									ļ
59												12.5									
60												13.4									
61												15.2									
62												11.8									
63												13.1									
64												11.1									
65												17									Į
66												20.8									Į
67												17.1									
68												16.7									
69												15									l
70												14.0									
70												14.2									
72												12.0									
73												12.3									
75												10.0									
75												12.0									
70												15.4									
78												16.2									┝───
70												10.2									├
80												15.6									
81												19.0									
82												12 /									
82												12.4									

Zone	Zone A		Zone A Zone A		Zone B			Zone C			Zone C			Zone D			Zone D				
Transect	Т	ransect	1	Т	ransect	2	Т	Transect 1			ransect	1	Т	ransect	2	Т	ransect	1	Т	ransect	2
Water Depth	0 - 1.5	1.5 - 3	3 - 4.5	0 - 1.5	1.5 - 3	3 - 4.5	0 - 1.5	1.5 - 3	3 - 4.5	0 - 1.5	1.5 - 3	3 - 4.5	0 - 1.5	1.5 - 3	3 - 4.5	0 - 1.5	1.5 - 3	3 - 4.5	0 - 1.5	1.5 - 3	3 - 4.5
83												11.7									
84												15.1									
85												16.2									
86												13.9									
87												13.2									
88												16.7									
89												14.3									
90												17.5									
91												15.9									
92												15.2									
93												14.5									
94												11.7									
95												13.7									
96												15.6									
97												14.8									
98												12.7									
99												13.3									
100												14.1									

Zone		Zone E			Zone F			Zone G			Zone H		Zone H			
Transect	Т	ransect	1	Transect 2												
Water Depth	0 - 1.5	1.5 - 3	3 - 4.5	0 - 1.5	1.5 - 3	3 - 4.5	0 - 1.5	1.5 - 3	3 - 4.5	0 - 1.5	1.5 - 3	3 - 4.5	0 - 1.5	1.5 - 3	3 - 4.5	
Median Length	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Mean Length	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2																
3																
4																
5																
6																
7																
8																
9																
10																
11																
12																
13																
14																
15																
16																
17																
18																
19																
20																
21																
22																
23																
24																
25					-											
26																
27																
28																
29																
30																
31																
32																
33																
34																
35																
30																
3/																
38																
39																
40															1	

Zone	Zone E			Zone F				Zone G			Zone H		Zone H		
Transect	Т	ransect	1	Transect 1			Т	ransect	1	Т	ransect	1	Transect 2		
Water Depth	0 - 1.5	1.5 - 3	3 - 4.5	0 - 1.5	1.5 - 3	3 - 4.5	0 - 1.5	1.5 - 3	3 - 4.5	0 - 1.5	1.5 - 3	3 - 4.5	0 - 1.5	1.5 - 3	3 - 4.5
41															
42															
43															
44															
45															
46															
47															
48															
49															
50															
51															
52															
53															
54															
55															
56															
57															
58															
59															
60															
61															
62															
63															
64															
65															
66															
67															
68															
69															
70															
71															
72															
73															
74															
/5	ļ	ļ													
/6															
//															
/8	ļ	ļ													
/9															
80															
81	ļ	ļ													
82															

Zone	Zone E			Zone F				Zone G			Zone H		Zone H			
Transect	Т	ransect	1	Т	ransect	2										
Water Depth	0 - 1.5	1.5 - 3	3 - 4.5	0 - 1.5	1.5 - 3	3 - 4.5	0 - 1.5	1.5 - 3	3 - 4.5	0 - 1.5	1.5 - 3	3 - 4.5	0 - 1.5	1.5 - 3	3 - 4.5	
83																
84																
85																
86																
87																
88																
89																
90																
91																
92																
93																
94																
95																
96																
97																
98																
99																
100																

FIGURES

Figure A6.1 - Seneca River Dreissenid Mussel Survey – Length Frequency Distribution by Transect (04'-07')

Figure A6.1 - Seneca River Dreissenid Mussel Survey – Length Frequency Distribution by Transect (04'-07') (continued)

Figure A6.2 – Seneca River Dreissenid Mussel Survey Fall 2007 – Length Frequency Distribution by Transect for Zebra and Quagga Mussels

Figure A6.2 – Seneca River Dreissenid Mussel Survey Fall 2007 – Length Frequency Distribution by Transect for Zebra and Quagga Mussels (continued)

Figure A6.3 – Onondaga Lake Dreissenid Mussel Survey Fall 2007 – Length Frequency Distribution by Zone (All Transects) and Depth Range/Category (All Depths) for Zebra and Quagga Mussel

Figure A6.4 – Onondaga Lake Dreissenid Mussel Survey – Fall 2002, 2005, 2006 and 2007 Comparison of Length Frequency Distribution by Zone (All Transects) and Depth Range/Category (All Depths)

Figure A6.4 – Onondaga Lake Dreissenid Mussel Survey – Fall 2002, 2005, 2006 and 2007 Comparison of Length Frequency Distribution by Zone (All Transects) and Depth Range/Category (All Depths) (continued)

Figure A6.5 – Onondaga Lake Dreissenid Mussel Survey – Fall 2002, 2005, 2006 and 2007 Comparison of Length Frequency Distribution by Zone (All Transects) and Depth Range/Category

Figure A6.5 – Onondaga Lake Dreissenid Mussel Survey – Fall 2002, 2005, 2006 and 2007 Comparison of Length Frequency Distribution by Zone (All Transects) and Depth Range/Category (continued)

Figure A6.5 – Onondaga Lake Dreissenid Mussel Survey – Fall 2002, 2005, 2006 and 2007 Comparison of Length Frequency Distribution by Zone (All Transects) and Depth Range/Category (continued)

APPENDIX 7: BIBLIOGRAPHY OF MATERIAL PERTAINING TO ONONDAGA LAKE, NEW YORK

APPENDIX 7: BIBLIOGRAPHY OF MATERIAL PERTAINING TO ONONDAGA LAKE, NEW YORK

(Revised July 2008)

- 1. Acres International Corporation and Beak Consultants Inc. 1999. *Stream characteristics study of macroinvertebrate sampling zones on Onondaga Creek, Ley Creek, and Harbor Brook, June-July 1999.* Report prepared for Onondaga County Department of Drainage and Sanitation.
- 2. Addess, J.M. and S.W. Effler. 1996. Summer Methane Fluxes and Fall Oxygen Resources of Onondaga Lake, NY. *Lake and Reservoir Management* 12(1): 91-101.
- 3. Addess, Jeffrey M. 1990. *Methane cycling in Onondaga Lake, New York*. Master's Thesis. College of Environmental Science and Forestry, State University of New York. Syracuse, New York.
- 4. Agar, C. and W. Sanderson. 1947. *Investigation of Onondaga Lake, Onondaga County*. NYS Department of Health, Albany, NY.
- 5. Ahsan QAKM and Blumberg AF. Three-Dimensional Hydrothermal Model of Onondaga Lake, New York. *Journal of Hydraulic Engineering*. 1999; 125(9).
- 6. Aiston, S.T. 1987. *Allied Chemical Plant History: Syracuse Works*, Barton and Logudice, P.C., Liverpool, NY.
- 7. Alexander, M.D. 2002. *Hanging gardens: the untold story of Onondaga Lake: the consequences of inadequate planning and conservation efforts.* Honors Thesis. Cornell University, College of Architecture, Art and Planning, City and Regional Planning.
- 8. AlliedSignal Inc.. 1996. Comments to the New York State Department of Environmental Conservation: by AlliedSignal Inc. concerning Onondaga Lake Natural Resource Damage Assessment Plan.
- 9. Anonymous. NiMo, *Bristol spend big bucks to correct pollution problems*. Syracuse Business, Syracuse; August 1993; 14(9); 1; pg. 3
- 10. Anonymous. Prominent architect outlines lakefront aquarium project. *The Business Journal Central New York*, Syracuse; Jan 06, 1997; 11(1): 13
- Anonymous. Waterfront Revitalization Projects: Syracuse Just Getting Its Feet Wet -- Other Cities Across State Have Already Jumped on the Boat. *Syracuse Business*, Syracuse; Nov 1987; Vol. 8, Iss. 12; 1; pg. 1
- 12. Apogee Research, Inc. Analysis of Rates and Costs for Wastewater Services: Onondaga County and Comparable Systems Nationwide, September 1993.
- 13. Apogee Research, Inc. Benefits Assessment for the Onondaga Lake Cleanup, August 23, 1993.
- 14. Apogee Research, Inc. Preliminary Capital Plan for the Onondaga Lake Cleanup, October 1993.
- 15. Armstrong, RW, and R.J. Sloan. 1980. *Trends in Levels of Several Known Chemical Contaminants in Fish from New York State Waters*. DEC Publication Technical Report 80-2. June.
- 16. Arrigo, MA, 1998. *Reproduction and recruitment of fishes in a hypereutrophic system (Onondaga Lake, New York)*. Master's Thesis. College of Environmental Science and Forestry, State University Of New York, Syracuse NY, 121 pages

- 17. Atlantic States Legal Foundation, Inc. *Onondaga Lake Update: First Year of the ACJ*. Atlantic States Legal Foundation Newsletter. Syracuse, NY; 1999 Autumn; Issue 3.
- 18. Atlantic States Legal Foundation. *Newsletter: Onondaga Lake Superfund Review*. Syracuse, NY; 1998 Winter; Issue 4.
- 19. Atlantic States Legal Foundation. *Newsletter: Onondaga Lake Superfund Review*. Syracuse, NY; 1998 Autumn; Issue 3.
- 20. Atlantic States Legal Foundation. Cleaning up the Lake: What will it take? *Newsletter: Onondaga Lake Superfund Review*. Syracuse, NY. September 1998, Issue 2.
- Auer MT. Johnson NA. Penn MR. Effler SW. Pollutant Sources, Depositional Environment, and the Surficial Sediments of Onondaga Lake, New York. *Journal of Environmental Quality*. 25(1):46-55, 1996 Jan-Feb
- 22. Auer, M.T. 1989. *Monitoring Fecal Coliform Bacteria in Onondaga Lake and its Tributaries* 1987. Submitted to CNY Regional Planning and Development Board (for NYSDEC), Syracuse, NY.
- 23. Auer, M.T., and M.L. Storey. 1989. *Growth Kinetics of Onondaga Lake Phytoplankton*. Submitted to the CNY Regional Planning and Development Board, Syracuse, NY.
- 24. Auer, M.T., and N.A. Johnson. 1989. *Phosphorus Release from Onondaga Lake Sediments*. Submitted to CNY Regional Planning and Development Board (for NYSDEC), Syracuse, NY.
- 25. Auer, M.T., and S.L. Niehaus. 1989. *Fecal Coliform Bacteria Kinetics in Onondaga Lake, NY*. Submitted to CNY Regional Planning and Development Board (for NYSDEC), Syracuse, NY.
- 26. Auer, M.T., and S.L. Niehaus. 1993. Modeling Fecal Coliform Bacteria: I. Field and Laboratory Determination of Loss Kinetics. *Water Research* 27(4): 693-701.
- 27. Auer, M.T. S.W. Effler, T. M. Heidtke, and S. M. Doerr. *Hydrologic Budget Considerations and Mass Balance Modeling Onondaga Lake*, February 1992.
- Auer, M.T., M.L. Storey, S.W. Effler, and N.A. Auer. 1990. Zooplankton Impacts on Chlorophyll and Transparency in Onondaga Lake, NY, U.S.A. *Hydrobiologia/Dev. Hydrobiol.* 200/201, 603-617.
- Auer, M.T., N.A. Johnson, M.R. Penn, and S.W. Effler. 1992. Measurement and Verification of Rates of Sediment Phosphorus Release for a Hypereutrophic Urban Lake. *Hydro Biologia* 253: 301-309.
- 30. Auer, M.T., N.A. Johnson, M.R. Penn, and S.W. Effler. 1995. Pollutant Sources, Depositional Environment, and the Surficial Sediment of Onondaga Lake, New York. *Journal of Environmental Quality*.
- 31. Auer, MT; Doerr, SM; Effler, SW; Owens, EM. 1997. A zero degree of freedom total phosphorus model: 1. Development for Onondaga Lake, New York. *Lake Reserv. Manage*,13(2): 118-130.
- 32. Augustine, Timothy J. 2004. Sonic Technology Helps Identify Lake's Salt Sources. *National Driller*. January 2004.
- 33. Babiarz, P., and K. Pilon. 1979. *Water Quality Management on the Eastern Oswego River Basin.* CNY Regional Planning and Development Board, Syracuse, NY. 31 p.
- Babiera, M.J. 1996. Bioavailability of particulate phosphorus for the Cannonsville Reservoir and Onondaga Lake systems as estimated by chemical fractionation. Masters Thesis (manuscript). Michigan Technological University.

- 35. Beak Consultants Inc. and EcoLogic LLC. 2002. Assessment of the status of the fish community of Onondaga Lake on 2001, Onondaga Lake 2001 Fish Monitoring Program. Report prepared for Onondaga County Dept. Water Environment Protection. Syracuse NY draft report dated March 2002.
- 36. Beak Consultants, Inc. 1999 Seneca River Dreissenid Mussel Assessment Program Distribution of Zebra Mussels along a Selected Reach of the Seneca River. Lancaster, NY: County of Onondaga Department of Drainage and Sanitation; 2000.
- 37. Beak Consultants, Inc. County of Onondaga Department of Drainage and Sanitation, Oxygen Consumption, Ammonia, Excretion, and Filtration Rates of Three Size Classes of Zebra Mussels Collected in the Seneca River, New York. Lancaster, NY: Beak Consultants, Inc.; April 2000, Onondaga County Department of Drainage and Sanitation.
- Beak Consultants, Inc. 2000. Seneca River Sediment Oxygen Demand (SOD) Determinations. Prepared for Onondaga County Department of Drainage and Sanitation. Lancaster, NY; October 2000.
- 39. Becker, D.S and G. N. Bigham. 1995. Distribution of Mercury in the Aquatic Food Web of Onondaga Lake, New York. *Water, Air, and Soil Pollution*. 80:563-571.
- 40. Becker, D.S., C.D. Rose, and G. N. Bigham. 1995. Comparison of the 10-Day Freshwater Sediment Toxicity Tests Using *Hyalella Azteca* and *Chronomus Tentans*. *Environmental Toxicology* & *Chemistry*. 14(12):2089-2094.
- 41. Behar, R. While Syracuse Sleeps. Forbes, New York; Oct 17, 1988; Vol. 142, Iss. 8; pg. 36, 3 pgs
- 42. Beilman, M.D. 1989. The Problem of Nonpoint Sources. Clearwaters, NYWPCA 19(4): 17-18.
- 43. Beretvas M.K. Hassett JP. Burns SE. Basford TM. 2000. Modeling the photolysis of ammonium dinitramide in natural waters. *Environmental Toxicology & Chemistry*. 19(11):2661-2665.
- 44. Beretvas, M.K. 1999. Aquatic Photochemistry of Ammonium Dinitramide and Quadricyclane. Doctoral dissertation. College of Environmental Science and Forestry, State University Of New York, Syracuse NY. 138 pages
- 45. Bigham, G.N., and G.M. Vandal. 1996. A Drainage Basin Perspective of Mercury Transport and Bioaccumulation Onondaga Lake, New York. *Neurotoxicology*. 17(1):279-290.
- 46. Blasland and Bouck Engineers, P.C. 1989. *Hydrogeological Assessment of the Allied Waste Beds in the Syracuse Area*. Volumes 1 and 2. AlliedSignal, Inc., Solvay, NY.
- 47. Blinn, DW. 1993. Diatom Community Structure Along Physicochemical Gradients in Saline Lakes. *Ecology*.74(4): 1246-1263.
- 48. Bloom, N.S. and S.W. Effler. 1990. Seasonal Variability in the Mercury Speciation of Onondaga Lake (NY). *Water, Air, and Soil Pollu*tion 53: 251-265.
- 49. Bloomfield, J.A. [ed.] Ecology of the Lakes of western New York. New York : Academic Press, 1978
- 50. Bode, R.W., M.A. Novak, and L.E. Abele. *Biological stream assessment, streams tributary to Onondaga Lake, Onondaga County, New York.* Albany, N.Y. : Stream Biomonitoring Unit, Bureau of Monitoring and Assessment, Division of Water, NYS Dept. of Environmental Conservation, 1989
- 51. Boulton, P; L.J. Hetling. A Statistical Analysis of the Mercury Content of Fresh Water Fish in New York State. February 1972. 16 P, 3 Fig, 5 Tab
- 52. Braga, M.C.B, G. Shaw, and J.N. Lester. Mercury modeling to predict contamination and bioaccumulation in aquatic ecosystems. *Rev Environ Contam* T 164: 69-92 2000

- 53. Brainerd, W.F. 1922. Dana Glacial Lake Terrace and the Great Delta of Onondaga Valley: *Syracuse, NY.* Masters Thesis, Syracuse University. 89 p.
- 54. Brennan, P.J. 1967. *Proposed Studies for the Restoration of an Urban Natural Resource, Onondaga Lake*. Department of Civil Engineering, Syracuse University, Syracuse, NY.
- 55. Brennan, P.J., C.S. Grove, Jr., D.F. Jackson, M. Katz, N.L. Nemerove, and M.C. Rand. 1968. *Investigations Leading to the Restoration of Urban Lakes with Applications to Onondaga Lake, NY*. Department of Civil Engineering, Syracuse, University, Syracuse, NY. (Unpublished).
- 56. Brooks, C.M., and S.W. Effler. 1989. *The Distribution of Selected Nitrogen Species on Onondaga Lake, NY*. Submitted to CNY Regional Planning and Development Board, Syracuse, NY.
- 57. Brooks, C.M., and S.W. Effler. The Distribution of Nitrogen Species in Polluted Onondaga Lake, NY, U.S.A. *Water, Air, and Soil Pollution* 52: 247-262.
- 58. Browne, R A. 1981. Lakes as Islands: Biogeographic Distribution, Turnover Rates, and Species Composition in the Lakes of Central New York. *Journal of Biogeography*. 8(1):. 75-83.
- 59. Burdick, G., and M. Lipschuetz. 1947. A Supplementary Report to the Survey of Onondaga Lake and Tributary Streams in 1946 and 1947. NYS Conservation Department, Albany, NY.
- 60. Bushart, S.P.1996. In Situ Chlorobenzene Biodegradation In Onondaga Lake Sediments: An Approach Based Upon Microbial Ecology And Physiology (New York). Rensselaer Polytechnic Institute, 175 Pages
- 61. Calocerinos and Spina Consulting Engineers and Hydroqual, Inc. 1984. Users Guide to the Three Rivers Water Quality Model, Hydroqual, Inc., Mahwah, NJ.
- 62. Calocerinos and Spina Consulting Engineers, HydroQual, Inc., and Joseph C. Lu, P.E., P.C. 1984. *Three Rivers Study, Water Quality Assessment, Phase I, with Data Appendix.* Prepared for Department of Drainage and Sanitation, Onondaga County, NY.
- 63. Calocerinos and Spina Consulting Engineers. *1981 Onondaga Lake Monitoring Program Report*, December 1982. Prepared for Onondaga County Department of Drainage and Sanitation.
- 64. Calocerinos and Spina Consulting Engineers. *1982 Onondaga Lake Monitoring Program Report*, November 1983. Prepared for Onondaga County Department of Drainage and Sanitation.
- 65. Calocerinos and Spina Consulting Engineers. 1983 Onondaga Lake Monitoring Program Report, December 1984. Prepared for Onondaga County Department of Drainage and Sanitation.
- 66. Calocerinos and Spina Consulting Engineers. 1984 Onondaga Lake Monitoring Program Report, November 1985. Prepared for Onondaga County Department of Drainage and Sanitation.
- 67. Calocerinos and Spina Consulting Engineers. 1978. Thermal Study of Tributary 5-A to Onondaga Lake, Syracuse, NY.
- 68. Calocerinos and Spina Consulting Engineers. 1982. Draft Environmental Impact Statement -Application for a Permit to Continue Operation of an Existing Solid Waste Management Facility for Industrial Non-Hazardous Solid Wastes. Prepared for Crucible, Inc., Syracuse, NY.
- 69. Calocerinos and Spina Consulting Engineers. 1983. *In-Water Combined Sewer Overflow Abatement Study*, Onondaga County Department of Drainage and Sanitation.
- 70. Calocerinos and Spina Consulting Engineers. 1985. *Quarterly Groundwater Monitoring and Site Reports Regarding the Crucible Landfill at Onondaga Lake Wastebeds*. Prepared Under Contract for Crucible Specialty Metals, Syracuse, NY.

- 71. Calocerinos and Spina Consulting Engineers. 1985. *Revised Landfill Closure Plan*. Prepared for Crucible Specialty Metals, Syracuse, NY.
- 72. Canale R, S. Effler, and R. Gelda. Development and Testing of a Nitrogen Model for Onondaga Lake. *Lake and Reservoir Management*. 1996; 12(1):151-164.
- 73. Canale, R.P. 1988. A Water Quality Planning Framework for Onondaga Lake. EnginComp Software, Inc., Anne Arbor, MI.
- 74. Canale, R.P., and S.W. Effler. 1989. Stochastic Phosphorus Model for Onondaga Lake. *Water Research* 23: 1009-1016.
- 75. Canale, R.P., E.M. Owens, M.T. Auer, S.W. Effler. 1995. Validation of a Water Quality Model for the Seneca River. *Journal of Water Resources Planning and Management* 121(3): 241-250.
- 76. Canale, R.P., M.T. Auer, E.M. Owens, T.M. Heidtke, and S.W. Effler. 1993. Modeling Fecal Coliform Bacteria: II. Model Development and Application. *Water Research* 27: 703-714.
- 77. Canale, R.P., R. Gelda, and S.W. Effler. 1995. Development and Testing of a Nitrogen Model for Onondaga Lake, NY. *Lake and Reservoir Management* 12(1): 151-164.
- 78. Carrier, Richard. 1998. A guidebook to the history of Onondaga Lake. Onondaga County Parks.
- Caslake, Laurie F.; Skye S. Harris; Christine Williams; and Nancy McCrery Waters. (2006). Mercury-Resistant Bacteria Associated With Macrophytes from A Polluted Lake. *Water, Air, and Soil Pollution* (2006) 174: 93–105.
- 80. Central New York Regional Planning and Development Board, 1979, *Central New York Water Quality Management Program*, Onondaga County Subplan.
- 81. Clarke, J M. 1902. The Squids from Onondaga Lake, N. Y. (in Discussion and Correspondence). *Science*, New Series, 16(415): 947-948.
- 82. Clarke, J.M. 1902. The Onondaga Lake Squids. Science, New Series, 16(416): 991.
- 83. Cleanup Plan Is Adopted For Lake In Syracuse. *New York Times*, New York, N.Y.; Aug 16, 1997; Late Edition (East Coast); pg. 1.26
- 84. Cleanup strategy is due for nation's most-polluted lake. *U.S. Water News Online* January 1996. http://www.uswaternews.com/archives/arcrights/6cleanlak.html
- 85. Connors, S.D., M.T. Auer, and S.W. Effler. 1996. Phosphorus Pools, Alkaline Phosphatase Activity, and Phosphorus Limitation in Hypereutrophic Onondaga Lake, NY. *Lake and Reservoir Management* 12(1): 47-57.
- 86. Connors, SD. Determination of phytoplankton phosphorus limitation and the associated effects of stormwater discharges on Onondaga Lake, New York. 1993
- 87. Constructioneer Staff. (2004). Honeywell faces \$450-million cleanup bill for Onondaga Lake. *Constructioneer* December 20, 2004.
- Coon, W.F., and Reddy, J.E. 2008. Hydrologic and Water-Quality Characterization and Modeling of the Onondaga Lake Basin, Onondaga County, New York: U.S. Geological Survey Scientific Investigations Report 2008-5013, 85p.
- 89. Cost to clean poisoned lake staggers county; *New York Times* Current Events Edition, New York, N.Y.; May 6, 1993; Late Edition (East Coast); pg. B8

- 90. Coyle, Elizabeth E. 2002. A GIS Non-point Source Pollution Model of the Onondaga Lake Watershed, Master's Thesis. State University of New York College of Environmental Science and Forestry Syracuse, New York. April 2002.
- 91. Crocker, P.A., and D. B. McDonnell. Phosphorus in Onondaga Lake Response. J Water Pollut. Con F: 61 (1): 6-6 Jan 1989
- 92. Davis, J. Testimony Regarding Contaminated Sediment Sites Before The Subcommittee On Water Resources And Environment Of The House Transportation And Infrastructure Committee. July 19, 2001
- Dean, W.E., and J.R. Eggleston. Freshwater Oncolites, Onondaga Lake, New York. AAPG Bull 62 (3): 509-509 1978
- 94. Dean, W.E. and J.R. Eggleston. Freshwater Oncolites Created by Industrial Pollution, Onondaga Lake, New York. *Sedimentary Geology*.40(4): 217-232, August, 1984. 10 Fig., 2 Tabs, 10 Ref.
- 95. Deboer D.H., G. Crosby. Evaluating The Potential Of Sem/Eds Analysis For Fingerprinting Suspended Sediment Derived From 2 Contrasting Topsoils. *Catena* 24 (4): 243-258 Oct 1995
- 96. DEC receives \$2.7 million to clean up Onondaga Lake. *The Conservationist*, Albany; Aug 1994; 49(1): 38, 2
- 97. Del Vicario, Mario. 2005. USEPA's Commitment to Cleanup Onondaga Lake. *Clearwaters*, 35(2): 19.
- 98. Dence, Wilford A. 1956. Concretions of the Alewife, Pomolobus pseudoharengus (Wilson), at Onondaga Lake, New York. *Copeia*, 1956(3): 155-158.
- 99. Devan, S.P., and S.W. Effler. 1984. The Recent History of Phosphorus Loading to Onondaga Lake, NY. *Journal Environmental Engineering Division ASCE* 110: 93-109.
- 100. Diggins, TP. Field and laboratory evaluation of the pollution monitoring potential of abnormal development in aquatic larval midges (Diptera: Chironomidae). State University Of New York At Buffalo, 1997, 157 pages
- 101. DiToro D, Fitzpatrick J, Ahsan AKM, and deRooij N (HydroQual). A Model of Calcium Carbonate Precipitation in Onondaga Lake. Mahwah, NJ: HydroQual; 1994 Jul.
- 102. DiToro, D; Lowe, S; Fitzpatrick, J; Isleib, R *Sediment Flux Model for Manganese and Iron*. HydroQual, Inc., Mahwah, NJ (USA). Sep 1998, 171 pp
- 103. Doerr, S.M., S.W. Effler, K.A.Whitehead, M.T. Auer, M.G. Perkins MG, and T.M. Heidtke. Chloride Model for Polluted Onondaga Lake. *Water Research*. 28(4):849-861, 1994 Apr.
- 104. Doerr, S.M., S.W. Effler, and E. Owens. Forecasting Impacts of a Hypolimnetic Wastewater Discharge on Lake Water Quality. *Lake and Reservoir Management*. 1996; 12(1):210-217.
- 105. Doerr, S.M., R.P. Canale, and S.W. Effler. 1995. Development and Testing of a Total Phosphorus Model for Onondaga Lake, NY. *Lake and Reservoir Management* 12(1): 141-150.
- 106. Drake, BJ.1992. Use and Data Quality Analysis of a Parcel-Based Land Information System for Identification of Potential Remediation Sites (New York). College of Environmental Science and Forestry State University Of New York. 246 Pages
- 107. Driscoll C.T. and W. Wang. Summary Report on Mercury Sampling in Onondaga Lake May 19, 1992.

- 108. Driscoll, C.T., and W. Wang. Concentrations and Transport of Mercury in Onondaga Lake, (Final Report), January 25, 1994.
- 109. Driscoll, C.T., S.W. Effler, and S.M. Doerr. 1994. Changes in Inorganic Carbon Chemistry and Deposition of Onondaga Lake, NY. *Environmental Science and Technology* 28: 1211-1218.
- 110. Driscoll, C.T., S.W. Effler, M.T. Auer, S.M. Doerr, and M.R. Penn. 1993. Supply of phosphorus to the water column of a productive hardwater Lake: controlling mechanisms and management considerations. *Hydrobiologia* 253: 61-72.
- 111. Ducey, P.K. and W. Newman. 1994. *Final Report for the Preliminary Survey of Reptiles and Amphibians of the Onondaga Lake Ecosystem, 1994.* Department of Biological Sciences, SUNY-Cortland. Unpublished report, 14 pp.
- 112. Ducey, P.K., SUNY Cortland. Wetland-Lake Connections and Amphibian Communities of the Onondaga Lake Ecosystem, Final Report for 1996.
- 113. Duffy MA. Perry LJ. Kearns CM. Weider LJ. Hairston NG. 2000. Paleogenetic evidence for a past invasion of Onondaga Lake, New York, by exotic Daphnia curvirostris using mtDNA from dormant eggs. *Limnology & Oceanography*. 45(6):1409-1414.
- 114. Duncombe, W. and B. Jump, Jr./Syracuse University. *The Outlook for Onondaga County's Finances: Baseline Scenario*, 12/96 (Preliminary Report - Report #3).
- 115. Duncombe, W., and W. Wong/Syracuse University. *Onondaga County's Economic Performance Since 1980 and Prospects for Next Decade*, 5/29/96 (Preliminary Report - Report #1).
- 116. Duncombe, W., S. Felt, J. Follain and B. Jump, Jr./Syracuse University. *The Economic and Fiscal Impact of Lake Remediation on Onondaga County*, 12/96 (Preliminary Report Report #4).
- 117. Dybas, C. *Invading Crustaceans Survive Snooze In Super-Polluted Lake*. National Science Foundation. News Media Tip June 3, 1999.
- 118. EcoLogic, LLC. 2003. 2002 Onondaga Lake and Tributaries Macroinvertebrate Monitoring. Report prepared for Onondaga County Dept. of Water Environment Protection, Syracuse.
- 119. EcoLogic, LLC. 2003. 2002 Onondaga Lake Tributary Mapping. Report prepared for Onondaga County Department of Water Environment Protection. Syracuse NY Final Report. April 2003.
- 120. EcoLogic, LLC. 2001. Onondaga Lake Ambient Monitoring Program 1999 Annual Report. Cazenovia, NY. March 2001.
- 121. EcoLogic, LLC et al. 2001. Onondaga Lake Ambient Monitoring Program. 2000 Annual Report. Report prepared for Onondaga County Dept. Drainage and Sanitation. Syracuse NY final report dated Nov. 2001.
- 122. EcoLogic, LLC. 2001. 2000 Onondaga Lake and Tributaries Macroinvertebrate Monitoring. Report prepared for Onondaga County Dept. Drainage and Sanitation. Syracuse NY final report dated Oct. 2001.
- 123. EcoLogic, LLC. 2001. 2000 Onondaga Lake Aquatic Macrophyte Monitoring Program. Report prepared for Onondaga County Dept. Drainage and Sanitation. Syracuse NY final report dated Oct. 2001.
- 124. EcoLogic, LLC. 2001. 2000 Onondaga Lake Tributary Mapping. Report prepared for Onondaga County Department of Drainage and Sanitation. Syracuse NY Final Report. March 2001.

- 125. EcoLogic, LLC. 2000. 1999 Onondaga Lake and Tributary Macroinvertebrate Community Assessment and Recommendations for Year 2000 Program. Prepared for: Onondaga County Department of Drainage and Sanitation. Syracuse NY. April 2000.
- 126. EcoLogic, LLC. 1999. *Onondaga Lake habitat improvement project*. Prepared for Onondaga County Department of Health.
- 127. EcoLogic, LLC. 1999. Onondaga Lake Monitoring Program 1997 Annual Report, Report, and Appendix A. Cazenovia, NY: EcoLogic. Prepared for Onondaga County, NY. February 1999
- 128. EcoLogic, LLC. 1999. *Onondaga Lake Monitoring Program 1998 Annual Report and Appendix A.* Cazenovia, NY: EcoLogic. Pprepared for Onondaga County, NY Rev. November 1999.
- 129. Effler and Brooks. (2001). Changes in Deposition of Phytoplankton Constituents in CA2+ Polluted Lake. *ES&T*, 35(15): 3082-3088.
- 130. Effler and Carter C. (1987). Spatial Variability in Selected Physical Characteristics and Processes in Cross Lake, NY. *Water Resources Bulletin*, 23 (2): 243-249.
- 131. Effler, Steven W., David M. O'Donnell, and Christopher J. Owen. (2002). America's Most Polluted Lake: Using Robotic Buoys to Monitor the Rehabilitation of Onondaga Lake. *Journal of Urban Technology*, 9(2): 21-44.
- Effler, S and Doerr S. Water Quality Model Evaluations for Scenarios of Loading Reductions and Diversion of Domestic Waste Effluent around Onondaga Lake. *Lake and Reservoir Management*. 1996; 12(1):181-193.
- 133. Effler, S.W., and Siegfried C. Tributary Water Quality Feedback from the Spread of Zebra Mussels: Oswego River, New York. *Journal of Great Lakes Research*. 1998; 24(2):453-463.
- 134. Effler, S.W., SM O'Donnell, DA Matthews, and CM Mathews. Limnological and Loading Information and a Phosphorus Total Maximum Daily Load (TMDL) Analysis for Onondaga Lake. *Lake and Reservoir Management*. 18(2):: 87-108
- 135. Effler, S.W. A Preliminary Water Quality Analysis of the Three Rivers System.
- 136. Effler, S.W. Data collected by UFI on the Oswego River during 1992. Syracuse, NY: UFI; Jan 25, 1993, prepared for OLMC.
- 137. Effler, S.W. (1993). Responses to Onondaga County Comments of May 5, 1993 on UFI Onondaga Lake/Seneca River Water Quality Models.
- Effler, S.W., C.M. Matthews (Brooks) and C. T. Driscoll. Changes in deposition of phytoplankton constituents in a Ca2+ polluted lake. *Environmental Science & Technology*. 35(15):3082-3088, 2001 Aug 1.
- Effler, S.W., C.M. Matthews (Brooks) and D. A. Matthews.. Patterns of gross deposition in reservoirs enriched in inorganic tripton. *Canadian Journal of Fisheries & Aquatic Sciences*. 58(11): 2177-2188, 2001 Nov.
- Effler, S.W., M.G. Perkins, N.Ohrazda, D.A. Matthews, R.K. Gelda, F. Peng, D.L. Johnson and C. L. Stepczuk. 2002. Tripton, transparency and light penetration in seven New York reservoirs. *Hydrobiologia*. 468(1-3):213-232, 2002 Jan.
- 141. Effler, S.W., J.M. McCarthy, K.W. Simpson, F.J. Unangst, G.C. Schafran, W.D. Schecher, P. Jaran, H.A. Hsu and M.T. Khalil. 1984. Chemical Stratification in the Seneca/Oswego Rivers (NY). Water, Air, and Soil Pollution. 21:335-350.

- 142. Effler, S.W., S.R. Boone, C.A. Siegfried, and S.L. Ashby. 1998. Dynamics of Zebra Mussel Oxygen Demand in Seneca River, NY. *ES&T*, 32(6): 807-812.
- 143. Effler, S.W., S.R. Boone, C.A. Siegfried, L. Walrath, and S.L. Ashby. 1997. Mobilization of Ammonia and Phosphorus by Zebra Mussels (Dreissena polymorpha) in the Seneca River, NY. In: *Zebra Mussels and Aquatic Species*. Pp. 187-207. Ann Arbor Press, Chelsea, Michigan.
- 144. Effler, S.W., S.M. Doerr, and E.M. Owens. 1997. Effect of Reduced Salinity Input on River Stratification and Dissolved Oxygen. *Water, Air and Soil Pollution*, 95: 45-58
- 145. Effler, S. W., R. K. Gelda, and C. M. Matthews (Brooks). 2001. Implications of Industrial Loads for Ammonia Pollution in an Urban Lake. *Water Environment Research*, 73(2): 192-203.
- 146. Effler, S.W. 1985. Attenuation versus Transparency. J. Env. Eng. Div., ASCE 111: 448-459.
- 147. Effler, S.W. 1986. Response of Onondaga Lake to Reduced Phosphorus Input. Submitted to CNY Regional Planning and Development Board, Upstate Freshwater Institute, Syracuse, NY, 31 p.
- 148. Effler, S.W. 1987. Hypereutrophy and Pollution in Onondaga Lake, NY. *Proceedings of the American Water Resources Association, Symposium on Monitoring, Modeling, and Mediating Water Quality, Syracuse, NY*, p. 87-101.
- 149. Effler, S.W. 1987. The Impact of a Chlor-alkali Plant on Onondaga Lake and Adjoining Systems. *Water, Air, and Soil Pollution* 33: 85-115.
- 150. Effler, S.W. 1988. Secchi Disc Transparency and Turbidity. J. Env. Eng. Div., ASCE 114: 1436-1447.
- 151. Effler, S.W. 1989. How Bad Is It? Clearwaters, NYWPCS 19(4): 14-16.
- 152. Effler, S.W. (ed.) 1996. Limnological and Engineering Analysis of a Polluted Urban Lake Prelude to Environmental Management of Onondaga Lake, New York. Springer-Verlag. New York, NY.
- 153. Effler, S.W. (Editor). 1996. Limnological and Engineering Analysis of a Polluted Urban Lake: Prelude to Environmental Management of Onondaga Lake, New York. Springer-Verlag, New York.
- 154. Effler, S.W., and C. Siegfried. Zebra Mussel Populations in the Seneca River, New York: Impact on Oxygen Resources, June 16, 1994.
- 155. Effler, S.W., and C.M. Brooks. *Dry Weight Deposition in Polluted Onondaga Lake, New York*, U.S.A., April 8, 1996.
- 156. Effler, S.W., and C.T. Driscoll. 1985. A Chloride Budget for Onondaga Lake, NY, U.S.A. *Water, Air, and Soil Pollution* 27: 29-44.
- 157. Effler, S.W., and C.T. Driscoll. 1985. Calcium Chemistry and Deposition in Ionically Polluted Onondaga Lake, NY. *Environmental Science and Technology* 19: 716-720.
- 158. Effler, S.W. and D. A. Mathews. 2003. Impacts of a Soda Ash Facility on Onondaga Lake, New York. *Clearwaters*, Vol. 33, No. 1, Spring 2003.
- 159. Effler, S.W., and D.L. Johnson. 1980. Heavy Metal Distribution in Particles from the Flocculent Sediments of Onondaga Lake, NY in: *Trace Substances in Environmental Health* XIV, D.D. Hemphill, Ed., University of Missouri, Columbia.
- 160. Effler, S.W., and E.M. Owens. 1987. Modifications in Phosphorus Loadings to Onondaga Lake, U.S.A., Associated with Alkali Manufacturing. *Water, Air, and Soil Pollution* 32: 177-182.

- 161. Effler, S.W., and E.M. Owens. 1996. Density Stratification in Onondaga Lake: 1968-1994. *Lake and Reservoir Management* 12(1): 25-33.
- 162. Effler, S.W., and M.G. Perkins. 1987. Failure of Spring Turnover in Onondaga Lake, NY, U.S.A. *Water, Air, and Soil Pollution* 34: 285-291.
- 163. Effler, S.W., and M.G. Perkins. 1995. An Optics Model for Onondaga Lake. *Lake and Reservoir Management* 12(1): 115-125.
- 164. Effler, S.W., and Owens, E.M. 1986. The Density of Inflows to Onondaga Lake, U.S.A., 1980 and 1981. *Water, Air, and Soil Pollution* 28: 105-115.
- Effler, S.W. and R. Hennigan. 1995. Onondaga Lake: Legacy of Pollution. Lake and Reservoir Management 12(1): 1-13.
- 166. Effler, S.W., and W.E. Dean. 1975. *Chemical Stratigraphy of Onondaga Lake Sediments*. Geol. Soc. Am. (Northeast Program), 1975, Annual Meeting, Syracuse, NY, p. 53.
- 167. Effler, S.W., M.G. Perkins, C.M. Brooks, S.M. Doerr, K.A. Whitehead, S. Boone, B.A. Wagner, and E. Haslam. *Studies of the Seneca and Oswego Rivers, and Oswego Harbor, 1993 (Final Report)*, August 1995.
- 168. Effler, S.W., C.M. Brooks, and C.T. Driscoll. *Depositing Seston in a Ca*²+ *Enriched Lake: Long-Term Changes in Rates and Stoichiometry*, July 1996.
- Effler, S.W., C.M. Brooks, and K.A. Whitehead. 1995. Domestic Waste Inputs of Nitrogen and Phosphorus to Onondaga Lake and Water Quality Implications. *Lake and Reservoir Management* 12(1): 127-140.
- 170. Effler, S.W., C.M. Brooks, J.M. Address, S.M. Doerr, M.L. Storey, and B.A. Wagner. 1991. Pollutant Loadings from Solvay Waste ISEDS to Lower Ninemile Creek, NY. *Water, Air, and Soil Pollution* 55: 427-444.
- 171. Effler, S.W., C.M. Brooks, M.G. Perkins, S.M. Doerr, K.A. Whitehead, B.A. Wagner, and C.T. Driscoll. *Onondaga Lake Monitoring Report, 1993 (Final Report)*, April 1995.
- 172. Effler, S.W., C.M. Brooks, M.G. Perkins, S.M. Doerr, K.A. Whitehead, B.A. Wagner, and C.T. Driscoll. *Onondaga Lake Monitoring Report*, 1994 (*Final Report*), July 1995.
- 173. Effler, S.W., C.M. Brooks, M.G. Perkins, S.M. Doerr, K.A. Whitehead, B.A. Wagner, C.A. Siegfried, L.Walrath, and R. Canale. *Impact of Zebra Mussel Invasion of River Water Quality*, June 16, 1994.
- 174. Effler, S.W., C.M. Brooks, M.T. Auer, and S.M. Doerr. 1990. Free Ammonia in a Polluted, Hypereutrophic, Urban Lake. *Journal Water Pollution Control Federation* 62(6): 771-779.
- Effler, S.W., C.T. Driscoll, M.C. Wodka, R. Honstein, S.P. Devan, P. Jaran, and T. Edwards. 1985. Phosphorus Cycling in Ionically Polluted Onondaga Lake, New York. *Water, Air, and Soil Pollution* 24: 121-130.
- 176. Effler, S.W., D.L. Johnson, J. Jiao, and M.G. Perkins. 1992. Optical Impacts and Sources of Suspended Solids in Onondaga Creek, U.S.A. *Water Resources Bulletin* 28: 252-262.
- 177. Effler, S.W., E.M. Owens, and K.A. Schimel. 1985. Density Stratification in Ionically Polluted Onondaga Lake, U.S.A. *Water, Air, and Soil Pollution* 27: 247-258.
- 178. Effler, S.W., J.P. Hassett, M.T. Auer, and N. Johnson. 1988. Depletion of Epilimnetic Oxygen, and Accumulation of Hydrogen Sulfide in the Hypolimnion of Onondaga Lake, NY, U.S.A. *Water, Air, and Soil Pollution* 39: 59-74.

- 179. Effler, S.W., K. Schimel, and F.J. Millero. 1986. Salinity, Chloride, and Density Relationships in Ion Enriched Onondaga Lake, NY. *Water, Air, and Soil Pollution* 27: 169-180.
- 180. Effler, S.W., M.C. Rand, and T. Tamayo. 1979. Effects of Heavy Metals and Other Pollutants on the Sediments of Onondaga Lake. *Water, Air, and Soil Pollution* 12(2): 117-134.
- 181. Effler, S.W., M.C. Wodka, and S.D. Field. 1984. Scattering and Absorption of Light in Onondaga Lake. *Journal Environmental Engineering Division* ASCE 110: 1134-1145.
- 182. Effler, S.W., M.C. Wodka, C.T. Driscoll, C. Brooks, M.G. Perkins, and E.M. Owens. 1986. Entrainment-Based Flux of Phosphorus in Onondaga Lake. *Journal Environmental Engineering Division* ASCE 112: 617-622.
- 183. Effler, S.W., M.C. Wodka, S.D. Field, and M.G. Perkins. 1982. *Gelbstoff in Onondaga Lake, NY*. Paper Presented at 45th Annual Meeting of the American Society of Limnology and Oceanography, Raleigh, NC, p. 17 of Abstracts.
- 184. Effler, S.W., M.G. Perkins, and C. Brooks. 1986. The Oxygen Resources of the Hypolimnion of Ionically Enriched Onondaga Lake, NY, U.S.A. *Water, Air, and Soil Poll*ution 29: 93-108.
- 185. Effler, S.W., M.G. Perkins, and S.D. Field. 1984. Onondaga Lake and the Dynamics of Chloride in the Oswego River. *Water, Air, and Soil Pollution* 23: 69-80.
- 186. Effler, S.W., M.G. Perkins, C.M. Brooks, S.M. Doerr, K.A. Whitehead, B.A. Wagner, S.B. Boone, and E. Haslam. *Studies of the Seneca and Oswego Rivers*, 1994, November 1995.
- Effler, S.W., M.G. Perkins, K.A. Whitehead, and E.A. Romanowicz. 1995. Ionic Inputs to Onondaga Lake: Origins, Character, and Changes. *Lake and Reservoir Management* 12(1): 15-23.
- 188. Effler, S.W., P. Jaran, and C.R. Carter. 1983. Onondaga Lake and Dissolved Oxygen in the Seneca River, *J. Env. Eng. Div.*, ASCE 109(4): 945-951.
- 189. Effler, S.W., R. Roop, and M.G. Perkins. 1988. A Simple Technique for Estimating the Absorption and Scattering Coefficients. *Water Resources Bulletin* 24: 397-404.
- 190. Effler, S.W., S.D. Field, M.A. Meyer, and P. Sze. 1981. Response of Onondaga Lake to Restoration Efforts, *J. Env. Eng. Div.*, ASCE 107(EE1): 191-210.
- 191. Effler, S.W., S.M. Doerr, and E.M. Owens. Salinity Stratification in Seneca River, NY: Changes since Closure of a Soda Ash Facility May 1995.
- 192. Effler, S.W., S.M. Doerr, C.M. Brooks, and C. Rowell. 1990. Chloride in the Pore Water and Water Column of Onondaga Lake, NY, U.S.A. *Water, Air, and Soil Pollution* 51: 215-326.
- 193. Effler, S.W., S.P. Devan, and P. Rodgers. 1985. Chloride Loading to Lake Ontario from Onondaga Lake, NY. *Journal Great Lakes Research* 11: 53-58.
- 194. Effler, S.W., S.P. Devan, P. Rodgers, and C.T. Driscoll. 1983. *The Recent History (1970-1982) and Nature of Chloride Loading to Lake Ontario from Onondaga Lake, NY*. Paper Presented at the 26th Conference on Great Lakes Research, Oswego, NY.
- 195. Effler, S.W., /UFI. Oswego River Water Quality Monitoring Data 1992, January 25, 1993.
- 196. Effler, S. W., B. A. Wagner, S. M. O'Donnell, D. A. Matthews, D. M. O'Donnell, R. K. Gelda, C. M. Matthews, E.A. Cowen. 2004. An Upwelling Event at Onondaga Lake, NY: Characterization, Impact, and Recurrence. *Hydrobiologia*, 511 (1 – 3): 185 - 199

- 197. Effler, SW. A Study of the Recent Paleolimnology of Onondaga Lake. Syracuse University, 1975, 162 Pages
- 198. Esser, A., Soil Conservation Service. Onondaga Lake Watershed, Rural Nonpoint Source Management Plan (Draft), May 1993.
- 199. Etter, T.R. 1966. Report on Ninemile Creek. Syracuse, NY. (Unpublished).
- 200. Exponent Environmental Group. 2000. Onondaga Lake RI/FS: supplemental data phase 2A work plan.
- 201. Federal Water Pollution Control Administration and New York Department of Health, 1968. Water Pollution Control Problems and Improvement Needs, Lake Ontario and St. Lawrence River Basins. Fed. Water Pollution Control Administration, Chicago, and New York Department of Health, Albany, NY. 125 p.
- 202. Ferrante, John G. 2005. Onondaga Lake: A Changing Ecosystem. Clearwaters, 35(2): 10-16.
- 203. Field SD and Effler SW. Photosynthesis Light Mathematical Formulations. *Journal of Environmental Engineering*. 1981; 108(EE1):199-203.
- 204. Field SD and Effler SW. Temperature and the Productivity Light Relationship. *Water Resources Bulletin.* 1988; 24(2):325-328.
- 205. Field, S.D. 1980. *Nutrient-Saturated Algal Growth in Hypereutrophic Onondaga Lake, Syracuse, NY*. Ph.D. Dissertation, Syracuse University, Syracuse, NY. 172 p.
- 206. Field, S.D., and S.W. Effler. 1979. *Diurnal Dissolved Oxygen in Hypereutrophic Onondaga Lake, NY*. Paper Presented at the 42nd Annual Meeting of the American Society Limnology and Oceanography, Stony Brook, NY.
- 207. Field, S.D., and S.W. Effler. 1980. *Indication of Heterotrophic Activity in Hypereutrophic Onondaga Lake, Syracuse, NY*. Paper Presented at 43rd Annual Meeting American Society Limnology and Oceanography, Knoxville, TN.
- 208. Field, S.D., and S.W. Effler. 1983. Light-Productivity Model for Onondaga Lake, NY. *Journal Environmental Engineering Division*, ASCE 109: 830-844.
- 209. Field, S.D.; Effler, S.W. 1983. Light Attenuation in Onondaga Lake, NY, USA, 1978. Archiv fur *Hydrobiologie*. 98(4): 409-421, November, 1983. 5 Fig, 1 Tab, 31 Ref
- 210. Fitting, Beth. Pirro announces PLA for Onondaga Lake cleanup. *The Business Journal* Central New York, Syracuse; Aug 31, 1998; Vol. 12, Iss. 18; pg. 1
- 211. Fitting, Beth. Court halts Onondaga Lake project; *The Business Journal* Central New York, Syracuse; Feb 12, 1999; Vol. 13, Iss. 6; pg. 1
- 212. Fitting, Beth. Federal court approves Onondaga Lake agreement. *The Business Journal* Central New York, Syracuse; Feb 16, 1998; Vol. 12, Iss. 4; pg. 1
- 213. Follain, J.R., S. Felt, and S. McCoskey/Syracuse University. *A Review and Forecast of the Onondaga County Economy*, 5/14/96 (Preliminary Report Report #2).
- 214. Fox, J.A. 2004. New microsatellite primers for *Daphnia galeata mendotae*. *Molecular Ecology Notes*, December 2004, 4(4): 544-546(3)
- Freedman, PL; Canale, RP; Pendergast, JF. Modeling Storm Overflow Impacts on Eutrophic Lake. Journal of the Environmental Engineering Division, American Society of Civil Engineers Vol. 106, No EE2 Proceedings Paper 15355, p 335-349, April 1980, 7 Fig., 2 Tab., 21 Ref., 1 Append.

- 216. Freehafer, Douglas A. and Pierson, Oliver, 2004, Onondaga Lake Watershed A Geographic Information System Project Phase I – Needs Assessment and Spatial Data Framework. U.S. Geological Survey. Open-File Report 2004-1259, 79 pages; online only.
- 217. Gandino, Christopher John. 1996. *Community Structure, and Population Characteristics of Fishes in a Recovering New York Lake*. Master's Thesis. College of Environmental Science and Forestry, State University Of New York, 108 Pages
- 218. Ganley, Robert C., PE, MacArthur, Dwight A., PE. *Teaming Up to Improve Onondaga Lake*. O'Brien & Gere's Portfolio, Summer 1998
- 219. Gardiner, James Terry. *Report on the purity of ice from Onondaga Lake, the Erie Canal at Syracuse, and from Cazenovia Lake.* Albany, State Board of Health of New York, 1886
- 220. Garofalo, J.E., and S.W. Effler. 1987. Coating of Zooplankton with Calcium in Onondaga Lake, NY. *Environmental Science and Technology* 21: 604-606.
- 221. Gbondo-Tugbawa, S. 1996. Concentrations and Fluxes of Total and Methylmercury to Onondaga Lake, Syracuse, New York. Master's Thesis, Syracuse University, Syracuse, New York.
- 222. Gbondo-Tugbawa, S., and C.T. Driscoll. 1998. Application of the Regional Mercury Cycling Model (RMCM) to Predict the Fate and Remediation of Mercury in Onondaga Lake. *Water, Air, and Soil Pollution* 105: 417-426.
- 223. Gelda, R.K. and S.W. Effler. 2002. Estimating Oxygen Exchange across the Air–Water Interface of a Hypereutrophic Lake. *Hydrobiologia*, 487: 243–254.
- 224. Gelda, R.K. and S.W. Effler. 2002. Metabolic Rate Estimates for a Eutrophic Lake from Diel Dissolved Oxygen Signals. *Hydrobiologia* 485: 51–66, 2002.
- 225. Gelda, R.K. and S.W. Effler. 2000. A River Water Quality Model for Chlorophyll and Dissolved Oxygen that Accommodates Zebra Mussel Metabolism. *Water Quality and Ecosystem Modeling*, 1: 271-309.
- 226. Gelda, R.K., S.W. Effler, C.M. Brooks. 1999. Nitrite, and the Two Stages of Nitrification in Nitrogen Polluted Onondaga Lake, New York. *J Environ Qual* 28 (5): 1505-1517 SEP-OCT 1999
- 227. Gelda, R.K.; M.T. Auer, S.W. Effler. 1995. Determination of Sediment Oxygen Demand by Direct Measurement and by Inference from Reduced Species Accumulation. *Marine & Freshwater Research.* 46(1):81-88
- 228. Gelda, R.K., C.M. Brooks, S.W. Effler, and M.T. Auer. 2000. Interannual Variations in Nitrification in a Hypereutrophic Urban Lake: Occurrences and Implications. *Water Res.*, 34(4): 1107-1118.
- 229. Gelda, R.K., S.W. Effler, S.M. O'Donnell. 2001. Probabilistic Model of Ammonia and Toxicity Status for Urban Lake. *Journal of Water Resources Planning*, 127(5): 337-347.
- 230. Gelda, R.K., S.W. Effler, E.M. Owens. 2001. River Dissolved Oxygen Model with Zebra Mussel Oxygen Demand (ZOD). (Pre-print) *Journal of Environmental Engineering*, 127(9).
- 231. Gelda, R.K., and M.T. Auer. 1995. Development and Testing of a Dissolved Oxygen Model for a Hypereutrophic Lake, NY. *Lake and Reservoir Management* 12(1): 165-179.
- 232. Gelda, R.K., M.T. Auer, S.W. Effler, S.C. Chapra, and M.L. Storey. 1996. Determination of Reaeration Coefficients: A Whole Lake Approach. *Journal Environmental Engineering* ASCE 122(4): 269-275.

- 233. Gelda, Rakesh Kumar, PhD.1994. A Comprehensive Dissolved Oxygen Model for Temperate Dimictic Eutrophic Lakes. Michigan Technological University, 1994, 181 Pages
- 234. Gigliotti, Trevis J. 2004. *Mapping macrophyte vegetation in Onondaga Lake using IKONOS and ASTER image data*. Masters Thesis. College of Environmental Science and Forestry, State University Of New York.
- 235. Golightley, Sara K. 1995. Master's Thesis. *Fate Of Organic Contaminants In Onondaga Lake* (*New York*), College of Environmental Science and Forestry, State University Of New York, 137 pages
- 236. Hairston, Nelson G., Jr.; Colleen M. Kearns; Linda Perry Demma; and Steven W. Effler. 2005. Species-Specific *Daphnia* Phenotypes: A History of Industrial Pollution and Pelagic Ecosystem Response. *Ecology*, 86(7): 1669-1678.
- 237. Hairston NG. Perry LJ. Bohonak AJ. Fellows MQ. Kearns CM. Engstrom DR. 1999. Population biology of a failed invasion: Paleolimnology of *Daphnia exilis* in upstate New York. *Limnology* & *Oceanography*. 44(3):477-486, 1999 May.
- 238. Hargitt, Chas W. 1926. The Life History of a Fake! (In Discussion and Correspondence). *Science*, New Series, 63(1630): 334-335. (Mar. 26, 1926),
- 239. Harman, W.N. 1968. Replacement of Pleurocerids by *Bithynia* in Polluted Waters of Central New York. *The Nautilus* 81(3): 77-83.
- 240. Harman, W.N. 1970. New Distribution Records and Ecological Notes on Central New York Unionacea. *American Midland Naturalist* 84(1): 46-58.
- 241. Harman, W.N., and C.O. Berg. 1970. Freshwater Mollusca of the Finger Lakes Region of New York. Ohio Journal Science 70(3): 146-150.
- 242. Harnett, Gena and S.W. Effler. *The State of Onondaga Lake. Syracuse, N.Y.* Onondaga Lake Management Conference, 1993
- 243. Harting, Don. New transportation center coming to city's north side. *CNY Business Journal*, Syracuse; Dec 26, 1994; Vol. 8, Iss. 26; 1; pg. 1
- 244. Hassett JP. *Sources of Organic Contaminants to Onondaga Lake*. Progress Reported. New York: Chemistry Department at SUNY College of Environmental Science and Forestry; 1994.
- 245. Hassett, J.P., and S.M. Hubbard. (Not dated). Sources of Organic Contaminants to Onondaga Lake (Final Report) SUNY-ESF Chemistry Dept.
- 246. Health Department Issues 2001-2002 Fish Advisories for Recreational Anglers. State of New York Department of Health 7/10/01
- 247. Heidtke T.M., M.T. Auer. 1992. Partitioning Phosphorus Loads Implications for Lake Restoration. *J Water Res Pl*-Asce 118 (5): 562-579
- 248. Heidtke, T.M. 1989. *Onondaga Lake Loading Analyses: Fecal Coliforms*. Submitted to CNY Regional Planning and Development Board (for NYSDEC), Syracuse, NY.
- 249. Henderson, Andrew. Congressman McHugh promises to help with lake cleanup project. Valley News, March 30, 2002
- 250. Hennigan, J.J. 1975. Precast Concrete Piles Cut Plant Construction Cost. *Public Works* 106(10): 84-85.
- 251. Hennigan, R.D. Onondaga Lake Revisited. *Clearwaters*, 35(2): 48-54.

- 252. Hennigan, R.D. 1989. America's Dirtiest Lake. Clearwaters, NYWPCA 19(4): 8-12.
- 253. Hennigan, Robert D. (Chairman). 1988. Onondaga Lake Advisory Committee Annual Report 1988.
- 254. Hennigan, R.D., and S.W. Effler. 1985. *Onondaga Lake and Watershed Management Project*. Draft Prepared for the NYSDEC, CNY Regional Planning, and Development Board.
- 255. Henry EA; Dodge-Murphy LJ; Bigham GN, and Klein SM. 1995. Modeling the transport and fate of mercury in an urban lake (Onondaga Lake, NY). *Water, Air, and Soil Pollution*. 80:489-498.
- 256. Henry EA; Dodge-Murphy LJ; Bigham GN; Klein SM, and Gilmour CC. 1995. Total mercury and methylmercury mass balance in an alkaline, hypereutrophic urban lake (Onondaga Lake, NY). *Water, Air, and Soil Pollution.* 80:509-518.
- 257. Herrell, C. 1975. *The Image of Onondaga Lake: A Content Analysis of Environmental Information*. Department of Geography, Syracuse University, Syracuse, NY.
- 258. Hewlett, J.D. 1956. *The Development of Vegetation on the Solvay Wastebeds*. Masters Thesis, State University College of Forestry at Syracuse University, Syracuse, NY. 143 p.
- 259. Hindenlong, D.M., P. Rudewicz, and D.E. Smith. 1981. *Analysis of Onondaga Lake Fish Samples for Benzene and Chlorobenzene*. Allied Chemical Corporation, memorandum to R.S. Price.
- 260. Hohman, Christopher D., 2004. *Cultural resource management survey phase 1B archaeological reconnaissance: Onondaga Lake site, LCP Bridge Street site, Town of Geddes Onondaga County, New York*, MCD 06707/. Public Archaeology Facility, Binghamton University. February 10, 2004.
- 261. Hohman, Christopher D., 2003. Cultural resource management survey phase 1B archaeological reconnaissance: Onondaga Lake site, LCP OU-1 portion brine mud, and PCB area #1, Town of Geddes Onondaga County, New York, MCD 06707. Public Archaeology Facility, Binghamton University, October 21, 2003.
- 262. Hontz, Brooke Elaine. 1998... Are Onondaga Lake Management Conference and Lake Champlain Management Conference successful? A comparative case study (New York, Vermont). Master's thesis. College of Environmental Science and Forestry, State University Of New York, Syracuse NY., 109 pages
- 263. Hornstein, R., C.T. Driscoll, D.L. Johnson, and S.W. Effler. 1982. *Phosphorus Chemistry in the Pore Water of the Flocculent Layers of Onondaga Lake.* Paper Presented at the 45th Annual Meeting of American Society Limnology and Oceanography, Raleigh, NC.
- 264. Hornstein, R.L. 1981. An Assessment of Mechanisms by Which Phosphorus may be Regulated within the Sediments of Onondaga Lake, NY. Masters Thesis, Syracuse University, Syracuse, NY.
- 265. Hubbard, Shawn Michael. 1996., *Sources Of Organic Contaminants To Onondaga Lake (New York)*. Master's thesis. College of Environmental Science and Forestry, State University Of New York, Syracuse NY., 173 Pages
- 266. Hunt, Melody Joan. 1992. *Empirical Water Quality Models Applied To Onondaga Lake (New York)* Master's thesis. College of Environmental Science and Forestry, State University Of New York, Syracuse NY. 122 Pages
- 267. Hunter, R. Douglas. 1975. Growth, Fecundity, and Bioenergetics in Three Populations of *Lymnaea palustris* in Upstate New York. *Ecology*, 56(1): 50-63.

- 268. Hunter, R. Douglas. 1975. Variation in Populations of *Lymnaea palustris* in Upstate New York. *American Midland Naturalist*, 94(2):. 401-420.
- 269. Ichthyological Associates, Inc. and EcoLogic LLC. 2001. Assessment of the status of the fish community of Onondaga Lake on 2000, Onondaga Lake 2000 Fish Monitoring Program. Report prepared for Onondaga County Dept. Drainage and Sanitation. Syracuse NY final report dated Nov. 2001.
- 270. Jackson, D.F. 1968. Onondaga Lake, NY An Unusual Algal Environment, in Jackson, D.F. (ed.), *Algae, Man, and the Environment*. Syracuse University Press, Syracuse, NY. p. 515-524.
- 271. Jackson, D.F. 1969. Primary Productivity Studies in Onondaga Lake. Verh. Internat. Verein. Limnol. 17: 86-94.
- 272. Jackson, Daniel F. An environmental assessment of Onondaga Lake and its major contributory streams: Onondaga Lake Scientific Council: Syracuse, N.Y. 1966
- 273. Jacobs LA. Klein SM. Henry EA. Mercury Cycling In The Water Column Of A Seasonally Anoxic Urban Lake (Onondaga Lake, NY). *Water, Air, & Soil Pollution.* 80(1-4):553-562, 1995 Feb.
- 274. Jiao, J.1991. Suspended Particles and Turbidity Apportionment in Onondaga Lake and Owasco Lake, New York. College of Environmental Science and Forestry State University Of New York, 167 Pages
- Johnson, D.L., F. Jaio, G. DeSantos, and S.W. Effler. 1991. Individual Particle Analysis of Suspended Materials in Onondaga Lake, NY. *Environmental Science and Technology* 25: 736-744.
- 276. Johnson, N.A. 1989. Surficial sediment characteristics and sediment phosphorus release rates in Onondaga Lake, NY. Masters Thesis. Michigan Technological University.
- 277. Kantrowitz, I.H. 1970. *Ground Water Resources in the Eastern Oswego River Basin, New York,* 1970. Prepared for the Eastern Oswego Regional Water Resources Planning Board.
- 278. Kappel, William M., and Mark A. Teece. 2007. *Paleoenvironmental Assessment and Deglacial Chronology of the Onondaga Trough, Onondaga County, New York.* U.S. Department of the Interior, U.S. Geological Survey, Open-File Report 2007–1060. June 2007.
- 279. Kappel, W.M., and W. S. McPherson. 1998. *Remediation of mudboil discharges in the Tully Valley of Central New York*. U. S. Geological Survey Fact Sheet. FS 143-97.
- 280. Kappel, W.M., Sherwood, D.A., and Johnston, W.H., 1996, Hydrogeology of the Tully Valley and Characterization of Mudboil Activity, Onondaga County, New York, U.S. Geological Survey, Water Resources Investigations Report 96-4043.
- 281. Karmosky, C. C., Harpp, K. S. 2004. Onondaga Lake: A Forsaken Superfund Site, or a Sampling Playground for Environmental Geochemistry Classes? American Geophysical Union, Spring Meeting 2004, abstract #ED31A-05.
- 282. Kim, Daekeun, Qianrui Wang, George A. Sorial, Dionysios D. Dionysiou, and Dennis Timberlake. 2004. A model approach for evaluating effects of remedial actions on mercury speciation and transport in a lake system. *Science of The Total Environment* 327 (1-3, 5): 1-15
- 283. Klein, S.M. and L.A. Jacobs. Distribution of Mercury in the Sediments of Onondaga Lake, NY. *Water, Air, & Soil Pollution.* 80(1-4):1035-1038, 1995 Feb.
- 284. Knowledge Systems and Research, Inc. Perceptions, Attitudes and Behavior Toward Onondaga Lake - Survey of Community Leaders and General Population in Onondaga County, Preliminary Results, Findings and Recommendations, April 12, 1993.
- 285. Korienek, J.J. 1994. Exploring depositional events in Onondaga Lake: appearance, composition, and aging of varved sediments. Masters Thesis. Michigan Technological University.
- 286. Kozuchowski, Jack S., D.L. Johnson. 1978. Gaseous Emissions of Mercury from an Aquatic Vascular Plant. *Nature*, 274(3).
- 287. Kozuchowski, J.S. 1977. *The role of Phragmites communis in the transport of mercury from Onondaga Lake sediments: Syracuse NY.* Masters Thesis. State University of New York College of Environmental Science and Forestry.
- 288. LaBounty James, editor. 1996. Lake and Reservoir Management. Madison, WI: North American Lake Management Society. Vol. 12.
- 289. LaBounty James, editor. 1998. Lake and Reservoir Management. Madison, WI: North American Lake Management Society. Vol. 14.
- 290. LaGorga, John J., and J. G. Ferrante. 2005. Do Agricultural Best Management Practices Really Work? *Clearwaters*, 35(2): 41-43.
- 291. Lange, Cameron L., Daniel R. Opdyke, PhD, and Jeanne C. Powers. 2001. Zebra mussel population dynamics: Implications for water quality modeling. *Clearwaters*. 31(1).
- 292. Landers, Jay. 2006. New Life for Onondaga Lake. Civil Engineering-ASCE, 76(5), 64-71, 86.
- 293. Lee, Kyungro. 1998. The Processes Regulating Hg_T and CH_3Hg^+ in the Water Column, Sediments, and Fish in Onondaga Lake, New York. Master's Thesis. Syracuse University, Syracuse, New York. December 1998.
- 294. Lee, Ro. 1989. Phosphorus in Onondaga Lake. J Water Pollut Con F 61 (1): 6-6
- 295. Leutze, W.P.1961. Arthropods from the Syracuse Formation, Silurian of New York. *Journal of Paleontology*, 35(1) 49-64.
- 296. Levin, Al. A dash of HUD money, sprinkle in a bond fund, add canal water, cook. *Syracuse Business*, Syracuse; Jan 01, 1997; Vol. 17, Iss. 2; pg. 1
- 297. Life Science Laboratories. Laboratory Analysis Report for Onondaga County. 1999.
- 298. Lifton, Wayne Stuart, 1978. Phytoplankton Community Interactions Of Onondaga Lake, New York With Special Regard To Nutrients. Doctoral dissertation. State University Of New York At Buffalo
- 299. Limno Tech, Inc. 1983. Development of a Microcomputer Water Quality Model for Onondaga Lake.
- 300. Limno Tech, Inc. 1978. *Mathematical Modeling of the Impact of Storms on Water Quality in Onondaga Lake* (prepared for Stearns & Wheler Engineers and Onondaga County).
- 301. Limnofix Inc. 1994. Report on Evaluation of Liquid Oxygen Injection to Improve Dissolved Oxygen in Onondaga Lake.
- 302. Lincoln, D.F. 1982. Glaciation in the Finger Lakes Region of New York. *American Journal of Science* 144(26): 290-301.
- 303. Lindstrom M. 2001. Distribution of particulate and reactive mercury in surface waters of Swedish forest lakes an empirically based predictive model. *Ecol Model* 136 (1): 81-93
- 304. Liu, Anbo, Elizabeth Garcia-Dominguez, E. D. Rhine and L. Y. Young 2004. A novel arsenate respiring isolate that can utilize aromatic substrates FEMS *Microbiology Ecology* 48(3, 1): Pages 323-332

- 305. Liverpool Public Library. 2002. Across the Lake a visit to Onondaga Lake's amusement parks 1875-1920 [video recording]
- 306. Lizlovs, Sandra. 2005. Industrial Waste Contamination: Past, Present, and Future. *Clearwaters*, 35(2): 25-29.
- 307. Louis Alexander. Latest Environmental Initiatives Are Balanced. *Capital District Business Review*, Albany; Aug 5, 1996; pg. 1
- 308. Madsen, J.D., J.A. Bloomfield, J.W. Sutherland, L.W. Eichler, and C.W. Boylen. 1996. The aquatic macrophyte community of Onondaga Lake, New York: Field survey and plant growth bioassays of lake sediments. *Lake and Reservoir Management*, 12(1):73-79.
- 309. Madsen, J.D., R.M. Smart, J.W. Sutherland, J.A. Bloomfield, L.W. Eichler, and C.W. Boylen. 1993. Onondaga Lake, New York: Distribution and abundance of aquatic vegetation related to the fertility of oncolite sediments. pp. 657-662. *In:* Landin, M.C., Ed. *Wetlands: Proceedings of the* 13th Annual Conference of the Society of Wetland Scientists, New Orleans, LA, June 1992.
- 310. Madsen, J.D., R.M. Smart, L.W. Eichler, C.W. Boylen, J.W. Sutherland, and J.A. Bloomfield. 1993. Submersed littoral vegetation distribution: Field quantification and experimental analysis of sediment types from Onondaga Lake, New York. Technical Report A-93-14, US Army Engineer Waterways Experiment Station, Vicksburg, MS. August 1993.
- 311. Madsen, JD; Sutherland, JW, Bloomfield, JA; Eichler, LW; Boylen, CW. 1994. Salinity and sediment effects on the growth of six aquatic macrophytes for potential revegetation of Onondaga Lake, NY. *Lake and Reservoir Management*, 9(2): 94.
- 312. Makarewicz, J.C., B. Cady, T. Lewis, J. Buttner, and J. Haynes. 1995. *Phytoplankton, Zooplankton, Macrobenthos, and Ichthyoplankton Abundance, Biomass and Species Composition in Onondaga Lake*. Onondaga Lake Management Conference.
- 313. Makarewicz, J.C. 1995. *Phytoplankton, zooplankton, macrobenthos and ichthyoplankton abundance, biomass and species composition in Onondaga Lake*. State University of New York at Brockport, Department of Biological Sciences, Center for Applied Aquatic Science and Aquaculture.
- 314. Marzec, G.M. 1988. *Onondaga Lake Transparency/Bacteria Study*. 1987. Masters Degree Report on an Internship with Onondaga County Department of Drainage and Sanitation, College of Environmental Science and Forestry State University of New York, Syracuse, NY. (Unpublished)
- Matthews, David A. and Steven W. Effler. 2006. Long-term changes in the areal hypolimnetic oxygen deficit (AHOD) of Onondaga Lake: Evidence of sediment feedback. *Limnol. Oceanogr.* 51(1, part 2): 702–714.
- 316. Matthews, David A. and S. W. Effler. 2003. Decreases in Pollutant Loading from Residual Soda Ash Production Waste. *Water, Air, and Soil Pollution* 146: 55–73.
- 317. Matthews, David A., and S. W. Effler.2001. Water Quality Signatures and the Zebra Mussel. *Clearwaters*, 31(1): 19-27
- 318. Matthews D.A., S.W. Effler, and C.M. Matthews. 2000. Ammonia and Toxicity Criteria in Polluted Onondaga Lake, NY. *Water Environment Research*. 31: 731-741.
- 319. Matthews, D.A., S.W. Effler, C.M. Matthews, C.A. Siegfried, and M.E. Spada. 2001. Responses of Onondaga Lake, NY to Early Stages of Rehabilitation: Unanticipated Ecosystem Feedbacks. *Water Env Res*, 73(6): 691-703.

- 320. McAlear, J.A. 1996. Concentrations and Fluxes of Total Mercury and Methylmercury within a Wastewater Treatment Plant. Master's Thesis, Syracuse University, Syracuse, NY.
- 321. McKaig, Ryan . Deal in Focus: N.Y. Eyes \$100 Million Offering for Unclean Onondaga Lake. *Bond Buyer*, New York, N.Y.; Jul 2, 2001; pg. 44
- 322. Mele, J. 1994. Onondaga Lake: To undo a legacy. LakeLine, 14(4): 22-25
- 323. Metcalf, L., and H.P. Eddy. 1920. *Report to Syracuse Intercepting Sewer Board upon the Treatment and Disposal at Syracuse*. Metcalf and Eddy, Consulting Engineers, Boston, MA.
- 324. Meyer, M.A. and S.W. Effler. 1980. Changes in the Zooplankton of Onondaga Lake, 1969-1978. *Environmental Pollution* (Ser. A) 23(2): 131-152.
- 325. Meyer, M.A., S.D. Field, S.W. Effler, and M.C. Rand. 1979. *Temporal and Spatial Distribution of Limnetic Zooplankton in Onondaga Lake, Syracuse, NY*. Paper Presented at the 42nd Annual Meeting American Soc. Limnology and Oceanography, Stony Brook, NY.
- 326. Miller, G. 1977. Early Plant Succession on a Dredging Spoils Island in Seneca River of Upstate New-York. *B Torrey Bot Club* 104 (4): 386-391
- 327. Moffa & Associates.1987. *1985 Onondaga Lake Monitoring Program*. With Appendix A, April 1987. Prepared for Onondaga County Department of Drainage and Sanitation.
- 328. Moffa & Associates.1988. *1986 Onondaga Lake Monitoring Program* with Appendix A, April 1988. Prepared for Onondaga County Department of Drainage and Sanitation.
- 329. Moffa, P.E., and M.C. Rand. 1970. *Engineering Considerations of a Eutrophic Water Body*. *International Association Great Lakes Research*, 13th Conference Great Lakes Research, Proceedings, Buffalo, NY, p. 693-706.
- 330. Moffa, P.E., F.J. Drehwing, J.M. Karanik, J.J. Hennigan. 1971. Comprehensive Abatement Program for a Eutrophic Lake. International Association Great Lakes Research, 14th Conference Great Lakes Research, Proceedings, Toronto, Ontario, p. 690-705.
- 331. Moffa, P.E., J.C. Byron, S.D. Freedman, J.M. Karanik, and R. Ott. 1980. *Methodology for Evaluating the Impact and Abatement of Combined Sewer Overflows; a Case Study of Onondaga Lake, NY.* USEPA Report EPA-600/8-80-048, 137 p.
- 332. Moffa, P.E., J.C. Byron, S.D. Freedman. 1979. Cost-effective Abatement of Combined Sewer Overflow Discharges through the Assessment of Water Quality Impacts. Presented at NYWPCA, October 1979.
- 333. Moffa, P.E., J.C. Byron, S.W. Effler, R.C. Canale, and J.M. Karanik. 1978. *The Impact of Combined Sewer Overflows on an Urban Lake (Onondaga Lake)*. Paper Presented at the 1978 NYWPCF Conference.
- 334. Moffa, P.E., P.P. Davis, H.M. Goebel, C.R. Smithgall, J.M. Karanik, A.R. Russell, S.W. Martin. 1997. *Compliance with the National CSO Abatement Policy for Syracuse, New York*, presented at the 1997 Water Environment Federation Meeting, Chicago, Ill.
- 335. Moffa, P.E., S. Nix, C.R. Smithgall, J. Karanik, and A. Russell. 1994. *Strategizing for CSO Abatement as Part of the Onondaga Lake Management Plan*, Proceedings WEF Specialty Conference: A Global Perspective for Reducing CSOs, Louisville, KY, July 1994.
- 336. Moffa, P.E., S.J. Nix, and A. Russell. 1994. A Watershed Approach, Water Quality Impacts of CSOs and Cost-Effective Abatement presented at Water Environmental Federation Conference, October 1994.

- 337. Murphy, C. B Jr. 1973. Effect of Restricted Use of Phosphate-Based Detergents on Onondaga Lake (in Reports). *Science*, New Series, 182(4110): 379-381
- 338. Murphy, C.B., Jr., Onondaga Lake, in Lakes of New York, *Volume II Ecology of the Lakes of Western New York*, edited by J. Bloomfield, Academic Press, 1978. (Pgs 223-365).
- 339. Nalepa, T.F., and G.L. Fahnenstiel (Eds.), 1995. Zebra Mussels in the Saginaw Bay, Lake Huron Ecosystem. Special Section in *Journal of Great Lakes Research* 21(4).
- 340. Nemerow, Nelson Leonard.1971. *Benefits of water quality enhancement*, Department of Civil Engineering, Syracuse University, Prepared for the Environmental Protection Agency. Published by Environmental Protection Agency Water Quality Office, Washington D.C. Water pollution control research series. 16110 DAJ 12/70. viii, 201 p. illus. 29 cm.
- 341. Neupauer, R.M. 1991. *Hydrothermal and eutrophication model for Onondaga Lake. Masters Thesis.* Massachusetts Institute of Technology, Department of Civil Engineering.
- 342. New York State Attorney General's Office. 1998. State of New York's Determination to Disapprove and Revise the Onondaga Lake RI/FS Calcite Modeling Report. State of New York v. AlliedSignal, Inc. Civil Action No. 89-CV-815. September 4, 1998.
- 343. New York State Department of Environmental Conservation. 2007. Response to Comments: The 2006 NYS Section 303(d) List of Impaired Waters Requiring a TMDL. May 17, 2007.
- 344. New York State Department of Environmental Conservation and United States Environmental Protection Agency, Region 2. 2005. *RECORD OF DECISION-Onondaga Lake Bottom Subsite of the Onondaga Lake Superfund Site Towns of Geddes and Salina, Villages of Solvay and Liverpool, and City of Syracuse, Onondaga County, New York.* Superfund Site Identification Number: NYD986913580. July 2005.
- 345. New York State Department of Environmental Conservation, Division of Environmental Remediation. 2004. *Onondaga Lake bottom subsite of the Onondaga Lake superfund site, Syracuse, New York : Ninemile Creek baseline ecological risk assessment* : proposed plan. November 29, 2004.
- 346. New York State Department of Environmental Conservation, Division of Environmental Remediation. 2004. Onondaga Lake feasibility study report, Onondaga County, New York. November 29, 2004.
- 347. New York State Department of Environmental Conservation, Division of Environmental Remediation. 2003. Geddes Brook / Ninemile Creek baseline ecological risk assessment: Onondaga Lake Project, contract number C004365, Task Order 1. July 2003.
- 348. New York State Department of Environmental Conservation, Division of Environmental Remediation. 2003. *Geddes Brook / Ninemile Creek human health risk assessment: Onondaga Lake Project*, contract number C004365, Task Order 1. July 2003.
- 349. New York State Department of Environmental Conservation, Division of Environmental Remediation. 2003. *Geddes Brook / Ninemile Creek remedial investigation report: Onondaga Lake Project*, contract number C004365, Task Order 1. July 2003.
- 350. New York State Department of Environmental Conservation, Division of Environmental Remediation. 2002. *RECORD OF DECISION- Superfund proposed plan, Semet Residue Ponds sub-site of the Onondaga Lake Superfund site*: Town of Geddes, Onondaga County, New York, Site Number 7-34-008. March 2002.

- 351. New York State Department of Environmental Conservation, Region 7. 2001. *Onondaga Lake: past, present and future.* [videorecording]
- 352. New York State Department of Environmental Conservation Division of Environmental Remediation. 2000. *Geddes Brook/ Ninemile Creek Remedial Investigation and Feasibility Study Work Plan.* May 12, 2000.
- 353. New York State Department of Environmental Conservation. 1996. Onondaga Lake National Priorities List (NPL) Site Comprehensive Remedial Investigation/Feasibility Study Work Plan. May 1996.
- 354. New York State Department of Environmental Conservation. 1996. *Citizen Participation Plan for the Onondaga Lake National Priority List Site*. January 1996. Approved 2/22/96.
- 355. New York State Department of Environmental Conservation (Division of Water). *The Oswego-Seneca-Oneida Rivers Basin Report (1996-1996)*. April 1999 (Rotating Intensive Basin Studies Water Quality Assessment Program).
- 356. New York State Department of Environmental Conservation Division of Environmental Remediation. 1997. *RECORD OF DECISION-Ley Creek PCB Dredgings Inactive Hazardous Waste Site Salina (T), Onondaga County, New York; Site No. 7-34-044.* March 1997.
- 357. New York State Department of Environmental Conservation, Region 7. 1985. *The Allied Closure: Environmental Issues 1985.* 47 p. with App.
- 358. New York State Department of Environmental Conservation. 1985. *Onondaga Lake Mercury Trend Analysis: Sampling Protocol.* NYSDEC, Bureau Environmental Protection, Division of Fish and Wildlife, 15 p.
- 359. New York State Department of Environmental Conservation. 1987. An Overview of Mercury Contamination in the Fish of Onondaga Lake. NYSDEC Tech Rep 87-1.
- 360. New York State Department of Health (NYS DOH), Bureau of Environmental Exposure Investigation. Project Files: Onondaga Lake (site #734030) - Onondaga County; 1987-1994.
- 361. New York State Department of Health. 1951. The Onondaga Lake Drainage Basin: Recommended Classifications and Assignments of Standards of Quality and Purity for Designated Waters of NYS. NYS Department of Health, Albany, Oswego River Drainage Basin Survey Ser. Report. 1, 151 p.
- 362. New York State Department of Health. 1955. *Oswego River and Lower Seneca River Drainage Basin*. NYS Department of Health, Oswego River Drainage Basin Survey Ser. Report 3, 71 p.
- 363. New York State Department of Public Works. 1953. *Report on Northwest Arterial Connection of the NYS Thruway and West Shore Development of Lake Onondaga, Syracuse, NY*; Syracuse, NY Department of Public Works.
- 364. Niehaus, Stephen L. Determination of kinetic coefficients for a mathematical model of fecal coliform dynamics in Onondaga Lake, NY. 1989
- 365. Nix, S.J., J. Hassett, and L. Wright. *Preliminary Management Plan for Urban Runoff Pollution to Onondaga Lake*,; April 1994.
- 366. Noble, R.L. and J.L. Forney. 1969. *Fish Survey of Onondaga Lake Summer 1969*. Masters Thesis, Cornell University, Ithaca, NY 9 p.
- 367. Normandeau Associates. *Onondaga Lake Natural Resource Damage Assessment Plan.* Bedford, New Hampshire: Normandeau Associates; 1996J.

- 368. Nürnberg, Gertrud K. 1995. Quantifying Anoxia in Lakes. *Limnology and Oceanography*, 400(6): 1100-1111.
- 369. O'Brien & Gere Engineers. 1952. *Onondaga Lake Watershed*. Onondaga County Department of Public Works, Syracuse, NY.
- 370. O'Brien & Gere Engineers. 1952. *Sewage Treatment Facilities, Metropolitan Syracuse*. Report to Onondaga County Public Works Commission, Syracuse, NY.
- 371. O'Brien & Gere Engineers. 1971. Wastewater Facilities Report, Metropolitan Sewage Treatment Plant Expansion. Syracuse, NY.
- 372. O'Brien & Gere Engineers. 1973. Environmental Assessment Statement, Syracuse Metropolitan Sewage Treatment Plant and West Side Pump Station and Force Main. Onondaga County, NY.
- 373. O'Brien & Gere Engineers. 1977, 1979, 1987. Combined Sewer Overflow Abatement Program for Metropolitan Syracuse Treatment Plant Service Area, Department of Drainage and Sanitation, Onondaga County.
- 374. O'Brien & Gere Engineers. 1977. *Water Quality Survey of Seneca-Oneida-Oswego Rivers*. Submitted to CNY Regional Planning and Development Board, Syracuse, NY.
- 375. O'Brien & Gere Engineers. *Onondaga Lake Monitoring Program 1971*, June 1972. Prepared for Onondaga County Department of Public Works.
- 376. O'Brien & Gere Engineers. *Onondaga Lake Monitoring Program 1972*, (not dated). Prepared for Onondaga County Department of Public Works.
- 377. O'Brien & Gere Engineers. *Onondaga Lake Monitoring Program 1973*, February, 1975. Prepared for Onondaga County Department of Public Works.
- 378. O'Brien & Gere Engineers. *Onondaga Lake Monitoring Program 1974*, June 1975. Prepared for Onondaga County Department of Drainage and Sanitation.
- 379. O'Brien & Gere Engineers. *Onondaga Lake Monitoring Program 1975*, November 1976. Prepared for Onondaga County Department of Drainage and Sanitation.
- 380. O'Brien & Gere Engineers, Inc. *Remedial Investigation/Feasibility Study for Calcite and Mercury in Onondaga Lake*. O'Brien & Gere Engineers, Inc.; 1990.
- 381. O'Brien & Gere Engineers, Inc. 1993. *Remedial Investigation of Ley Creek Dredged material Area*, Inland Fisher Guide Division, General Motors Corporation, Syracuse, New York, September.
- 382. O'Brien & Gere Engineers, Inc. 1998. *Removal of RCRA Hazardous Waste Liquids at the LCP Bridge Street Facility, Solvay, New York. NYS DEC Site Code 7-34-049; AlliedSignal Inc.* December 1998.
- 383. O'Brien & Gere Engineers, Inc. 1999. *Removal of RCRA Hazardous Waste Sludges at the LCP Bridge Street Facility, Solvay, New York. NYS DEC Site Code 7-34-049; AlliedSignal Inc.* March 1999.
- 384. O'Brien & Gere Engineers, Inc., 2003. East Flume Intermediate Remedial Measure : letter, contract drawings and technical specifications. July 2003.
- 385. O'Brien & Gere Engineers, Inc., 2003. Final work plan, East Flume interim remedial measure : Syracuse, New York. May 2003

- 386. O'Brien, Karen Elizabeth, ME. *Modeling impacts of municipal wastewater discharges on Onondaga Lake, Syracuse, New York.* The Cooper Union for the Advancement of Science and Art, 1997, 100 pages.
- 387. O'Donnell, Robert Francis .*Onondaga Lake :_recreation--pollution--reclamation /* Oswego, N.Y. : State University of New York, College of Arts and Science, Professional Studies Division, 1968
- 388. Onondaga County Department of Drainage and Sanitation, Lake Improvement Project Office. Onondaga County CSO Program Evaluation Report Executive Summary. June 2001.
- 389. Onondaga County Department of Drainage and Sanitation, Lake Improvement Project Office. Onondaga County CSO Program Evaluation Report. May 2001.
- 390. Onondaga County Department of Drainage and Sanitation. *Ambient Monitoring Program.* Syracuse, NY: Department of Drainage and Sanitation; 1998.
- 391. Onondaga County Department of Drainage and Sanitation. 1997. Proposed Onondaga Lake settlement.
- Onondaga County Department of Drainage and Sanitation. 1996. Proposed Municipal Compliance Plan and Draft Environmental Impact Statement. Submitted to NYSDEC January 11, 1996.
- 393. Onondaga County Legislature. 2000. Declaring the County of Onondaga to be lead agency under the State Environmental Quality Review Act (SEQRA), and the Revolving Loan Fund State Environmental Review Process (SERP), declaring the action to be classified as a Type I action under SEQRA and under SERP: and authorizing the publication, circulation of these declarations, and filing of the environmental assessment form for the Stage III Ammonia and Stage II Phosphorous Removal Project related to the Onondaga Lake amended consent judgment (ACJ).
- 394. Onondaga County Soil and Water Conservation District. Onondaga Lake Non-Point Source Information and Education Program and Best Management Practice Implementation Demonstration (Final Report), June 1994.
- 395. Onondaga County, NY. Water Quality Monitoring Programs, Year 2001 Proposed Sampling Programs. Ambient Monitoring Program ed. Syracuse, NY; Feb 2001.
- 396. Onondaga County, *Onondaga Lake Study* (prepared for the Water Quality Office, Environmental Protection Agency), April 1971.
- 397. Onondaga County, 1994. Draft Municipal Compliance Plan/Draft Environmental Impact Statement, Onondaga County Wastewater Collection, and Treatment.
- 398. Onondaga County. Atlantic States Legal Foundation vs. The Onondaga County Dept of Drainage and Sanitation. 1998.
- 399. Onondaga Lake Cleanup Corporation. 2001. The state of Onondaga Lake.
- 400. Onondaga Lake Management Conference. 1993. Onondaga Lake A Plan for Action, November
- 401. Onondaga Lake Partnership. 2005. Onondaga Lake Cleanup Plan Finalized (article). *Reflections*, 2(3): Fall 2003.
- 402. Onondaga Lake Partnership. 2003. Peer Review Evaluation of The OCDWEP/QEA Water-Quality Model Of The Three Rivers System In Central New York State, Final Report. April 2003
- 403. Ortmann, A. E. 1903. *Illex illecebrosus* (LeSueur), the 'Squid from Onondaga Lake, N. Y.' (in Discussion and Correspondence). *Science*, New Series, 17(418): 30-31.

- 404. Owens E and Effler S. 1996. Modeling the Impacts of a Proposed Hypolimnetic Wastewater Discharge on Stratification and Mixing in Onondaga Lake. *Lake and Reservoir Management.*; 12(1):195-206.
- 405. Owens, E.M., and S.W. Effler. 1985. *A Stratification Model for Onondaga Lake, NY*. Submitted to CNY Regional Planning and Development Board. A Contribution of the Upstate Freshwater Institute, Syracuse, NY.
- 406. Owens, E.M., and S.W. Effler. 1987. *Meteorologically-Based Variations in Thermal Stratification*. Presented at the 51st Annual Meeting American Soc. Limnology and Oceanography, Madison, WI.
- 407. Owens, E.M., and S.W. Effler. 1989. Changes in Stratification in Onondaga Lake, NY. *Water Resources Bull* 25(3): 587-597.
- 408. Owens, E.M., and S.W. Effler. Forecasting Impacts of a Hypolimnetic Wastewater Discharge on Lake Stratification and Mixing, November 21, 1994.
- 409. Pacific Northwest Environmental Research Laboratory, Corvallis, Oregon. 1974. National Eutrophication Survey Methods for Lake Samples in 1972. USEPA National Eutrophication Survey, Working Paper 1, 39 p.
- 410. Pacific Northwest Environmental Research Laboratory, Corvallis, Oregon. 1974. An Approach to a Relative Trophic Index System for Classifying Lakes and Reservoirs. USEPA, National Eutrophication Survey, Working Paper 24, 44 p.
- 411. Pacific Northwest Environmental Research Laboratory, Corvallis, Oregon. 1974. *The Relationship of Phosphorus and Nitrogen to the Trophic State of Northeast and North-Central Lakes and Reservoirs*. USEPA, National Eutrophication Survey, Working Paper 33, 35 p.
- 412. Parsons Engineering Science, Inc., 2005. *Geddes Brook / Ninemile Creek feasibility study report: Onondaga County, New York.* Parsons Engineering Science, Inc., Liverpool, N.Y. May 2005.
- 413. Parsons Engineering Science, Inc. 2004. *Comprehensive habitat restoration plan for the Onondaga Lake watershed*: contract number: DACW49-01-D-003; delivery order: 0006/. Parsons Engineering Science, Inc. (Liverpool, N.Y.)
- 414. Parsons Engineering Science, Inc., 2004. *Onondaga Lake Feasibility Study Report*. Parsons Engineering Science, Inc. (Liverpool, N.Y.), May 2004.
- 415. Parsons Engineering Science, Inc., 2004. *Onondaga Lake Feasibility Study Executive Summary*. Parsons Engineering Science, Inc. (Liverpool, N.Y.), May 2004.
- 416. Parsons Engineering Science, Inc., 2003. *Citizen participation plan for the interim remedial measure at the East Flume*. Parsons Engineering Science, Inc. (Liverpool, N.Y.), October 2003.
- 417. Parsons Engineering Science, Inc., 2003. *Trail section 3C of the Onondaga Lake trail and habitat project: baseline conditions memorandum*. Parsons Engineering Science, Inc. (Liverpool, N.Y.).
- 418. Parsons Engineering Science, Inc., 2003. *Trail section 3C of the Onondaga Lake trail and habitat project: project definition documentation memorandum*. Parsons Engineering Science, Inc. (Liverpool, N.Y.).
- 419. Parsons Engineering Science, Inc., 2002. *Health and safety plan : Onondaga Lake southwest corner groundwater upwelling investigation*. Parsons Engineering Science, Inc. (Liverpool, N.Y.), October 2002.

- 420. Paschal, James E.; Sherwood, Donald A. *Relation of sediment and nutrient loads to watershed characteristics and land use in the Otisco Lake Basin*, Onondaga County, New York / Publication: Ithaca, N.Y. : Denver, CO : U.S. Dept. of the Interior, Geological Survey ; Books and Open-File Reports, 1987
- 421. Pauer JJ. Auer MT. Nitrification in the water column and sediment of a hypereutrophic lake and adjoining river system. *Water Research*. 34(4):1247-1254, 2000 Mar.
- 422. Penn MR. Auer MT. Doerr SM. Driscoll CT. Brooks CM. Effler SW. Seasonality in phosphorus release rates from the sediments of a hypereutrophic lake under a matrix of pH and redox conditions. *Canadian Journal of Fisheries & Aquatic Sciences*. 57(5):1033-1041, 2000 May.
- 423. Penn MR. Auer MT. Seasonal Variability in Phosphorus Speciation and Deposition in A Calcareous, Eutrophic Lake. *Marine Geology*. 139(1-4):47-59, 1997 Jun.
- 424. Penn MR. Auer MT. Vanorman EL. Korienek JJ. Phosphorus Diagenesis in Lake Sediments -Investigations Using Fractionation Techniques. *Marine & Freshwater Research*. 46(1):89-99, 1995.
- 425. Penn, M.R., J.J. Pauer, R.K. Gelda, and M.T. Auer. *Technical Report, Laboratory Measurement of Chemical Exchange at the Sediment, Water Interface of Onondaga Lake*. January 27, 1994.
- 426. Penn, Michael Robert, PhD. *The Deposition, Diagenesis and Recycle of Sedimentary Phosphorus in a Hypereutrophic Lake.* Michigan Technological University, 1994, 234 Pages
- 427. Perkins, M.G., and S.W. Effler. 1995. Optical Characteristics of Onondaga Lake 1968-1990. Lake and Reservoir Management 12(1): 103-113.
- 428. Perkins, M.G., E.A. Romanowicz, and E.T. Haslam of UFI. *Hydrogeologic Investigation of the Nearshore Area of Onondaga Lake from Ley Creek to Onondaga Creek, Including the Barge Canal Terminal Area.* January 1996.
- 429. Perkins, MG; Effler, SW. 1996. Optical characteristics of Onondaga Lake: 1968-1990. *Lake and Reservoir Management*, 12(1): 103-113,
- 430. Phelps C.D., Young LY. Anaerobic biodegradation of BTEX and gasoline in various aquatic sediments. *Biodegradation*. 10(1):15-25, 1999 Feb.
- 431. Phelps, Craig Darren. 1998. Anaerobic Biodegradation Of Aromatic Petroleum Hydrocarbons. Doctoral dissertation. Rutgers The State University of New Jersey - New Brunswick, 148 pages
- 432. Pitts, N.F. 1948. *Pollution Survey of Onondaga Lake and Tributaries within the City of Syracuse*. City Engineer, Department of Engineering, Syracuse, NY.
- 433. Poulet FM. Wolfe MJ. Spitsbergen JM. Naturally Occurring Orocutaneous Papillomas And Carcinomas Of Brown Bullheads (Ictalurus Nebulosus) In New York State. Veterinary Pathology. 31(1):8-18, 1994 Jan
- 434. PTI Environmental Services, Bellevue, WA. 1993. Onondaga Lake RI/FS Mercury and Calcite Mass Balance Investigation Data Report Appendix B Field Methods.
- 435. PTI Environmental Services, Bellevue, WA. 1994. *Onondaga Lake RI/FS Calcite Modeling Report*, Prepared by HydroQual, Inc. and PIT Environmental Services, Bellevue, WA.
- 436. PTI Environmental Services, Waltham, MA. 1992. *Onondaga Lake Mercury Modeling Plan.* 24 p.
- 437. PTI Environmental Services, Waltham, MA. 1992. *Onondaga Lake RI/FS Calcite Modeling Plan*. Prepared by HydroQual, Inc., Mahwah, NJ. 30 p.

- 438. PTI Environmental Services, Waltham, MA. 1992. Onondaga Lake RI/FS Sediment Processes Study Work Plan and Sampling and Analysis Plan.
- 439. PTI Environmental Services, Waltham, MA. 1992. Onondaga Lake RI/FS Preliminary Overview of Sediment Remediation Alternatives. 44 p.
- 440. PTI Environmental Services, Waltham, MA. 1992. Onondaga Lake RI/FS Site History Report. 107 p.
- 441. PTI Environmental Services, Waltham, MA. 1992. Onondaga Lake RI/FS Geophysical Survey Report. 8 p.
- 442. PTI Environmental Services, Waltham, MA. 1993. Onondaga Lake RI/FS Bioaccumulation Investigation Data Report. 62 p.
- 443. PTI Environmental Services, Waltham, MA. 1993. Onondaga Lake RI/FS Substance Distribution Investigation Data Report. 90 p.
- 444. PTI Environmental Services, Waltham, MA. 1993. Onondaga Lake RI/FS Ecological Effects Investigation Data Report. 54 p.
- 445. PTI Environmental Services, Waltham, MA. 1993. Onondaga Lake RI/FS. Substances Distribution Investigation Data Report. Appendix B Field Methods.
- 446. PTI Environmental Services, Waltham, MA. 1993. *Supplemental Sediment Sampling at Onondaga Lake-East Flume*, an addendum to the Onondaga Lake RI/FS Substance Distribution Investigation Data Report, Volume 1.
- 447. PTI Environmental Services, Waltham, MA. 1994. Onondaga Lake RI/FS Mercury Modeling Report. Prepared for AlliedSignal, Inc. 117 p.
- 448. PTI Environmental Services, Waltham, MA. Onondaga Lake RI/FS. 1993. *Mercury and Calcite Mass Balance Investigation Data Report*. 32 p.
- 449. Public health assessment, Onondaga Lake, city of Syracuse, towns of Salina and Geddes, Onondaga County, New York, CERCLIS no. NYD986913580. New York (State)., Dept. of Health. 1995
- 450. Quantitative Environmental Analysis, LLC, EcoLogic, LLC, and W. Walker, Jr. Development of a Mechanistic Water Quality Model of Onondaga Lake Phase 1 Report: Modeling Work Plan. Prepared for: Onondaga County Department of Water Environment Protection Syracuse, NY. January 20, 2006
- 451. Quantitative Environmental Analysis, LLC. *Final Phase 2 Report Three Rivers Water Quality Model.* Prepared for: Onondaga County Department of Water Environment Protection Syracuse, NY, Onondaga Lake Cleanup Corp., Syracuse, NY. Job Number: ONOsen: 227. August 2005.
- 452. Radin, Andrew J. 1992. Onondaga Lake: Reflections on the Future. A Public Information Video. Masters Thesis. College of Environmental Science and Forestry, State University Of New York, 85 pages
- 453. Rand, M.C., S.W. Effler, and T. Tamatyo. 1977. *The Effects of Pollution on the Sediments of Onondaga Lake*. Paper Presented at the 1977 National Water Pollution Control Federation Conference.

- 454. Rauschman, Alix Jean. 1993. *The Potential Use of Municipal Solid Waste Compost and Incinerator Bottom Ash as a Soil Medium for Vegetating the Solvay Waste Beds, Camillus, New York.* Masters Thesis. College of Environmental Science and Forestry, State University Of New York. 116 pages
- 455. Regnell, Olof, Goran Ewald, Elsmari Lord. Factors Controlling Temporal Variation in Methyl Mercury Levels in Sediment and Water in a Seasonally Stratified Lake. *Limnology and Oceanography*, 42(8) ,1784-1795. (Dec., 1997)
- 456. Rhine, E. Danielle, E. Garcia-Dominguez, C.D. Phelps, and L.Y. Young. 2005. Environmental Microbes Can Speciate and Cycle Arsenic. *Environ. Sci. Technol.* 2005, 39, 9569-9573.
- 457. Ringler, N.H., C. Gandino, P. Hirethota, R. Danahey, P. Tango, C. Morgan, C. Millard, M. Murphy, M. Arrigo, R. J. Sloan, S.W. Effler. 1996. Fish Communities and Habitats in Onondaga Lake, Adjoining Portions of the Seneca River, and Lake Tributaries. Chapter 6.5 in S.W. Effler (ed.). *Limnological and engineering analysis of a polluted urban lake*. *Prelude to environmental management of Onondaga Lake*, New York. Springer-Verlag, NY.
- 458. Romanowicz, E.A., and M.G. Perkins. Hydrologic Investigation of Tully Mud Boils; October 6, 1993.
- 459. Rowell, HC.1996. Paleolimnology of Onondaga Lake: The history of anthropogenic impacts on water quality. *Lake and Reservoir Management*, 12(1): 35-45.
- Rowell, HC; Brooks, CM; Doerr, SM; Effler, SW. 1990. Chloride in the Pore Water and Water Column of Onondaga Lake, N.Y., U.S.A, Water, *Air and Soil Pollution WAPLAC*, 51(3/4): 315-326. 5 fig, 2 tab, 29 ref.
- 461. Rowell, Herbert Chandler. 1992. *Paleolimnology, Sediment Stratigraphy, and Water Quality History of Onondaga Lake, Syracuse, New York.* Doctoral Dissertation. College of Environmental Science and Forestry. State University Of New York, 248 Pages
- 462. Rucinski, Daniel K., Martin T. Auer, David W. Watkins, Jr., Steven W. Effler, Rakesh K. Gelda, Susan M. Doerr O'Donnell, and David M. O'Donnell. 2003. Options Supporting a Dual Discharge Strategy for a Major Municipal Wastewater Effluent. World Water and Environmental Resources Congress and Related Symposia World Water and Environmental Resources Congress. June 23– 26, 2003. Philadelphia, Pennsylvania, Paul Bizier, Paul DeBarry, Editors Management.
- 463. Rucinski, Daniel K.; Martin T. Auer, David W. Watkins Jr., Steven W. Effler, Susan M. Doerr O'Donnell, and Rakesh K. Gelda. 2007. Accessing Assimilative Capacity through a Dual Discharge Approach. *Journal of Water Resources Planning and Management*, 133(6). November 1, 2007.
- 464. Rupp, L. 1989. Paradise Lost and Found? Clearwaters, NYWPCA 19(4): 20-23.
- 465. Russell-Hunter, W.D., R.A. Browne, and D.W. Aldridge. 1984. Overwinter Tissue Degrowth in Natural Populations of Freshwater Pulmonate Snails (*Helisoma Trivolvis* and *Lymnaea Palustris*). *Ecology*, 65(1): 223-229. (Feb., 1984)
- 466. Schein, Richard H. 1991. Urban Origin and Form in Central New York. *The Geographical Review*, 81(1):, 52-69. (Jan., 1991)
- 467. Schuster, R. M. 1949. The Ecology and Distribution of Hepaticae in Central and Western New York. *American Midland Naturalist*, 42(3):, 513-712. (Nov., 1949)

- 468. Scrudato, R.J., and R.H. Sugat. 1983. State Pollutant Discharge Elimination System (SPDES): Toxic Loadings to the Oswego River Drainage Basin, North Central, NY. Submitted to the Legislative Commission on Science and Technology, NYS SUNY, Oswego, 96 p.
- 469. Seeger, E.S. 1980. *The Fate of Heavy Metals in Onondaga Lake*. Masters Thesis, Clarkson College, Potsdam, NY 169 p.
- 470. Segelken ,Roger. *Researchers: Invading crustaceans survive snooze in super-polluted lake*. Cornell Chronicle. May 20, 1999
- 471. Sharpe, Charles W. 2004. *Mercury dynamics of Onondaga Lake and adjacent wetlands*. Submitted in partial fulfillment of the requirements for the degree of Master of Science in Environmental Engineering in the Graduate School of Syracuse University.
- 472. Shero, B.R., M. Parker, and K.M. Stewart. 1978. The Diatoms, Productivity, and Morphometry of 43 Lakes in New York State, U.S.A. *Int. Revue ges. Hydrobiol.* 63(3): 365-387.
- 473. Short, J.R., L. M. Benton, W. B. Luce, J. Walton. 1993. Reconstructing the Image of an Industrial City. *Annals of the Association of American Geographers*, 83(2):. 207-224. (Jun., 1993)
- 474. Siegfried, C.; N.A. Auer, S.W. Effler. 1996. Changes in the zooplankton of Onondaga Lake: Causes and implications. *Lake and Reservoir Management* [Lake Reserv. Manage.], 12(1): 59-71.
- 475. Sinclair, Ewan; David T. Mayack; Kenneth Roblee; Nobuyoshi Yamashita; Kurunthachalam Kannan. (2006). Occurrence of Perfluoroalkyl Surfactants in Water, Fish, and Birds from New York State. *Environmental Contamination and Toxicology*. 50, 398–410 (2006)
- 476. Sissell, Kara. Lake Cleanup May Cost Honeywell Close to \$450 Million. *Chemical Week*, 12/1/2004, Vol. 166 Issue 40, p12-12.
- 477. Sissell, Kara. Honeywell, New York Debate Superfund Site Cleanup. *Chemical Week*, 8/11/2004, Vol. 166 Issue 26, p40-40
- 478. Sivapalarasah, Jeyahararan. 1993. Surface Heat Flux Analysis of Onondaga Lake, Master's Thesis. Syracuse University, Syracuse, New York. December 1993.
- 479. Sloan RJ; Skinner LC; Horn EG, and Karcher R. *An Overview of Mercury Contamination in the Fish of Onondaga Lake*. New York State/ Department of Environmental Conservation; 1987.
- 480. Sloan, Ronald J. 1987. *An overview of mercury contamination in the fish of Onondaga Lake.* : New York State Dept. of Environmental Conservation, Albany, N.Y.
- 481. Smallwood, W. M. 1903. The Remains of Bear and Deer on the Shores of Onondaga Lake (in Shorter Articles). *Science*, New Series, 18(444):. 26-27. (Jul. 3, 1903)
- 482. Smith H. M. 1903. Marine Animals in Interior Waters (in Discussion and Correspondence). *Science*, New Series, 17(420). 114. (Jan. 16, 1903)
- 483. Smith, Val H. 1983. Low Nitrogen to Phosphorus Ratios Favor Dominance by Blue-Green Algae in Lake Phytoplankton (in Reports). *Science*, New Series, 221(4611). 669-671. (Aug. 12, 1983)
- 484. Sondheimer, Ernest, Wilford A. Dence, Leonard R. Mattick, Sol R. Silverman. 1966. Composition of Combustible Concretions of the Alewife, *Alosa pseudoharengus* (in Reports). *Science*, New Series, 152(3719): 221-223. (Apr. 8, 1966)
- 485. Spada, M.E. and N.H. Ringler, 2002. Invasion of Onondaga Lake, New York, by the Zebra Mussel (*Dreissena polymorpha*) following Reductions in N Pollution, Upstate Freshwater Institute. *Journal of the North American Benthological Society* 21(4): 634-650.

- 486. Spada, Michael Efim. 2000. *Factors limiting zebra mussels (Dreissena polymorpha) in a polluted urban system, Onondaga Lake, NY*. Masters Thesis. College of Environmental Science and Forestry, State University of New York, 94 pages.
- 487. Stantec Consulting Services Inc. 2002 Onondaga Lake and Seneca River Zebra Mussel (Dreissena polymorpha) Assessment Program. Prepared for: Onondaga County Department of Water Environment Protection. February 2003
- 488. Stearns & Wheler. Bioaccumulation of Organic Compounds in Fish Flesh in Onondaga Lake (final report), January 1993.
- 489. Stearns & Wheler. *Onondaga Lake Cooperative Monitoring Program 1991 Annual Report*, with Appendix B and C. August1993.
- 490. Stearns & Wheler. Onondaga Lake Cooperative Monitoring Program 1992 Annual Report, with Appendix B. August 1993.
- 491. Stearns & Wheler. *Onondaga Lake Monitoring Program 1976 Annual Report*, October 1977. Prepared for Onondaga County Department of Drainage and Sanitation.
- 492. Stearns & Wheler. *Onondaga Lake Monitoring Program 1977 Annual Report*, August 1978. Prepared for Onondaga County Department of Drainage and Sanitation.
- 493. Stearns & Wheler. *Onondaga Lake Monitoring Program 1978 Annual Report*, December 1979. Prepared for Onondaga County Department of Drainage and Sanitation.
- 494. Stearns & Wheler. *Onondaga Lake Monitoring Program 1979 Annual Report*, December 1980. Prepared for Onondaga County Department of Drainage and Sanitation.
- 495. Stearns & Wheler. *Onondaga Lake Monitoring Program 1980 Annual Report*, August 1981. Prepared for Onondaga County Department of Drainage and Sanitation.
- 496. Stearns & Wheler. *Onondaga Lake Monitoring Program 1987 Annual Report*, with Appendix B, February 1989. Prepared for Onondaga County Department of Drainage and Sanitation.
- 497. Stearns & Wheler. *Onondaga Lake Monitoring Program 1988 Annual Report*, with Appendix B, April 1990. Prepared for Onondaga County Department of Drainage and Sanitation.
- 498. Stearns & Wheler. *Onondaga Lake Monitoring Program 1989 Annual Report*, with Appendix B, April 1991, Tables, and Graphs April, 1990. Prepared for Onondaga County Department of Drainage and Sanitation.
- 499. Stearns & Wheler. *Onondaga Lake Monitoring Program 1990 Annual Report*, with Appendix B, December 1991, Tables and Graphs, August, 1991. Prepared for Onondaga County Department of Drainage and Sanitation.
- 500. Stearns & Wheler. *Onondaga Lake Monitoring Program 1993 Annual Report*, with Appendix B, August 1994. Prepared for Onondaga County Department of Drainage and Sanitation.
- 501. Stearns & Wheler. *Onondaga Lake Monitoring Program 1995 Annual Report*, with Appendix A, October 1996, Appendix B, C, and D, August 1996. Prepared for Onondaga County Department of Drainage and Sanitation.
- 502. Stearns & Wheler. *Onondaga Lake Monitoring Program 1996 Annual Report*, September 1997, with Appendix B, C, and D, July 1997. Prepared for Onondaga County Department of Drainage and Sanitation.

- 503. Stearns & Wheler. *Onondaga Lake Monitoring Program 1994 Annual Report*, with Appendix B, July 1995. Addendum, October, 1995. Prepared for Onondaga County Department of Drainage and Sanitation.
- 504. Steele, Daniel. Onondaga Wetlands Plan- A Nature Oriented Vision for the Community. 6/10/1992.
- 505. Stewart, K.M. 1978. Infrared Imagery and Thermal Transects of Onondaga Lake, New York. *Verh. Internat. Verein. Limnol.* 20: 496-501.
- 506. Storey, Auer, Barth and Graham. (1992). Site-Specific Determination of Kinetic Coefficients for Modeling Algal Growth. *Ecological Modeling*, 66: 181-196.
- 507. Storey, M.L. 1989. *Modeling primary production in Onondaga Lake, New York*. Masters Thesis. Michigan Technological University.
- 508. Stromquist, Virginia Karn. Sediment oxygen demand as a manifestation of organic carbon diagenesis in the sediments of Onondaga Lake, Syracuse, NY. 1996
- 509. Struthers, P.H. 1928. Carp Control Studies in the Erie Canal, in a Biological Survey of the Erie-Niagara System. NYS Conservation Department. *18th Annual Report Supplement*, p. 208-219.
- 510. Supplemental mercury methylation and remineralization studies: work plan. PTI Environmental Services (Bellevue, WA).1996
- 511. Sutherland, J.C. 1969. *Geochemical Systems in Onondaga Lake (Central NYS) Compared with the Great Lakes*. International Association. Great Lakes Research, 12th Conference. Great Lakes Research, Proc., Ann Arbor, MI. p. 357-363.
- 512. Swanson J.C., D. Mendelsohn, and A. Odulo. 1994. *Onondaga Lake Outlet Hydrodynamic Study, Draft*. Submitted to Onondaga Lake Management Conference.
- 513. Syracuse University. 1970. *Benefits of Water Quality Enhancement*. USEPA and Syracuse University Department of Civil Engineering, 194 p.
- 514. Sze, P. 1972. *The Phytoplankton of Onondaga Lake*. Ph.D. Dissertation, Cornell University, Ithaca, NY. 177 p.
- 515. Sze, P. 1975. Possible Effects of Lower Phosphorus Concentrations on the Phytoplankton in Onondaga Lake, NY, U.S.A. *Phycologia* 14(4): 197-204.
- 516. Sze, P. 1980. Seasonal Succession of Phytoplankton in Onondaga Lake, NY (U.S.A.) *Phycologia* 19(1): 54-59.
- 517. Sze, P., and J.M. Kingsbury. 1972. Distribution of Phytoplankton in a Polluted Saline Lake, Onondaga Lake, NY. *Journal Phycology* 8(1): 25-37.
- 518. Sze, P., and J.M. Kingsbury. 1974. Interactions of Phytoplankters Cultured from a Polluted Saline Lake, Onondaga Lake, NY. *Journal Phycology* 10(1): 5-8.
- 519. Sze, P.; Auer, N.A.; Effler, S.W.; Storey, M.L.; Auer, M.T. 1990. Zooplankton Impacts on Chlorophyll and Transparency in Onondaga Lake, New York. *Hydrobiologia HYDRB8*,200/201: 603-617, (August 27, 1990)
- 520. TAMS Consultants, Inc. 2002. *Onondaga Lake baseline ecological risk assessment*: (text, tables, and figures), Onondaga Lake Project, site no. 7-34-030-002, contract number C004365, task order 1.

- 521. TAMS Consultants, Inc. 2002. *Onondaga Lake human health risk assessment*: (text, tables, figures, and appendices A through D), Onondaga Lake Project, site no. 7-34-030-002, contract no. C004365, task order 1. Exponent Environmental Group.
- 522. TAMS Consultants, Inc. 2002. *Onondaga Lake remedial investigation report*: (text, tables, and figures), Onondaga Lake Project, site no. 7-34-030-002, contract number C004365, task order 1. Exponent Environmental Group.
- 523. Tamayo, T.A. 1976. An Investigation of the Possible Existence of a Previously Unstudied Portion of Sediment in Onondaga Lake. Masters Thesis, Syracuse University, Syracuse, NY.
- 524. Tango, Peter John. 1999.. *Fish community ecology of a hypereutrophic urban lake*. Doctoral dissertation. College of Environmental Science and Forestry, State University of New York, 92 pages.
- 525. Tango, PJ; Ringler, NH. 1996. The role of pollution and external refugia in structuring the Onondaga Lake fish community. *Lake and Reservoir Management* [Lake Reserv. Manage.], 12(1):. 81-90.
- 526. Tanner, Paul Arnold. 1991. Inorganic Ground-Water Chemistry At An Industrial Site Near Oil City And Onondaga Lake, Syracuse, New York. Masters Thesis. College of Environmental Science and Forestry State University of New York, 143 Pages.
- 527. The Onondaga Lake drainage basin: recommended classifications and assignments of standards of quality and purity for designated waters of New York State. New York (State), Water Pollution Control Board. 1951
- 528. Thompson, Donald L. 2002. *The golden age of Onondaga Lake resorts*. Purple Mountain Press, Ltd., Fleischmanns, NY.
- 529. Thomsen Associates and Calocerinos and Spina. 1980. *Hydrogeologic Studies, Onondaga Lake, Crucible Landfill.*
- 530. Tomasoski, Katherine Ann. Measurement and implications of the bioavailability of phosphorus in suspended sediments in Onondaga Lake, Syracuse, NY. 1997
- 531. Tsay, T. K., Ruggaber, G. J., Effler, S. W., and Driscoll, C. T. (1992). "Thermal stratification modeling of lakes with sediment heat flux. "J. *Hydr. Engrg.* ASCE, 118(3), 407–419.
- 532. United States Army Corps of Engineers, Buffalo District. 1999. Final detailed project report and environmental assessment, Cross Lake/Seneca River: flood damage reduction measures, Cayuga and Onondaga Counties, New York: section 205 of the 1948 Flood Control Act, as amended by US ACOE.
- 533. United States Army Corp of Engineers. Environmental Assessment and Finding of No Significant Impact (FONSI) for the Onondaga Lake Inner Harbor Dredging Design Project, Syracuse, New York, November 1996.
- 534. United States Army Corps of Engineers. Buffalo District. 1992. *Technical Report Onondaga Lake*, New York Main Report, March
- 535. United States Army Corps of Engineers. 1971. Flood Plain Information: Ley Creek, Salina and Dewitt Townships, Onondaga County, NY. Army Engineer District, Buffalo, NY. Prepared for Eastern Oswego Basin-Regional Water Resources Planning Board, 44 p.
- 536. United States Army Corps of Engineers. Buffalo District. 1992. Technical Report Onondaga Lake, New York Main Report, March

- 537. United States Department of Health and Human Services. 1998. Petitioned Health Consultation-Onondaga Lake, Syracuse, Onondaga County, New York. CERCLIS No. NYD986913580. Public Health Service; Agency for Toxic Substances and Disease Registry; Division of Health Assessment and Consultation. Atlanta, Georgia 30333. August 7, 1998.
- 538. United States District Court Northern District of New York. 2002. State of New York's Determinations Disapproving and Revising Honeywell's Remedial Investigation, Baseline Ecological Risk Assessment Reports for the Onondaga Lake System. Civil Action No. 89-CV-815. December 31, 2002.
- 539. United States District Court Northern District of New York. 1999. Onondaga Lake Agreement Amended Consent Judgement. Civil Action No. 88-CV-0066. January 20, 1999.
- 540. United States District Court Northern District of New York. 1992. Allied-Signal, Inc., Consent Decree. Civil Action No. 89-CV-815. March 16, 1993.
- 541. United States Environmental Protection Agency. 1973. Report of Mercury Source Investigation Onondaga Lake, NY and Allied Chemical Corporation, Solvay, NY. National Field Investigations Center, Cincinnati, OH, and Region II, New York. 67 p.
- 542. United States Environmental Protection Agency. 1974. Environmental Impact Statement on Wastewater Treatment Facilities Construction Grants for the Onondaga Lake Drainage Basin. USEPA, Region II, New York, NY, 246 p.
- 543. United States Environmental Protection Agency. *Onondaga Lake Study*. Water Quality Office (EPA); 1971.
- 544. Unknown Author. 1887. Purity of Ice. Science, 9(206):, 40-41. (Jan. 14, 1887)
- 545. Unknown Author. 1977. Program Hopes to Reduce Pollution from Sewer Overflow. *Water and Wastes Engineering* 14(5): 32.
- 546. Unknown author. 1995. Modeling sediment ammonia release using sediments nitrogen profiles. *Lake and Reservoir Management* 11(2): 202.
- 547. Unknown author. 1995. Organic carbon diagenesis in the sediments of Onondaga Lake, Syracuse, N.Y. *Lake and Reservoir Management*, 11(2): 195-196
- 548. Upstate Freshwater Institute. The State of Onondaga Lake, Volumes I and II, 1994.
- 549. Upstate Freshwater Institute. Responses to Onondaga County Comments of May 5, 1993 on UFI Onondaga Lake/Seneca River Water Quality Models, August 31, 1993.
- 550. USGS, 2000. Salt Production in Syracuse, New York ("The Salt City") and the Hydrogeology of the Onondaga Creek Valley. Fact Sheet 139-00. November 2000.
- 551. USGS, 2000. *History of Landslides at the Base of Bare Mountain, Tully Valley, Onondaga County, New York.* Fact Sheet 190-99. June 2000.
- 552. USGS, 1999. A Precipitation-Runoff Model for part of the Ninemile Creek Watershed near Camillus, Onondaga County, New York. U.S. Geological Survey Water-Resources Investigations Report 98-4201.
- 553. USGS, 1999. *Ecological Status of Onondaga Creek in Tully Valley, New York- Summer 1998*. USGS Fact Sheet FS 141-99.
- 554. Utility to Pay a Fine for Polluting a Lake. *New York Times* Current Events Edition, New York, N.Y.; Dec 3, 1991; Late Edition (East Coast); pg. B8.

- 555. VanDruff, L.W., and M.A. Pike. *Wildlife and Habitats of the Onondaga Lake Area* A Review, August 1992.
- 556. Wagner, B. A., and S. W. Effler. *Near Shore Benthic Macroinvertebrates of Onondaga Lake, New York*, January 1993.
- 557. Wagner, Bruce Alan. 1999.. *The wave-zone benthic communities of Onondaga Lake: A highly disturbed aquatic system in central New York*. Masters Thesis. College of Environmental Science and Forestry State University Of New York, 65 pages
- 558. Walker, W. W. (1991). Compilation and review of Onondaga Lake water quality data. Onondaga County Drainage and Sanitation Department, Syracuse, N.Y.
- 559. Walker, W.W. September 1995. Documentation for AUTOFLUX, prepared for Stearns & Wheler, LLC and Onondaga County Department of Drainage and Sanitation.
- 560. Walker, W. W. (2002) (prepared for Onondaga County, NY). Update of Statistical Framework for the Onondaga Lake Ambient Monitoring Program Phase I Water Quality Monitoring, Prepared for Department of Water Environment Protection Onondaga County, New York. January 23, 2002
- 561. Walker, W. W. (1999) (prepared for Onondaga County, NY). A *Statistical Framework for the Onondaga Lake Ambient Monitoring Program Phase I*, January 15, 1999.
- 562. Walker, W. W. (1999) (prepared for Onondaga County, NY). A Statistical Framework for the Onondaga Lake Ambient Monitoring Program Phase II, February 22, 2000.
- 563. Walker, W.W. (2002) (prepared for Onondaga County, NY). Update of Statistical Framework for the Onondaga Lake Ambient Monitoring Program Phase II Biological Monitoring, August 29, 2002.
- 564. Wang, W. 1993. *Patterns of Total Mercury Concentration in Onondaga Lake*. Master's Thesis, Syracuse University, Syracuse, New York.
- 565. Wang, W. and C.T. Driscoll. 1995. Patterns of Total Mercury Concentration in Onondaga Lake, New York. *Environmental Science and Technology*. 29(9): 2261-2266.
- 566. Weber, Herman R. A proposed \$48.8 million metropolitan sewage treatment plant for Syracuse, New York: an answer to control pollution of Onondaga Lake? Author. 1970
- 567. Weidemann, A. D., and T. T. Bannister. 1986. Absorption and scattering coefficients Irondequoit Bay. *Limnol. Oceanogr.* 31(3), 1986, 567-583.
- 568. Weston, Roy F. *Feasibility of joint municipal and industrial wastewater treatment in the Onondaga lake watershed, Onondaga County, New York.* [Washington, D.C.] : Dept. of the Interior, Federal Water Pollution Control Administration, 1969
- 569. Weston, Roy F., Industrial discharges in the Ley Creek Sanitary District: Interim report, Onondaga Lake Watershed, Onondaga County, New York. West Chester, PA. : Environmental Scientists, 1969
- 570. Wilcox DA and Effler SW. Formation of Alewife Concretions in Polluted Onondaga Lake. *Environmental Pollution*. 1981; 2:203-215.
- 571. Williamson, Karen; Hesler, Don.2006. Return to Glory. New York State Conservationist, 61(1): 7-14
- 572. Wing, Michael R., A. Preston, N. Acquisto, and W. F. Ahrnsbrak. 1995. Intrusion of Saline Groundwater into Seneca and Cayuga Lakes, New York. *Limnol. Oceanogr.* 40(4), 1995, 791-801.

- 573. Wodka, M.C., S.W. Effler, and C.T. Driscoll. 1985. Phosphorus Deposition from the Epilimnion of Onondaga Lake. *Limnol. and Oceanogr.* 30: 833-843.
- 574. Wodka, M.C., S.W. Effler, C.T. Driscoll, S.D. Field, and S.D. Devan. 1983. Diffusivity Based Flux of Phosphorus in Onondaga Lake. *Journal Environmental Engineering Division* ASCE 109: 1403-1415.
- 575. Womble, R.N. *Calcium Carbonate Deposition in Ca*²+ *Polluted Onondaga Lake, New York, U.S.A.*, Master's Thesis, Syracuse University, Syracuse, New York.
- 576. Womble, R.N., C.T. Driscoll, S.W. Effler. 1996. Calcium Carbonate Deposition in Ca²⁺ Polluted Onondaga Lake, New York, U.S.A. *Water Research* 30: 2139-2147.
- 577. Wurst, L., State University of New York at Binghamton. *Public Archaeology Facility Report*, July 22, 1994.
- 578. Yager, Richard M.; William M. Kappel; L. Niel Plummer. (2007) Origin of halite brine in the Onondaga Trough near Syracuse, New York State, USA: modeling geochemistry and variabledensity flow. *Hydrogeology Journal* (2007) 15: 1321–1339.
- 579. Yin, C. 1982. A Research of Sources and Budget of Mineral Sediments in Onondaga Lake, Central New York. Masters Thesis, SUNY College of Environmental Science and Forestry, Syracuse, NY.
- 580. Yin, Chengqing, and D.L. Johnson. 1984. An individual particle analysis and budget study of Onondaga Lake sediments. *Limnology and Oceanography* 29(6): 1193-1201.
- 581. Yin, C.Q., D.L. Johnson, and S.W. Effler. 1982. *Individual Particle Characterizations of Suspended Mineral Sediments in the Three Rivers System*. Paper Presented at 45th Annual Meeting American Society Limnology and Oceanography, Raleigh, NC.
- 582. Young, T.C., J.V. DePinto, and E.S. Seger. 1982. Transport and Fate of Heavy Metals in Onondaga Lake, NY. *Bulletin Environmental Contamination and Toxicology* 29(5): 554-561.
- 583. Young, Vernon A. 1936. Certain Sociological Aspects Associated with Plant Competition between Native and Foreign Species in a Saline Area. *Ecology*, 17(1): 133-142.
- 584. Zariello, P. J. 1999. Watershed modeling approach to assessing the hydrologic effects of future development in the Ninemile Creek basin, Onondaga County New York. U. S. Geological Survey Fact Sheet. FS 112-99.

APPENDIX 8: FISH MONITORING

TABLE OF CONTENTS

APPENDIX 8 :	FISH MONITORING	A8-1
A8-1	DATA TABLES and FIGURES	A8-1
A8-2	DATA INTEPRETATION: METRICS	A8-1

LIST OF TABLES:

2007 Onondaga Lake Fish Sampling Plan
Guild and tolerance designations for species collected from surveys in Onondaga Lake, 2000-2007

Electrofishing Species Abundance, Richness

- Table A8-3. (a-c) Whole Lake electrofishing CPUE and relative abundance in 2007 for each sampling event (spring and fall).(d-f) Whole Lake electrofishing number netted and number missed in 2007 for each sampling event (spring and fall).
- Table A8-4. (a-o) 2007 Individual stratum electrofishing CPUE.
- **Table A8-5.** (a-d) Individual transect electrofishing CPUE in 2007.
- **Table A8-6.** Electrofishing species richness in "all fish" transects in 2007.
- Table A8-7.
 Electrofishing Shannon Diversity Index with and without clupeids from all electrofishing transects in 2007.

Pollution Tolerance

Table A8-8.Whole lake pollution tolerance in 2007.

Guild Analysis

- **Table A8-9.**(a-b) Trophic guild CPUE and relative abundance from electrofishing
data in 2007 with and without clupeids.
- **Table A8-10.** (a-b) Thermal guild CPUE and relative abundance from electrofishing
data in 2007 with and without clupeids.

LIST OF TABLES: continued.

Length and Weight Trends; PSD and RSD

- **Table A8-11.**Length frequency in Fall 2007 electrofishing and Gill netting combined
for species where n > 20.
- **Table A8-12.** (a-c) Mean total lengths of largemouth and smallmouth bass in eachstratum and the whole lake for each sampling event and the whole yearfrom electrofishing, and mean lengths of all species in each event andthe whole year.
- Table A8-13.
 PSD & RSD of select species captured during Fall 2007 electrofishing.
- **Table A8-14.** (a-b) Relative weights and condition factor of select species capturedduring electrofishing in the Fall of 2007.
- Table A8-15.
 (a-b) Largemouth and smallmouth bass catch rates from electrofishing in 2007.
- **Table A8-16.**(a-c) Summary of DELTFM results in 2007.

Gill Net Species Richness, Diversity

- Table A8-17.
 (a-d) Gill net CPUE for 2007 by location, time period, and species.
- **Table A8-18.**Species richness from Gill nets in 2007.
- **Table A8-19.**Shannon Diversity Index from Gill nets in 2007.

Nesting and Larval Catch

- **Table A8-20.** (a-d) 2007 Nesting survey results by species and transect,with comparison of north vs. south.
- **Table A8-21.** (a-c) Pelagic larvae catch summary for 2007.

Young of Year Trends

Table A8-22.2007 YOY mean CPUE (#/haul) for each species for the whole yearfrom each stratum and the entire lake.

LIST OF TABLES: continued.

Young of Year Trends continued

- **Table A8-23.** (a-b) YOY Relative abundance for each species for 2007 from eachstratum and the entire lake with and without clupeids.
- Table A8-24.
 YOY mean CPUE (#/haul) for each species from each site for whole year.
- Table A8-25.
 2007 YOY CPUE (#/haul) in each stratum during each sampling for each species.
- **Table A8-26.** Mean CPUE (#/haul) of incidental catch of non-YOY species for entirelake in 2007.
- **Table A8-27.** (a-d) Mean total length of YOY fish for each stratum and whole lakeby sample period in 2007.
- **Table A8-28.**YOY mean total length in August in each stratum and the entire lake in
2007.
- **Table A8-29.** Growth rates of YOY between all sampling periods in 2007.
- **Table A8-30.**2007 YOY relative weight.
- **Table A8-31.**Shannon Diversity index for YOY fish in 2007 with and without
clupeids.
- **Table A8-32.** (a-c) Reproductive guilds, based on abundance of YOY taxa in 2007,with and without clupeids.
- **Table A8-33.** Presence/absence of Early Life History Stages and Adults in 2007.
- Table A8-34(a-c) Presence/absence and CPUE of larval and YOY fishes in samples
collected from Onondaga Lake from 2000-2007.

Angler Diaries

Table A8-35.(a-b) 2007Angler Diary Summary

LIST OF FIGURES:

Figure A8-1. Location and description of strata, boat electrofishing transects, and seining sites in Onondaga Lake.

Electrofishing Species Abundance, Richness, Diversity

Figure A8-2.	Whole lake electrofishing relative abundance in 2007.
Figure A8-3.	Trends in CPUE (catch per hour) of select species caught by
	electrofishing from 2000-2007.
Figure A8-4.	Electrofishing species richness in "all fish" transects from 2000
	2007.
Figure A8-5.	Electrofishing diversity in "all fish" transects from 2000-2007.

Guild Trends

Figure A8-6.	Pollution tolerance guild trends from electrofishing data in 2000
	2007 based on species richness in each tolerance category.
Figure A8-7.	Trophic guild trends from electrofishing data in 2000-2007.
Figure A8-8.	Thermal guild trends from electrofishing data in 2000-2007.

Length and Weight Trends; PSD

Figure A8-9.	(a-j) Length frequency in Fall electrofishing and Gill netting
	combined for select species from 2000 to 2007.
Figure A8-10.	Comparison of largemouth and smallmouth bass Proportional Stock
	Density (PSD) vs. Lepomis PSD from electrofishing data in 2000-
	2007.
TI 10.11	

Figure A8-11. Relative weights trends of select species from 2000-2007.

Gill Net Abundance

Figure A8-12. Gill net relative abundance in 2007.

Nesting

Figure A8-13.2007 Nesting survey map and comparison of north vs. south nests
from 2000-2007.

Young of Year Trends

Figure A8-14.	2007 YOY Relative abundance with and without clupeids
Figure A8-15.	YOY CPUE (#/haul) trends for select species from 2000-2007.
Figure A8-16.	Mean length of select YOY species in August from 2000-2007.
Figure A8-17.	YOY whole lake diversity from 2000 to 2007.
Figure A8-18.	Reproductive guild relative abundance juvenile seine data in 2007,
	with and without clupeids

Angler Diaries

Figure A8-19.2001-2006 Angler catch summary, from diaries, in Onondaga Lake,
Seneca River and Oneida River. Smallmouth bass catch rates for
trips specifically targeting bass in Oneida Lake from 2002-2007.

SUB-APPENDICES:

Sub-Appendix A8-A.	2007 Alewife Abundance in Onondaga Lake
--------------------	---

APPENDIX 8: FISH MONITORING

DATA TABLES AND FIGURES

A8-1 DATA TABLES AND FIGURES

This Appendix includes the fish data tables and figures as part of the 2007 Ambient Monitoring Program. For a discussion of the methods, refer to Appendix I of the 2007 Ambient Monitoring Program report.

A8-2 DATA INTEPRETATION: METRICS

As described in the Data Analysis and Interpretation Plan (Appendix 5) the fish data were evaluated to test specific hypotheses related to the lake improvement efforts. A series of metrics were used to evaluate the AMP fisheries data. Selected metrics examine species composition and community structure, system function and health, and trophic structure. The following metrics were used to track changes in the Onondaga Lake fish community:

Species structure and composition

- Species Richness
- Diversity / Community Structure (relative abundance)
- Pollution Tolerance
- Thermal Guilds

Trophic structure

• Relative Proportion of Trophic Guild

System function

- Number of Reproducing Species
- Recruitment

Health

- Size
- Growth
- Relative Weight
- Deformities, erosion, lesions, tumors and fungal infections

Refer to Chapter 5 of this Annual AMP Report for discussion of the 2007 results and metrics

APPENDIX 8: TABLES

		Sampling	Location and Number		
Component	Methodology/Gear	Objectives	of Samples	Timing	Changes
Pelagic Larvae	Modified double oblique Miller high-speed trawl, with flow meter attached, collected during the day in the pelagic zone.	Determine species richness	 4 double oblique tows in each basin (North and South) per event. Tows will sample water depths from the surface to 5.5 meters. Total No. of events = 8 Total No. of samples = 64 	 Daytime Bi-weekly April (when water temps are 7-8°C) through end of July 	- No change from previous year
Juvenile Fish	50' x 4' x 1/4" bag seine swept into shore in littoral zone.	Determine community structure and species richness	 5 strata with 3 sites in each strata and 1 sweep at each site. No. of Sites = 15 Total No. of events = 6 Total No. of samples = 90 	- Daytime - Every 3 weeks - July - October	- No change from previous year
Nesting Fish	Lake wide nest survey	Document spatial distribution and species composition	 Entire perimeter of lake divided into 24 equal length sections. Total No. of events = 1 Total No. of samples = 24 	- Once in June when water temperature is between 15 and 20 °C	- No change from previous year
Adult Fish Littoral Zone	Boat mounted electrofisher in the littoral zone at night.	Determine community structure, species richness, CPUE, and relative abundance	 Entire perimeter of lake shocked in 24 contiguous transects Alternating all fish/gamefish transects Total No. of events = 2 Total No. of samples = 48 	 Night-time. Twice per year; Spring and Fall. Water temp between 15 and 21 °C 	- No change from previous year
Adult Fish Profundal Zone	Experimental gill nets of standard NYSDEC dimensions.	Determine community structure and species richness	 One net per strata Nets set on bottom parallel to shore at a water depth of 4-5m for two hours. Total No. of events = 2 Total No. of samples = 10 	- During the day - Twice per year, within one week of littoral electrofishing	- No change from previous year
Angler Census	Angler diary program and bass tournament surveys.	Determine catch rates, species composition. Attitudes and opinions over the AMP.	 Recruit diary participants at fish & game clubs and fishing organizations Tournaments will be surveyed at time of weigh-in 	 Issued annually and collected at end of fishing season (fall) Tournament schedule TBA 	- No change from previous year

 Table 8-1.
 2007 Onondaga Lake Fish Community Sampling Plan

Common name	Trophic Guild	Pollution Tolerance	Thermal Guild	Reproductive Guild
Alewife	Planktivore	Moderate	Cool	Nonguarder, open substrate spawner, phyto-lithophil
Banded killifish	Planktivore/invertivore	Moderate	Warm	Nonguarder, open substrate spawner, phytophil
Black crappie	Invertivore/Piscivore	Tolerant	Warm	Guarder, nest spawner, phytophil
Black Bullhead	Invertivore/Piscivore	Moderately Tolerant	Warm	Guarder, nest spawner, phytophil
Bluegill	Invertivore	Tolerant	Warm	Guarder, nest spawner, lithophil
Bluntnose minnow	Detritivore	Moderate	-	Guarder, nest spawner, speleophil
Bowfin	Piscivore	Tolerant ¹	Warm	Guarder, nest spawner, phytophil
Brook silverside	Planktivore/invertivore	-	Warm	Nonguarder, open substrate spawner, phyto-lithophil
Brook stickleback	Planktivore/invertivore	-	Cool	Guarder, nest spawner, ariadnophil
Brown bullhead	Invertivore/Piscivore	Tolerant	Warm	Guarder, nest spawner, speleophil
Brown trout	Invertivore/Piscivore	Moderately Intolerant	Cold	Nonguarder, brood hider, lithophil
Carp	Benthic Invertivore	Tolerant	Warm	Nonguarder, open substrate spawner, phytophil
Channel catfish	Invertivore/Piscivore	Moderately Tolerant	Warm	Guarder, nest spawner, speleophil
Emerald shiner	Planktivore	-	Warm	Nonguarder, open substrate spawner, pelagophil
Fathead minnow	Invertivore	Intolerant	Warm	Guarder, nest spawner, speleophil
Freshwater drum	Invertivore/Piscivore	Moderate ¹	Warm	Nonguarder, open substrate spawner, pelagophil
Gizzard shad	Detritivore	Moderately Tolerant ³	Warm	Nonguarder, open substrate spawner, litho-pelagophil
Golden shiner	Planktivore/invertivore	Tolerant	Cool	Nonguarder, open substrate spawner, phytophil
Greater Redhorse	Benthic Invertivore	Intolerant	Cool	Nonguarder, open substrate spawner, lithophil
Johnny darter	Invertivore	Moderate ¹	Cool	Guarder, nest spawner, speleophil
Lake Sturgeon	Benthic Invertivore	Moderate ¹	Cold/Cool	Nonguarder, open substrate spawner, lithophil
Largemouth bass	Piscivore	Tolerant	Warm	Guarder, nest spawner, phytophil
Logperch	Invertivore	Moderate ¹	Cool/Warm	Nonguarder, open substrate spawner, psammophil
Longnose dace	Planktivore/invertivore	Moderately Intolerant	Cool	Nonguarder, brood hider, lithophil
Longnose gar	Invertivore/Piscivore	Tolerant ¹	Warm	Nonguarder, open substrate spawner, phytophil
Northern hog sucker	Benthic Invertivore	Moderately Intolerant	Cool	Nonguarder, open substrate spawner, lithophil
Northern pike	Piscivore	Moderate	Cool	Nonguarder, open substrate spawner, phytophil

 Table A8-2. Guild and Tolerance Designations for Species Collected from Surveys in Onondaga Lake, 2000-2007.

Common name	Trophic Guild	Pollution Tolerance	Thermal Guild	Reproductive Guild
Pumpkinseed	Invertivore	Tolerant	Warm	Guarder, nest spawner, lithophil
Quillback	Benthic Invertivore	Moderate	Warm	Nonguarder, open substrate spawner, litho-pelagophil
Rainbow trout	Invertivore/Piscivore	Moderately Intolerant ³	Cold	Nonguarder, brood hider, lithophil
Rock bass	Invertivore/Piscivore	Moderate	Warm	Guarder, nest spawner, lithophil
Rudd	Invertivore	Tolerant	Warm	Nonguarder, open substrate spawner, phytophil
Shorthead redhorse	Benthic Invertivore	Moderately Tolerant ³	Cool	Nonguarder, open substrate spawner, lithophil
Smallmouth bass	Piscivore	Moderate	Cool	Guarder, nest spawner, lithophil
Tessellated darter	Invertivore	Moderate	Cool	Guarder, nest spawner, speleophil
Tiger muskellunge	Piscivore	Moderate ¹	Cool	Sterile hybrid
Trout perch	Invertivore/Piscivore	-	Cold	Nonguarder, open substrate spawner, lithophil
Walleye	Piscivore	Moderately Tolerant ³	Cool	Nonguarder, open substrate spawner, lithophil
White perch	Invertivore/Piscivore	Tolerant	Warm	Nonguarder, open substrate spawner, phyto-lithophil
White sucker	Benthic Invertivore	Moderately Tolerant	Cool	Nonguarder, open substrate spawner, lithophil
Yellow Bullhead	Invertivore/Piscivore	Tolerant	Warm	Guarder, nest spawner, speleophil
Yellow perch	Invertivore/Piscivore	Moderately Tolerant	Cool	Nonguarder, open substrate spawner, phyto-lithophil

Table A8-2. Guild and Tolerance Designations for Species Collected from Surveys in Onondaga Lake, 2000-2007. (continued)

* Notes: brown and rainbow trout trophic guilds are for lakes. Not all species were able to be grouped into tolerance categories or thermal guilds.

Reproductive guild substrate types: lithophils (sediment), phytophils (plant material, live or dead), speleophils (holes, crevices), pelagophils (openwater), psammophils (sand) and ariadnophils (specialised nest building that include some level of parent

1 EPA 1993

2 Smith 1986

3 Inferred from combination of EPA designation for these species and the designation of similar species in Whittier and Hughes.

Table A8-3(a-c). Whole Lake Electrofishing CPUE and relative abundance in 2007 for each sampling event (spring and fall).

Note: CPUE for gamefish (bolded) is calculated from all 24 transects. CPUE for nongamefish are calculated from only the one-half of the transects where all fish are collected (every other transect). Because of the difficulty in netting clupeids (shad and alewives), the CPUE for these species is calculated from the combination of the number of fish netted and estimates of the number missed. Because of their large size carp are not boated; instead carp within netting distance are counted while still in the water.

	Moon		Total	Relative	Relative
Species		SE	10tai fiak	abundance	abundance without
	CIUE		11511	with clupeids	clupeids
Gizzard shad	194.6	72.1	1026	42.7%	-
Alewife	74.4	48.3	345	16.3%	-
Pumpkinseed	38.7	4.3	379	8.5%	20.7%
White sucker	21.7	5.4	109	4.8%	11.6%
Carp	20.6	4.8	96	4.5%	11.0%
White perch	19.4	5.4	94	4.3%	10.4%
Smallmouth bass	18.1	2.3	176	4.0%	9.7%
Yellow perch	17.9	2.4	174	3.9%	9.6%
Largemouth bass	14.2	1.7	137	3.1%	7.6%
Bluegill	13.5	2.9	133	3.0%	7.2%
Brown bullhead	10.5	1.7	101	2.3%	5.6%
Longnose gar	2.3	1.4	11	0.5%	1.2%
Bowfin	2.1	0.7	10	0.5%	1.1%
Channel catfish	1.7	0.6	16	0.4%	0.9%
Freshwater drum	1.2	0.5	6	0.3%	0.7%
Shorthead redhorse	1.2	0.6	6	0.3%	0.7%
Rock bass	1.2	0.4	12	0.3%	0.7%
Walleye	1.1	0.5	11	0.2%	0.6%
Golden shiner	0.6	0.3	3	0.1%	0.3%
Northern hog sucker	0.4	0.3	2	0.1%	0.2%
Rudd	0.2	0.2	1	0.1%	0.1%
Northern pike	0.2	0.2	2	0.0%	0.1%

a.) 2007 Entire year

Table A8-3(a-c). Whole Lake Electrofishing CPUE and relative abundance in 2007 for each sampling event (spring and fall). (continued)

Note: CPUE for gamefish (bolded) is calculated from all 24 transects. CPUE for nongamefish are calculated from only the one-half of the transects where all fish are collected (every other transect). Because of the difficulty in netting clupeids (shad and alewives), the CPUE for these species is calculated from the combination of the number of fish netted and estimates of the number missed. Because of their large size carp are not boated; instead carp within netting distance are counted while still in the water.

	Moon	Mean		Relative	Relative
Species		SE	fish	abundance	abundance without
	CIUE			with clupeids	clupeids
Gizzard shad	282.3	115.1	705	51.2%	-
Alewife	55.4	16.2	142	10.1%	-
Pumpkinseed	53.8	7.1	275	9.8%	25.2%
Carp	41.0	9.5	96	7.4%	19.2%
White sucker	21.6	7.7	54	3.9%	10.1%
White perch	20.5	5.5	50	3.7%	9.6%
Yellow perch	17.1	3.1	87	3.1%	8.0%
Largemouth bass	14.9	2.4	76	2.7%	7.0%
Bluegill	14.5	2.8	72	2.6%	6.8%
Smallmouth bass	12.2	2.0	61	2.2%	5.7%
Brown bullhead	10.9	2.7	54	2.0%	5.1%
Walleye	1.9	0.9	10	0.3%	0.9%
Golden shiner	1.2	0.6	3	0.2%	0.6%
Freshwater drum	0.9	0.6	2	0.2%	0.4%
Shorthead redhorse	0.8	0.5	2	0.2%	0.4%
Bowfin	0.8	0.5	2	0.2%	0.4%
Longnose gar	0.4	0.4	1	0.1%	0.2%
Channel catfish	0.4	0.3	2	0.1%	0.2%
Northern pike	0.2	0.2	1	0.0%	0.1%
Rock bass	0.2	0.2	1	0.0%	0.1%

b.) 2007 Spring

Table A8-3(a-c). Whole Lake Electrofishing CPUE and relative abundance in 2007 for each sampling event (spring and fall). (continued)

Note: CPUE for gamefish (bolded) is calculated from all 24 transects. CPUE for nongamefish are calculated from only the one-half of the transects where all fish are collected (every other transect). Because of the difficulty in netting clupeids (shad and alewives), the CPUE for these species is calculated from the combination of the number of fish netted and estimates of the number missed. Because of their large size carp are not boated; instead carp within netting distance are counted while still in the water.

Species	Mean CPUE	SE	Total fish	Relative	Relative
				abundance	abundance without
				with clupeids	clupeids
Gizzard shad	114.3	49.5	321	31.6%	-
Alewife	88.6	87.5	203	24.5%	-
Smallmouth bass	24.7	3.7	115	6.8%	15.6%
Pumpkinseed	22.6	4.7	104	6.3%	14.3%
White sucker	21.5	5.5	55	6.0%	13.6%
Yellow perch	18.7	4.5	87	5.2%	11.8%
White perch	18.1	6.1	44	5.0%	11.4%
Largemouth bass	13.1	2.4	61	3.6%	8.2%
Bluegill	12.1	4.6	61	3.4%	7.7%
Brown bullhead	9.9	1.8	47	2.7%	6.2%
Longnose gar	4.2	2.9	10	1.2%	2.7%
Bowfin	3.5	1.4	8	1.0%	2.2%
Channel catfish	3.1	1.0	14	0.9%	1.9%
Rock bass	2.4	0.8	11	0.7%	1.5%
Shorthead redhorse	1.6	0.9	4	0.4%	1.0%
Freshwater drum	1.5	0.8	4	0.4%	0.9%
Northern hog sucker	0.8	0.5	2	0.2%	0.5%
Rudd	0.4	0.4	1	0.1%	0.3%
Walleye	0.2	0.2	1	0.1%	0.1%
Northern pike	0.2	0.2	1	0.1%	0.1%

c.) 2007 Fall
Table A8-3(d-f). Whole Lake Electrofishing number netted and number missed in 2007 for each sampling event (spring and fall).

Note: Because of their large size carp are not boated; instead carp within netting distance are counted while still in the water therefore no carp within netting distance are ever "missed". Lepomis sp. include bluegill and pumpkinseed because these species cannot be distinguished while still in the water, at night when missed. Although most fish in the genus Micropterus sp. (black bass) are large enough to be readily distinguishable when missed, some are not, these are counted under the designation "Micropterus sp.". Bullhead that are missed are assumed to be brown bullhead. The "number netted" for shad and alewives (clupeids) differs from the "total number" depicted in Tables A8-3(a-c) because the totals in those tables include both the netted and missed fish (see note under Table A8-3(a-c) title). For the clupeids in Tables A8-3(d-f) the sum of the "Number Missed" and "Number Netted" will equal the total number for those species in Table A8-3(a-c).

Species	Number Netted	Number Missed
Pumpkinseed	379	509
Gizzard shad	211	815
Smallmouth bass	176	44
Yellow perch	174	172
Largemouth bass	137	43
Bluegill	133	20
Carp	128	0
White sucker	109	82
Brown bullhead	101	69
White perch	94	58
Alewife	37	308
Bowfin	19	6
Channel catfish	16	31
Longnose gar	12	104
Rock bass	12	0
Walleye	11	4
Freshwater drum	6	7
Shorthead redhorse	6	0
Golden shiner	3	0
Northern pike	2	1
Northern hog sucker	2	0
Rudd	1	0
Lepomis sp.	0	525
Micropterus sp.	0	5
Tiger muskellunge	0	3

d.) 2007 Entire year

Table A8-3(d-f). Whole Lake Electrofishing number netted and number missed in 2007 for each sampling event (spring and fall) (continued).

Note: Because of their large size carp are not boated; instead carp within netting distance are counted while still in the water therefore no carp within netting distance are ever "missed". Lepomis sp. include bluegill and pumpkinseed because these species cannot be distinguished while still in the water, at night when missed. Although most fish in the genus Micropterus sp. (black bass) are large enough to be readily distinguishable when missed, some are not, these are counted under the designation "Micropterus sp.". Bullhead that are missed are assumed to be brown bullhead. The "number netted" for shad and alewives (clupeids) differs from the "total number" depicted in Tables A8-3(a-c) because the totals in those tables include both the netted and missed fish (see note under Table A8-3(a-c) title). For the clupeids in Tables A8-3(d-f) the sum of the "Number Missed" and "Number Netted" will equal the total number for those species in Tables A8-3(a-c).

e.) 2007 Spring	
-----------------	--

Species	Number Netted	Number Missed
Pumpkinseed	275	95
Gizzard shad	105	600
Carp	96	0
Yellow perch	87	29
Largemouth bass	76	14
Bluegill	72	0
Smallmouth bass	61	0
White sucker	54	50
Brown bullhead	54	13
White perch	50	17
Alewife	37	105
Walleye	10	3
Bowfin	9	5
Golden shiner	3	0
Freshwater drum	2	0
Channel catfish	2	0
Shorthead redhorse	2	0
Longnose gar	1	0
Rock bass	1	0
Northern pike	1	0
Lepomis sp.	0	525
Micropterus sp.	0	5
Tiger muskellunge	0	2

Table A8-3(d-f). Whole Lake Electrofishing number netted and number missed in 2007 for each sampling event (spring and fall) (continued).

Note: Because of their large size carp are not boated; instead carp within netting distance are counted while still in the water therefore no carp within netting distance are ever "missed". Lepomis sp. include bluegill and pumpkinseed because these species cannot be distinguished while still in the water, at night when missed. Although most fish in the genus Micropterus sp. (black bass) are large enough to be readily distinguishable when missed, some are not, these are counted under the designation "Micropterus sp.". Bullhead that are missed are assumed to be brown bullhead. The "number netted" for shad and alewives (clupeids) differs from the "total number" depicted in Tables A8-3(a-c) because the totals in those tables include both the netted and missed fish (see note under Table A8-3(a-c) title). For the clupeids in Tables A8-3(d-f) the sum of the "Number Missed" and "Number Netted" will equal the total number for those species in Table A8-3(a-c).

f.) 2007 Fall

Species	Number Netted	Number Missed
Smallmouth bass	115	44
Gizzard shad	106	215
Pumpkinseed	104	414
Yellow perch	87	143
Largemouth bass	61	29
Bluegill	61	20
White sucker	55	32
Brown bullhead	47	56
White perch	44	41
Carp	32	0
Channel catfish	14	31
Longnose gar	11	104
Rock bass	11	0
Bowfin	10	1
Freshwater drum	4	7
Shorthead redhorse	4	0
Northern hog sucker	2	0
Walleye	1	1
Northern pike	1	1
Rudd	1	0
Alewife	0	203
Tiger muskellunge	0	1

a.) Entire year 2007	Stratum 1				
	Species	Mean CPUE	SE	Relative abundance with clupeids	Relative abundance without clupeids
	Alewife	7.58	7.58	2.3%	0.0%
	Bluegill	15.42	7.56	4.6%	8.7%
	Bowfin	3.59	1.80	1.1%	2.0%
	Brown bullhead	9.72	2.50	2.9%	5.5%
	Carp	18.09	12.08	5.4%	10.2%
	Freshwater drum	0.69	0.69	0.2%	0.4%
	Gizzard shad	148.27	129.42	44.5%	0.0%
	Largemouth bass	23.61	4.41	7.1%	13.3%
	Longnose gar	5.47	5.47	1.6%	3.1%
	Northern hog sucker	0.69	0.69	0.2%	0.4%
	Pumpkinseed	41.23	6.63	12.4%	23.2%
	Rock bass	2.09	1.51	0.6%	1.2%
	Shorthead redhorse	0.69	0.69	0.2%	0.4%
	Smallmouth bass	17.22	2.65	5.2%	9.7%
	White perch	10.62	0.17	3.2%	6.0%
	White sucker	13.46	6.76	4.0%	7.6%
	Yellow perch	15.10	4.06	4.5%	8.5%

b.) Spring 2007	Stratum 1				
				Relative	Relative
	Species	Mean CPUE	SE	abundance with	abundance
				clupeids	without clupeids
	Alewife	11.84	11.84	3.8%	0.0%
	Bluegill	13.39	3.06	4.3%	7.3%
	Bowfin	1.71	1.71	0.5%	0.9%
	Brown bullhead	9.26	5.79	2.9%	5.0%
	Carp	35.36	23.69	11.2%	19.2%
	Gizzard shad	118.37	118.37	37.6%	0.0%
	Largemouth bass	19.07	5.25	6.1%	10.3%
	Pumpkinseed	50.70	16.32	16.1%	27.5%
	Rock bass	0.85	0.85	0.3%	0.5%
	Smallmouth bass	14.98	5.23	4.8%	8.1%
	White perch	11.91	4.70	3.8%	6.5%
	White sucker	9.65	2.32	3.1%	5.2%
	Yellow perch	17.76	7.08	5.6%	9.6%

c.) Fall 2007	Stratum 1				
	Species	Mean CPUE	SE	Relative abundance with	Relative
	species		0L	clupeids	without clupeids
	Alewife	3.87	3.87	1.1%	0.0%
	Bluegill	16.41	12.49	4.7%	9.7%
	Bowfin	5.54	3.22	1.6%	3.3%
	Brown bullhead	10.47	2.15	3.0%	6.2%
	Freshwater drum	1.29	1.29	0.4%	0.8%
	Gizzard shad	176.60	137.91	50.5%	0.0%
	Largemouth bass	27.14	7.06	7.8%	16.0%
	Longnose gar	11.16	11.16	3.2%	6.6%
	Northern hog sucker	1.29	1.29	0.4%	0.8%
	Pumpkinseed	33.62	7.40	9.6%	19.9%
	Rock bass	3.78	2.63	1.1%	2.2%
	Shorthead redhorse	1.29	1.29	0.4%	0.8%
	Smallmouth bass	18.81	3.83	5.4%	11.1%
	White perch	8.88	4.61	2.5%	5.2%
	White sucker	16.61	11.49	4.8%	9.8%
	Yellow perch	13.02	1.69	3.7%	7.7%

Note: CPUE for gamefish (bolded) is calculated from all transects within the Stratum	n. CPUE for non-gamefish are calculated
from only the transects where all fish are collected. Because of the difficulty in nettin	g clupeids (shad and alewives), the CPUE
for these species is calculated from estimates of the number of fish.	

d.) Entire year 2007	Stratum 2				
	Species	Mean CPUE	SE	Relative abundance with clupeids	Relative abundance without clupeids
	Alewife	56.38	14.48	8.8%	0.0%
	Bluegill	3.70	1.17	0.6%	2.4%
	Bowfin	0.70	0.70	0.1%	0.5%
	Brown bullhead	10.03	2.35	1.6%	6.6%
	Carp	11.36	3.87	1.8%	7.5%
	Channel catfish	0.38	0.38	0.1%	0.3%
	Freshwater drum	1.53	1.53	0.2%	1.0%
	Gizzard shad	429.62	199.87	67.3%	0.0%
	Golden shiner	0.76	0.76	0.1%	0.5%
	Largemouth bass	13.50	1.54	2.1%	8.9%
	Longnose gar	2.10	2.10	0.3%	1.4%
	Pumpkinseed	30.66	4.75	4.8%	20.1%
	Rock bass	0.70	0.70	0.1%	0.5%
	Shorthead redhorse	1.53	1.53	0.2%	1.0%
	Smallmouth bass	12.10	2.89	1.9%	7.9%
	Walleye	1.82	1.17	0.3%	1.2%
	White perch	19.72	8.27	3.1%	13.0%
	White sucker	24.51	6.27	3.8%	16.1%
	Yellow perch	17.25	2.57	2.7%	11.3%

Note: CPUE for gamefish (bolded) is calculated from all transects within the Strat	um. CPUE for non-gamefish are calculated
from only the transects where all fish are collected. Because of the difficulty in net	ting clupeids (shad and alewives), the CPUE
for these species is calculated from estimates of the number of fish.	

e.) Spring 2007	Stratum 2				
	Species	Mean CPUF	SF	Relative	Relative
	operes		5E	clupeids	without clupeids
	Alewife	117.87	29.87	12.2%	0.0%
	Bluegill	5.23	1.84	0.5%	2.8%
	Bowfin	1.48	1.48	0.2%	0.8%
	Brown bullhead	8.33	2.18	0.9%	4.4%
	Carp	23.93	8.29	2.5%	12.6%
	Gizzard shad	658.80	319.97	68.1%	0.0%
	Golden shiner	1.62	1.62	0.2%	0.9%
	Largemouth bass	14.49	4.25	1.5%	7.6%
	Pumpkinseed	50.70	9.18	5.2%	26.6%
	Shorthead redhorse	1.62	1.62	0.2%	0.9%
	Smallmouth bass	5.37	2.24	0.6%	2.8%
	Walleye	3.67	2.40	0.4%	1.9%
	White perch	20.09	8.66	2.1%	10.6%
	White sucker	29.07	9.83	3.0%	15.3%
	Yellow perch	24.80	5.21	2.6%	13.0%

Note: CPUE for gamefish (bolded) is calculated from all transects within the Stratum. C	CPUE for non-gamefish are calculated
from only the transects where all fish are collected. Because of the difficulty in netting cl	lupeids (shad and alewives), the CPUE
for these species is calculated from estimates of the number of fish.	

f.) Fall 2007	Stratum 2				
	G		CE.	Relative	Relative
	Species	Mean CPUE	SE	abundance with	abundance
				clupeids	without clupeids
	Bluegill	2.23	1.45	0.7%	1.9%
	Brown bullhead	11.75	4.53	3.5%	10.0%
	Channel catfish	0.72	0.72	0.2%	0.6%
	Freshwater drum	2.90	2.90	0.9%	2.5%
	Gizzard shad	216.67	143.24	64.7%	0.0%
	Largemouth bass	13.14	3.48	3.9%	11.1%
	Longnose gar	3.98	3.98	1.2%	3.4%
	Pumpkinseed	11.27	2.45	3.4%	9.6%
	Rock bass	1.33	1.33	0.4%	1.1%
	Shorthead redhorse	1.45	1.45	0.4%	1.2%
	Smallmouth bass	19.09	5.58	5.7%	16.2%
	White perch	19.39	7.96	5.8%	16.4%
	White sucker	20.34	8.21	6.1%	17.2%
	Yellow perch	10.47	4.41	3.1%	8.9%

g.) Entire year 2007	Stratum 3				
				Relative	Relative
	Species	Mean CPUE	SE	abundance with	abundance
				clupeids	without clupeids
	Alewife	316.74	282.31	44.3%	0.0%
	Bluegill	3.68	2.93	0.5%	2.1%
	Bowfin	1.41	1.41	0.2%	0.8%
	Brown bullhead	21.78	5.72	3.1%	12.6%
	Carp	40.77	1.42	5.7%	23.5%
	Channel catfish	5.77	2.29	0.8%	3.3%
	Freshwater drum	2.64	0.18	0.4%	1.5%
	Gizzard shad	224.63	180.37	31.4%	0.0%
	Golden shiner	1.23	1.23	0.2%	0.7%
	Largemouth bass	8.21	2.60	1.2%	4.7%
	Longnose gar	2.46	2.46	0.3%	1.4%
	Pumpkinseed	25.01	7.28	3.5%	14.4%
	Rock bass	1.23	1.23	0.2%	0.7%
	Rudd	1.41	1.41	0.2%	0.8%
	Shorthead redhorse	2.81	2.81	0.4%	1.6%
	Smallmouth bass	11.61	1.97	1.6%	6.7%
	Walleye	2.54	1.73	0.4%	1.5%
	White perch	12.29	12.29	1.7%	7.1%
	White sucker	20.92	18.46	2.9%	12.1%
	Yellow perch	7.46	3.10	1.0%	4.3%

h.) Spring 2007	Stratum 3				
	Species	Mean CPUE	SE	Relative abundance with clupeids	Relative abundance without clupeids
	Alewife	72.49	6.17	10.4%	0.0%
	Bluegill	6.96	5.66	1.0%	3.4%
	Brown bullhead	30.83	9.57	4.4%	15.2%
	Carp	83.27	7.48	11.9%	41.0%
	Channel catfish	2.34	1.35	0.3%	1.2%
	Freshwater drum	3.03	3.03	0.4%	1.5%
	Gizzard shad	421.69	364.85	60.5%	0.0%
	Golden shiner	2.37	2.37	0.3%	1.2%
	Largemouth bass	10.39	2.97	1.5%	5.1%
	Longnose gar	2.37	2.37	0.3%	1.2%
	Pumpkinseed	24.98	10.72	3.6%	12.3%
	Smallmouth bass	6.08	1.20	0.9%	3.0%
	Walleye	3.13	3.13	0.5%	1.5%
	White perch	16.58	16.58	2.4%	8.2%
	White sucker	6.05	6.05	0.9%	3.0%
	Yellow perch	4.62	4.62	0.7%	2.3%

i.) Fall 2007	Stratum 3				
	Species	Mean CPUE	SE	Relative abundance with clupeids	Relative abundance without clupeids
	Alewife	525.54	525.54	73.5%	0.0%
	Bowfin	2.63	2.63	0.4%	1.9%
	Brown bullhead	10.60	5.63	1.5%	7.7%
	Channel catfish	9.22	4.32	1.3%	6.7%
	Freshwater drum	2.56	2.56	0.4%	1.9%
	Gizzard shad	52.13	21.45	7.3%	0.0%
	Largemouth bass	5.55	2.42	0.8%	4.0%
	Longnose gar	2.56	2.56	0.4%	1.9%
	Pumpkinseed	22.99	15.18	3.2%	16.8%
	Rock bass	2.56	2.56	0.4%	1.9%
	Rudd	2.63	2.63	0.4%	1.9%
	Shorthead redhorse	5.26	5.26	0.7%	3.8%
	Smallmouth bass	18.12	2.64	2.5%	13.2%
	Walleye	1.31	1.31	0.2%	1.0%
	White perch	7.67	7.67	1.1%	5.6%
	White sucker	34.09	28.98	4.8%	24.8%
	Yellow perch	9.49	4.39	1.3%	6.9%

j.) Entire year 2007	Stratum 4				
	Species	Mean CPUE	SE	Relative abundance with clupeids	Relative abundance without clupeids
	Alewife	33.98	22.71	10.9%	0.0%
	Bluegill	22.00	3.42	7.0%	10.1%
	Brown bullhead	6.01	3.18	1.9%	2.8%
	Carp	32.72	9.53	10.5%	15.0%
	Channel catfish	1.11	0.68	0.4%	0.5%
	Freshwater drum	1.41	1.41	0.5%	0.6%
	Gizzard shad	60.68	57.86	19.4%	0.0%
	Golden shiner	1.29	1.29	0.4%	0.6%
	Largemouth bass	12.97	4.10	4.1%	5.9%
	Pumpkinseed	47.21	7.41	15.1%	21.6%
	Rock bass	0.48	0.48	0.2%	0.2%
	Smallmouth bass	18.90	5.93	6.0%	8.7%
	Walleye	1.09	1.09	0.4%	0.5%
	White perch	42.94	27.48	13.7%	19.7%
	White sucker	12.56	9.98	4.0%	5.8%
	Yellow perch	17.76	5.66	5.7%	8.1%

for these species is calculated from estimates of the number of fish.						
k.) Spring 2007	Stratum 4					
	Species	Mean CPUE	SE	Relative abundance with clupeids	Relative abundance without clupeids	
	Alewife	65.12	44.13	14.1%	0.0%	
	Bluegill	32.68	7.71	7.1%	11.1%	
	Brown bullhead	5.60	2.65	1.2%	1.9%	
	Carp	61.70	17.01	13.4%	21.0%	
	Freshwater drum	2.62	2.62	0.6%	0.9%	
	Gizzard shad	101.79	101.79	22.1%	0.0%	
	Golden shiner	2.48	2.48	0.5%	0.8%	
	Largemouth bass	18.50	7.69	4.0%	6.3%	
	Pumpkinseed	79.88	16.00	17.3%	27.1%	
	Smallmouth bass	12.01	4.18	2.6%	4.1%	
	Walleye	2.05	2.05	0.4%	0.7%	
	White perch	49.01	19.21	10.6%	16.7%	
	White sucker	12.98	8.01	2.8%	4.4%	
	Yellow perch	14.91	4.26	3.2%	5.1%	

Note: CPUE for gamefish (bolded) is calculated from all transects within the Stratum. CPUE for non-gamefish are calculated from only the transects where all fish are collected. Because of the difficulty in netting clupeids (shad and alewives), the CPUE for these species is calculated from estimates of the number of fish.

Note: CPUE for gamefish (bolded) is calculated from all transects within the Stratum. CPUE for non-gamefish are calculated	!
from only the transects where all fish are collected. Because of the difficulty in netting clupeids (shad and alewives), the CPU	E
for these species is calculated from estimates of the number of fish.	

l.) Fall 2007	Stratum 4				
	Species	Mean CPUE	SE	Relative abundance with clupeids	Relative abundance without clupeids
	Bluegill	10.03	4.02	6.7%	7.6%
	Brown bullhead	6.51	3.99	4.4%	4.9%
	Channel catfish	2.39	1.46	1.6%	1.8%
	Gizzard shad	16.43	10.35	11.0%	0.0%
	Largemouth bass	6.45	3.10	4.3%	4.9%
	Pumpkinseed	9.54	8.11	6.4%	7.2%
	Rock bass	1.04	1.04	0.7%	0.8%
	Smallmouth bass	26.97	9.00	18.1%	20.3%
	White perch	36.49	36.49	24.5%	27.5%
	White sucker	12.16	12.16	8.2%	9.2%
	Yellow perch	21.18	14.36	14.2%	16.0%

Note: CPUE for gamefish (bolded) is calculated from all transects within the Stratum. CPUE for non-gamefish are calculated
from only the transects where all fish are collected. Because of the difficulty in netting clupeids (shad and alewives), the CPUE
for these species is calculated from estimates of the number of fish.

m.) Entire year 2007	Stratum 5				
	Species	Mean CPUE	SE	Relative abundance with clupeids	Relative abundance without clupeids
	Bluegill	24.97	10.25	10.0%	10.7%
	Bowfin	4.81	2.35	1.9%	2.1%
	Brown bullhead	6.69	1.70	2.7%	2.9%
	Carp	5.96	5.96	2.4%	2.6%
	Channel catfish	2.50	0.98	1.0%	1.1%
	Gizzard shad	15.61	8.23	6.3%	0.0%
	Largemouth bass	11.22	1.24	4.5%	4.8%
	Northern hog sucker	1.23	1.23	0.5%	0.5%
	Northern pike	1.19	1.19	0.5%	0.5%
	Pumpkinseed	50.69	19.68	20.3%	21.7%
	Rock bass	1.79	1.14	0.7%	0.8%
	Shorthead redhorse	1.19	1.19	0.5%	0.5%
	Smallmouth bass	33.92	5.82	13.6%	14.5%
	White perch	15.58	10.65	6.2%	6.7%
	White sucker	39.53	27.22	15.8%	16.9%
	Yellow perch	32.88	7.32	13.2%	14.0%

Note: CPUE for gamefish (bolded) is calculated from all transects within the Stratum. CPUE for non-gamefish are calculated	d
from only the transects where all fish are collected. Because of the difficulty in netting clupeids (shad and alewives), the CPU	ŀΕ
for these species is calculated from estimates of the number of fish.	

n.) Spring 2007	Stratum 5				
	Species	Mean CPUE	SE	Relative abundance with clupeids	Relative abundance without clupeids
	Bluegill	14.46	3.23	6.7%	6.9%
	Brown bullhead	3.33	2.09	1.6%	1.6%
	Carp	12.03	12.03	5.6%	5.7%
	Gizzard shad	4.81	4.81	2.2%	0.0%
	Largemouth bass	10.25	5.59	4.8%	4.9%
	Northern pike	1.16	1.16	0.5%	0.6%
	Pumpkinseed	58.79	23.48	27.4%	28.0%
	Shorthead redhorse	2.41	2.41	1.1%	1.2%
	Smallmouth bass	25.41	2.12	11.8%	12.1%
	White perch	9.39	5.05	4.4%	4.5%
	White sucker	52.47	43.79	24.4%	25.0%
	Yellow perch	20.21	12.23	9.4%	9.6%

Note: CPUE for gamefish (bolded) is calculated from all transects within the Stratum. CPUE for non-gamefish are calculated	1
from only the transects where all fish are collected. Because of the difficulty in netting clupeids (shad and alewives), the CPU	'E
for these species is calculated from estimates of the number of fish.	

o.) Fall 2007	Stratum 5				
	a •		(IE)	Relative	Relative
	Species	Mean CPUE	SE	abundance with	abundance
				clupeids	without clupeids
	Bluegill	36.39	19.40	12.7%	14.0%
	Bowfin	9.93	4.24	3.5%	3.8%
	Brown bullhead	9.73	4.30	3.4%	3.7%
	Channel catfish	5.21	2.00	1.8%	2.0%
	Gizzard shad	27.44	10.35	9.5%	0.0%
	Largemouth bass	11.18	4.19	3.9%	4.3%
	Northern hog sucker	2.85	2.85	1.0%	1.1%
	Northern pike	1.22	1.22	0.4%	0.5%
	Pumpkinseed	41.99	16.36	14.6%	16.2%
	Rock bass	3.62	2.33	1.3%	1.4%
	Smallmouth bass	44.27	13.95	15.4%	17.0%
	White perch	21.75	16.05	7.6%	8.4%
	White sucker	27.44	10.35	9.5%	10.6%
	Yellow perch	44.49	14.74	15.5%	17.1%

Table A8-5(a-d). Individual Transect Electrofishing CPUE in 2007.

Note: CPUE for non-gamefish are calculated from only the one-half of the transects where all fish are collected (every other transect, shaded). Cells with no data indicate a non-gamefish species in a gamefish only transect. Because of the difficulty in netting clupeids (shad and alewives), the CPUE for these species is calculated from a combination of the number of fish netted and estimates of the number missed.

a.) 2007 entire year mean CPUE

Transect	Alewife	Bluegill	Bowfin	Brown bullhead	Carp	Channel catfish	Freshwater drum	Gizzard shad	Golden shiner	Largemouth bass	Longnose gar	Northern hog sucker	Northern pike	Pumpkinseed	Rock bass	Rudd	Shorthead redhorse	Smallmouth bass	Walleye	White perch	White sucker	Yellow perch
EF 1	0.00	11.86	7.09	9.45	12.03	0.00	0.00	23.71	0.00	9.45	0.00	0.00	0.00	16.67	2.36 (0.00	2.41	35.61	0.00	26.12	67.03	40.20
EF 2	0.00	11.22	0.00	2.68	0.00	2.68	0.00	0.00	0.00	10.88	0.00	0.00	0.00	16.75	0.00 (0.00	0.00	22.28	0.00	0.00	0.00	10.88
EF 3	0.00	22.92	2.85	4.34	0.00	2.85	0.00	8.54	0.00	13.01	0.00	2.85	0.00	85.41	0.00 (0.00	0.00	52.88	0.00	5.02	12.88	39.58
EF 4	0.00	55.70	0.00	9.65	0.00	4.89	0.00	0.00	0.00	9.53	0.00	0.00	4.77	82.73	4.89 (0.00	0.00	28.59	0.00	0.00	0.00	38.72
EF 5	23.56	43.97	0.00	5.80	0.00	0.00	1.93	403.77	0.00	9.67	0.00	1.93	0.00	66.80	0.00 (0.00	1.93	20.19	0.00	9.95	25.99	14.96
EF 6	0.00	4.23	0.00	8.82	0.00	0.00	0.00	0.00	0.00	18.16	0.00	0.00	0.00	47.97	8.82 (0.00	0.00	13.93	0.00	0.00	0.00	8.82
EF 7	0.00	10.45	5.31	5.31	12.86	0.00	0.00	19.15	0.00	37.48	0.00	0.00	0.00	34.09	2.74 (0.00	0.00	23.64	0.00	10.29	5.14	8.04
EF 8	0.00	7.82	0.00	10.53	0.00	0.00	0.00	0.00	0.00	28.23	0.00	0.00	0.00	26.79	0.00 (0.00	0.00	18.34	0.00	0.00	0.00	15.31
EF 9	0.00	8.04	5.58	18.86	40.18	0.00	0.00	19.54	0.00	21.99	16.74	0.00	0.00	35.16	0.00 (0.00	0.00	8.37	0.00	10.94	8.26	29.80
EF 10	0.00	0.00	0.00	14.54	0.00	0.00	0.00	0.00	0.00	12.04	0.00	0.00	0.00	21.02	0.00 (0.00	0.00	3.01	0.00	0.00	0.00	22.55
EF 11	74.40	2.07	0.00	8.16	6.20	0.00	0.00	461.95	0.00	9.90	0.00	0.00	0.00	40.79	0.00 (0.00	0.00	13.93	0.00	4.03	12.18	10.33
EF 12	0.00	2.72	0.00	10.22	0.00	0.00	0.00	0.00	0.00	12.95	0.00	0.00	0.00	20.45	0.00 (0.00	0.00	21.56	0.00	0.00	0.00	15.22
EF 13	29.07	4.85	0.00	2.17	9.69	2.17	4.34	780.25	2.42	14.03	0.00	0.00	0.00	33.67	0.00 (0.00	4.59	9.44	0.00	32.16	32.91	28.57
EF 14	0.00	4.35	0.00	6.78	0.00	0.00	0.00	0.00	0.00	20.61	0.00	0.00	0.00	19.83	0.00 (0.00	0.00	7.31	4.35	0.00	0.00	13.83
EF 15	73.33	8.42	2.22	18.37	20.00	0.00	0.00	71.01	0.00	13.33	5.97	0.00	0.00	50.18	3.98 (0.00	0.00	18.13	6.67	23.05	29.01	15.32
EF 16	0.00	2.08	0.00	5.04	0.00	2.96	0.00	0.00	0.00	14.25	0.00	0.00	0.00	12.16	0.00 (0.00	0.00	10.95	6.25	0.00	0.00	0.00
EF 17	564.87	0.00	2.63	28.26	45.38	5.26	3.03	430.06	0.00	5.65	0.00	0.00	0.00	40.21	0.00	2.63	5.26	10.91	2.63	0.00	37.58	10.51
EF 18	0.00	0.00	0.00	20.77	0.00	2.31	0.00	0.00	0.00	2.31	0.00	0.00	0.00	12.58	0.00 (0.00	0.00	9.01	0.00	0.00	0.00	12.58
EF 19	33.16	11.84	0.00	28.80	37.90	12.60	2.56	43.76	2.37	9.66	4.93	0.00	0.00	30.98	5.11 (0.00	0.00	17.52	0.00	24.25	2.56	5.11
EF 20	0.00	20.42	0.00	15.31	0.00	0.00	0.00	0.00	0.00	21.60	0.00	0.00	0.00	47.85	0.00 (0.00	0.00	8.48	0.00	0.00	0.00	10.21
EF 21	10.50	16.16	0.00	2.62	39.36	3.04	2.62	3.04	0.00	5.25	0.00	0.00	0.00	21.41	0.00 (0.00	0.00	22.66	0.00	70.60	22.66	7.87
EF 22	0.00	33.69	0.00	0.00	0.00	2.92	0.00	0.00	0.00	20.51	0.00	0.00	0.00	64.10	0.00 (0.00	0.00	33.63	5.13	0.00	0.00	10.61
EF 23	54.62	17.38	0.00	0.00	22.35	0.00	0.00	115.19	2.48	2.68	0.00	0.00	0.00	42.21	0.00 (0.00	0.00	2.48	0.00	14.90	2.48	20.25
EF 24	0.00	19.12	0.00	12.33	0.00	0.00	0.00	0.00	0.00	12.33	0.00	0.00	0.00	47.98	2.60 (0.00	0.00	30.20	0.00	0.00	0.00	41.28

Transact	Jewife	luegill	towfin	trown bullhead	larp.	Jhannel catfish	reshwater drum	Pizzard shad	Folden shiner	argemouth bass	ongnose gar	Vorthern hog sucker	Vorthern pike	umpkinseed	tock bass	tudd	horthead redhorse	mallmouth bass	Valleye	Vhite perch	Vhite sucker	ellow perch
EF 1	0.00	7.04	7.09	9.45	12.03	0.00	0.00	14.08	0.00	9.45	0.00	0.00	0.00	2.23	2.36	0.00	2.41	16.36	0.00	11.68	29.23	35.39
EF 2	0.00	5.87	0.00	2.68	0.00	2.68	0.00	0.00	0.00	5.19	0.00	0.00	0.00	6.04	0.00	0.00	0.00	6.21	0.00	0.00	0.00	5.19
EF 3	0.00	5.57	2.85	4.34	0.00	2.85	0.00	8.54	0.00	13.01	0.00	2.85	0.00	5.67	0.00	0.00	0.00	26.86	0.00	0.68	4.21	16.80
EF 4	0.00	37.12	0.00	5.01	0.00	4.89	0.00	0.00	0.00	0.24	0.00	0.00	0.12	24.11	4.89	0.00	0.00	0.72	0.00	0.00	0.00	24.78
EF 5	11.96	21.77	0.00	5.80	0.00	0.00	1.93	48.65	0.00	9.67	0.00	1.93	0.00	39.73	0.00	0.00	1.93	6.88	0.00	5.51	12.68	7.23
EF 6	0.00	4.23	0.00	4.59	0.00	0.00	0.00	0.00	0.00	11.45	0.00	0.00	0.00	5.66	4.59	0.00	0.00	7.22	0.00	0.00	0.00	4.59
EF 7	0.00	4.98	0.16	0.16	12.86	0.00	0.00	19.15	0.00	11.76	0.00	0.00	0.00	12.20	2.74	0.00	0.00	7.22	0.00	10.29	5.14	2.90
EF 8	0.00	3.03	0.00	5.74	0.00	0.00	0.00	0.00	0.00	4.30	0.00	0.00	0.00	22.01	0.00	0.00	0.00	8.77	0.00	0.00	0.00	0.95
EF 9	0.00	8.04	5.58	13.28	40.18	0.00	0.00	19.54	0.00	5.92	16.74	0.00	0.00	18.41	0.00	0.00	0.00	8.37	0.00	0.22	2.90	13.06
EF 10	0.00	0.00	0.00	9.54	0.00	0.00	0.00	0.00	0.00	12.04	0.00	0.00	0.00	8.98	0.00	0.00	0.00	3.01	0.00	0.00	0.00	7.55
EF 11	74.40	2.07	0.00	4.24	6.20	0.00	0.00	426.70	0.00	5.77	0.00	0.00	0.00	21.21	0.00	0.00	0.00	5.66	0.00	0.11	4.35	10.33
EF 12	0.00	2.72	0.00	4.78	0.00	0.00	0.00	0.00	0.00	2.05	0.00	0.00	0.00	9.55	0.00	0.00	0.00	16.56	0.00	0.00	0.00	9.78
EF 13	29.07	4.85	0.00	2.17	9.69	2.17	4.34	280.85	2.42	5.35	0.00	0.00	0.00	29.32	0.00	0.00	0.25	5.10	0.00	1.76	15.54	19.88
EF 14	0.00	4.35	0.00	1.91	0.00	0.00	0.00	0.00	0.00	1.13	0.00	0.00	0.00	14.96	0.00	0.00	0.00	7.31	4.35	0.00	0.00	0.79
EF 15	73.33	0.47	2.22	9.48	20.00	0.00	0.00	44.35	0.00	13.33	5.97	0.00	0.00	34.27	3.98	0.00	0.00	13.69	6.67	0.82	6.79	11.34
EF 16	0.00	2.08	0.00	0.87	0.00	2.96	0.00	0.00	0.00	2.42	0.00	0.00	0.00	0.34	0.00	0.00	0.00	6.78	6.25	0.00	0.00	0.00
EF 1/	486.21	0.00	2.63	1.99	45.38	5.26	3.03	356.48	0.00	0.40	0.00	0.00	0.00	28.11	0.00	2.63	5.26	4.86	2.63	0.00	25.48	10.51
EF 18	0.00	0.00	0.00	20.77	0.00	2.31	0.00	12.09	0.00	2.31	0.00	0.00	0.00	5.88	0.00	0.00	0.00	4.40	0.00	0.00	0.00	5.11
EF 19	33.10	2.10	0.00	18.57	37.90	/.80	2.30	15.08	2.37	4.55	0.19	0.00	0.00	23.80	5.11	0.00	0.00	8.05	0.00	8.91	2.50	5.11
EF 20 EF 21	10.50	2.19	0.00	1.04	20.26	2.04	0.00	2.04	0.00	5 25	0.00	0.00	0.00	47.85	0.00	0.00	0.00	0.40 1.67	0.00	0.00	1.67	1.10
EF 22	0.00	27.85	0.00	0.00	0.00	2.04	2.02	0.04	0.00	20.51	0.00	0.00	0.00	64 10	0.00	0.00	0.00	13.12	5.13	2.38	0.00	1.07
EF 22	54.62	17.38	0.00	0.00	22 35	0.00	0.00	88.40	2.48	20.51	0.00	0.00	0.00	42.21	0.00	0.00	0.00	2.48	0.00	1/ 00	2.48	9.54
EF 24	0.00	3.52	0.00	3.28	0.00	0.00	0.00	0.00	0.00	3.28	0.00	0.00	0.00	6.36	2.60	0.00	0.00	16.62	0.00	0.00	0.00	36.75

Table A8-5(a-d). Individual Transect Electrofishing CPUE in 2007. (continued)

b.) Entire year SE of the mean for table a.

				ad		sh	rum			Jass		sucker					lhorse	ass				
	ife	lii	'n	n bullhe:		nel catfis	water di	ırd shad	en shiner	emouth k	nose gar	nern hog	ıern pike	pkinseed	bass		thead red	lmouth b	eye	e perch	e sucker	w perch
Transect	Mew	Blueg	30wf	3row	Carp	Chan	Fresh	Gizza	Gold	arg	ong	Vort	Vort	Iun	Rock	gudd	short	mal	Valle	Vhit	Vhit	7ello
EF 1	0.00	4.81	0.00	0.00	24.06	0.00	0.00	9.63	0.00	0.00	0.00	0.00	0.00	14.44	0.00	0.00	4.81	19.25	0.00	14.44	96.26	4.81
EF 2	0.00	17.09	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.70	0.00	0.00	0.00	22.78	0.00	0.00	0.00	28.48	0.00	0.00	0.00	5.70
EF 3	0.00	17.35	0.00	8.68	0.00	0.00	0.00	0.00	0.00	26.02	0.00	0.00	0.00	91.08	0.00	0.00	0.00	26.02	0.00	4.34	8.68	56.38
EF 4	0.00	18.58	0.00	4.65	0.00	0.00	0.00	0.00	0.00	9.29	0.00	0.00	4.65	106.84	0.00	0.00	0.00	27.87	0.00	0.00	0.00	13.94
EF 5	35.51	22.20	0.00	0.00	0.00	0.00	0.00	355.11	0.00	0.00	0.00	0.00	0.00	106.53	0.00	0.00	0.00	13.32	0.00	4.44	13.32	22.20
EF 6	0.00	8.46	0.00	4.23	0.00	0.00	0.00	0.00	0.00	29.61	0.00	0.00	0.00	42.30	4.23	0.00	0.00	21.15	0.00	0.00	0.00	4.23
EF 7	0.00	15.43	5.14	5.14	25.72	0.00	0.00	0.00	0.00	25.72	0.00	0.00	0.00	46.29	0.00	0.00	0.00	30.86	0.00	20.57	10.29	5.14
EF 8	0.00	4.79	0.00	4.79	0.00	0.00	0.00	0.00	0.00	23.94	0.00	0.00	0.00	4.79	0.00	0.00	0.00	9.57	0.00	0.00	0.00	14.36
EF 9	0.00	16.07	0.00	32.14	80.36	0.00	0.00	0.00	0.00	16.07	0.00	0.00	0.00	53.57	0.00	0.00	0.00	0.00	0.00	10.71	5.36	42.86
EF 10	0.00	0.00	0.00	5.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	30.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	15.00
EF 11	148.80	4.13	0.00	12.40	12.40	0.00	0.00	888.65	0.00	4.13	0.00	0.00	0.00	62.00	0.00	0.00	0.00	8.27	0.00	4.13	16.53	20.67
EF 12	0.00	0.00	0.00	15.00	0.00	0.00	0.00	0.00	0.00	15.00	0.00	0.00	0.00	30.00	0.00	0.00	0.00	5.00	0.00	0.00	0.00	25.00
EF 13	58.14	9.69	0.00	0.00	19.38	0.00	0.00	1061.10	4.85	19.38	0.00	0.00	0.00	62.99	0.00	0.00	4.85	14.54	0.00	33.92	48.45	48.45
EF 14	0.00	8.70	0.00	8.70	0.00	0.00	0.00	0.00	0.00	21.74	0.00	0.00	0.00	34.78	0.00	0.00	0.00	0.00	8.70	0.00	0.00	13.04
EF 15	146.67	8.89	4.44	8.89	40.00	0.00	0.00	26.67	0.00	26.67	0.00	0.00	0.00	84.44	0.00	0.00	0.00	4.44	13.33	22.22	22.22	26.67
EF 16	0.00	4.17	0.00	4.17	0.00	0.00	0.00	0.00	0.00	16.67	0.00	0.00	0.00	12.50	0.00	0.00	0.00	4.17	12.50	0.00	0.00	0.00
EF 17	78.65	0.00	0.00	30.25	90.76	0.00	6.05	786.54	0.00	6.05	0.00	0.00	0.00	12.10	0.00	0.00	0.00	6.05	0.00	0.00	12.10	0.00
EF 18	0.00	0.00	0.00	41.54	0.00	4.62	0.00	0.00	0.00	4.62	0.00	0.00	0.00	18.46	0.00	0.00	0.00	4.62	0.00	0.00	0.00	18.46
EF 19	66.32	23.68	0.00	47.37	75.79	4.74	0.00	56.84	4.74	14.21	4.74	0.00	0.00	56.84	0.00	0.00	0.00	9.47	0.00	33.16	0.00	0.00
EF 20	0.00	18.23	0.00	13.67	0.00	0.00	0.00	0.00	0.00	31.90	0.00	0.00	0.00	95.70	0.00	0.00	0.00	0.00	0.00	0.00	0.00	9.11
EF 21	20.99	26.24	0.00	5.25	78.72	0.00	5.25	0.00	0.00	10.50	0.00	0.00	0.00	36.73	0.00	0.00	0.00	20.99	0.00	68.22	20.99	15.74
EF 22	0.00	61.54	0.00	0.00	0.00	0.00	0.00	0.00	0.00	41.03	0.00	0.00	0.00	128.21	0.00	0.00	0.00	20.51	10.26	0.00	0.00	15.39
EF 23	109.24	34.76	0.00	0.00	44.69	0.00	0.00	203.59	4.97	0.00	0.00	0.00	0.00	84.41	0.00	0.00	0.00	4.97	0.00	29.79	4.97	29.79
EF 24	0.00	22.64	0.00	9.06	0.00	0.00	0.00	0.00	0.00	9.06	0.00	0.00	0.00	54.34	0.00	0.00	0.00	13.59	0.00	0.00	0.00	4.53

Table A8-5(a-d). Individual Transect Electrofishing CPUE in 2007. (continued)

c.) 2007 spring CPUE

Transect	Alewife	Bluegill	Bowfin	Brown bullhead	Carp	Channel catfish	Freshwater drum	Gizzard shad	Golden shiner	Largemouth bass	Longnose gar	Northern hog sucker	Northern pike	Pumpkinseed	Rock bass	Rudd	Shorthead redhorse	Smallmouth bass	Walleye	White perch	White sucker	Yellow perch
EF 1	0.00	18.90	14.17	18.90	0.00	0.00	0.00	37.80	0.00	18.90	0.00	0.00	0.00	18.90	4.72	0.00	0.00	51.97	0.00	37.80	37.80	75.59
EF 2	0.00	5.36	0.00	5.36	0.00	5.36	0.00	0.00	0.00	16.07	0.00	0.00	0.00	10.71	0.00	0.00	0.00	16.07	0.00	0.00	0.00	16.07
EF 3	0.00	28.48	5.70	0.00	0.00	5.70	0.00	17.09	0.00	0.00	0.00	5.70	0.00	79.75	0.00	0.00	0.00	79.75	0.00	5.70	17.09	22.78
EF 4	0.00	92.81	0.00	14.65	0.00	9.77	0.00	0.00	0.00	9.77	0.00	0.00	4.89	58.62	9.77	0.00	0.00	29.31	0.00	0.00	0.00	63.50
EF 5	11.60	65.74	0.00	11.60	0.00	0.00	3.87	452.42	0.00	19.33	0.00	3.87	0.00	27.07	0.00	0.00	3.87	27.07	0.00	15.47	38.67	7.73
EF 6	0.00	0.00	0.00	13.41	0.00	0.00	0.00	0.00	0.00	6.70	0.00	0.00	0.00	53.63	13.41	0.00	0.00	6.70	0.00	0.00	0.00	13.41
EF 7	0.00	5.47	5.47	5.47	0.00	0.00	0.00	38.30	0.00	49.24	0.00	0.00	0.00	21.88	5.47	0.00	0.00	16.41	0.00	0.00	0.00	10.94
EF 8	0.00	10.84	0.00	16.27	0.00	0.00	0.00	0.00	0.00	32.53	0.00	0.00	0.00	48.80	0.00	0.00	0.00	27.11	0.00	0.00	0.00	16.27
EF 9	0.00	0.00	11.16	5.58	0.00	0.00	0.00	39.07	0.00	27.91	33.49	0.00	0.00	16.74	0.00	0.00	0.00	16.74	0.00	11.16	11.16	16.74
EF 10	0.00	0.00	0.00	24.08	0.00	0.00	0.00	0.00	0.00	24.08	0.00	0.00	0.00	12.04	0.00	0.00	0.00	6.02	0.00	0.00	0.00	30.10
EF 11	0.00	0.00	0.00	3.92	0.00	0.00	0.00	35.26	0.00	15.67	0.00	0.00	0.00	19.59	0.00	0.00	0.00	19.59	0.00	3.92	7.84	0.00
EF 12	0.00	5.45	0.00	5.45	0.00	0.00	0.00	0.00	0.00	10.89	0.00	0.00	0.00	10.89	0.00	0.00	0.00	38.12	0.00	0.00	0.00	5.45
EF 13	0.00	0.00	0.00	4.34	0.00	4.34	8.69	499.39	0.00	8.69	0.00	0.00	0.00	4.34	0.00	0.00	4.34	4.34	0.00	30.40	17.37	8.69
EF 14	0.00	0.00	0.00	4.87	0.00	0.00	0.00	0.00	0.00	19.49	0.00	0.00	0.00	4.8/	0.00	0.00	0.00	14.61	0.00	0.00	0.00	14.61
EF IS	0.00	/.96	0.00	27.85	0.00	0.00	0.00	115.36	0.00	0.00	11.93	0.00	0.00	11.92	/.96	0.00	0.00	31.82	0.00	23.87	35.80	3.98
EF 10	1051.00	0.00	5.26	3.91	0.00	5.91	0.00	72.59	0.00	5.26	0.00	0.00	0.00	68.22	0.00	5.26	10.51	17.73	5.26	0.00	62.07	0.00
	0.00	0.00	0.00	20.28	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6 70	0.00	0.00	0.00	12.77	0.00	0.00	0.00	<u>21.02</u> 6.70
EF 10	0.00	0.00	0.00	10.23	0.00	20.45	5.11	30.68	0.00	5 11	5.11	0.00	0.00	5.11	10.00	0.00	0.00	25 57	0.00	15.34	5.11	10.70
EF 19 EF 20	0.00	22.61	0.00	16.25	0.00	20.45	0.00	0.00	0.00	11 30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	16.96	0.00	0.00	0.00	11.30
EF 21	0.00	6.08	0.00	0.00	0.00	6.08	0.00	6.08	0.00	0.00	0.00	0.00	0.00	6.08	0.00	0.00	0.00	24.33	0.00	72.98	24 33	0.00
EF 22	0.00	5.84	0.00	0.00	0.00	5.84	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	46.75	0.00	0.00	0.00	5.84
EF 23	0.00	0.00	0.00	0.00	0.00	0.00	0.00	26.79	0.00	5.36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	10.71
EF 24	0.00	15.61	0.00	15.61	0.00	0.00	0.00	0.00	0.00	15.61	0.00	0.00	0.00	41.62	5.20	0.00	0.00	46.82	0.00	0.00	0.00	78.04

Table A8-5(a-d). Individual Transect Electrofishing CPUE in 2007. (continued)

d.) 2007 fall CPUE

Season	Whole Lake	Stratum 1	Stratum 2	Stratum 3	Stratum 4	Stratum 5
Year	22	17	19	20	16	16
Spring	20	13	15	17	14	12
Fall	20	16	15	17	11	14

Table A8-6. Electrofishing species richness in "all fish" transects in 2007.

* Note: Richness does not include the fish identified in the field as "Lepomis sp" as these are likely either bluegill or pumpkinseed which are included in the richness calculation.

Season	Stratum	With Clupeids	Without Clupeids
Whole Year	Whole Lake	0.940	1.003
	Stratum 1	0.897	0.965
	Stratum 2	0.704	0.988
	Stratum 3	0.839	1.060
	Stratum 4	1.004	0.912
	Stratum 5	0.955	0.919
Spring	Whole Lake	0.869	0.936
	Stratum 1	0.900	0.879
	Stratum 2	0.644	0.905
	Stratum 3	0.806	0.950
	Stratum 4	0.949	0.842
	Stratum 5	0.855	0.835
Fall	Whole Lake	0.983	1.009
	Stratum 1	0.843	0.980
	Stratum 2	0.737	0.975
	Stratum 3	0.623	1.004
	Stratum 4	0.922	0.876
	Stratum 5	0.970	0.927

Table A8-7. Electrofishing Shannon Diversity Index withand without Clupeids from all electrofishing transects in2007.

Area	Time	Tolerant	Moderately Tolerant	Moderate	Moderately Intolerant	Intolerant
Whole Lake	Spring	45%	30%	25%	0%	0%
	Fall	40%	30%	25%	5%	0%
	Whole Year	45%	27%	23%	5%	0%
Stratum 1	Spring	54%	23%	23%	0%	0%
	Fall	44%	25%	25%	6%	0%
	Whole Year	47%	24%	24%	6%	0%
Stratum 2	Spring	53%	33%	13%	0%	0%
	Fall	43%	36%	21%	0%	0%
	Whole Year	47%	32%	21%	0%	0%
Stratum 3	Spring	50%	31%	19%	0%	0%
	Fall	41%	35%	24%	0%	0%
	Whole Year	50%	30%	20%	0%	0%
Stratum 4	Spring	50%	29%	21%	0%	0%
	Fall	45%	36%	18%	0%	0%
	Whole Year	44%	31%	25%	0%	0%
Stratum 5	Spring	50%	33%	17%	0%	0%
	Fall	43%	29%	21%	7%	0%
	Whole Year	44%	31%	19%	6%	0%

Table A8-8. Whole Lake Pollution Tolerance in 2007.

Percent of species in each tolerance category, based on presence of species. Tolerance designations based on Whittier and Hughes (1998)

a) Clupeids	Included														
Aroo	Timo	Pla	nktivore	Benthi	c Invertivore	Inv Pi	/ertivore/ iscivore	Pi	iscivore	Inv	vertivore	Pla Inv	nktivore/ vertivore	De	tritivore
Alea	Time		Relative		Relative		Relative		Relative		Relative		Relative		Relative
		CPUE	Abundance	CPUE	Abundance	CPUE	Abundance	CPUE	Abundance	CPUE	Abundance	CPUE	Abundance	CPUE	Abundance
Whole Lake	Spring	55	10%	63	12%	50	9%	30	5%	68	12%	1	0%	282	51%
	Fall	89	25%	24	7%	58	16%	42	12%	35	10%	0	0%	114	32%
	Whole Year	74	16%	44	10%	54	12%	36	8%	52	11%	1	0%	195	43%
Stratum 1	Spring	12	4%	45	14%	40	13%	36	11%	64	20%	0	0%	118	38%
	Fall	4	1%	19	5%	49	14%	51	15%	50	14%	0	0%	177	50%
	Whole Year	8	2%	33	10%	44	13%	44	13%	57	17%	0	0%	148	44%
Stratum 2	Spring	118	12%	55	6%	53	6%	25	3%	56	6%	2	0%	659	68%
	Fall	0	0%	22	7%	51	15%	32	10%	14	4%	0	0%	217	65%
	Whole Year	56	9%	37	6%	52	8%	28	4%	34	5%	1	0%	430	67%
Stratum 3	Spring	72	10%	89	13%	60	9%	20	3%	32	5%	2	0%	422	60%
	Fall	526	74%	39	6%	45	6%	28	4%	26	4%	0	0%	52	7%
	Whole Year	317	44%	64	9%	54	8%	24	3%	30	4%	1	0%	225	31%
Stratum 4	Spring	65	14%	75	16%	72	16%	33	7%	113	24%	2	1%	102	22%
	Fall	0	0%	12	8%	68	45%	33	22%	20	13%	0	0%	16	11%
	Whole Year	34	11%	45	14%	70	22%	33	11%	69	22%	1	0%	61	19%
Stratum 5	Spring	0	0%	67	31%	33	15%	37	17%	73	34%	0	0%	5	2%
	Fall	0	0%	30	11%	85	29%	67	23%	78	27%	0	0%	27	10%
	Whole Year	0	0%	48	19%	59	24%	51	20%	76	30%	0	0%	16	6%

Table A8-9(a-b). Trophic Guild CPUE and Relative Abundance from electrofishing data in 2007 with and without Clupeid

b) Clupeids	Excluded														
Aroo	Timo	Pla	nktivore	Benthi	c Invertivore	Inv Pi	/ertivore/ iscivore	Р	iscivore	Inv	vertivore	Pla Inv	nktivore/ vertivore	De	tritivore
Area	Time		Relative		Relative		Relative		Relative		Relative		Relative		Relative
		CPUE	Abundance	CPUE	Abundance	CPUE	Abundance	CPUE	Abundance	CPUE	Abundance	CPUE	Abundance	CPUE	Abundance
Whole Lake	Spring	0	0%	63	30%	50	24%	30	14%	68	32%	1	1%	0	0%
	Fall	0	0%	24	15%	58	36%	42	26%	35	22%	0	0%	0	0%
	Whole Year	0	0%	44	23%	54	29%	36	19%	52	28%	1	0%	0	0%
Stratum 1	Spring	0	0%	45	24%	40	22%	36	19%	64	35%	0	0%	0	0%
	Fall	0	0%	19	11%	49	29%	51	30%	50	30%	0	0%	0	0%
	Whole Year	0	0%	33	19%	44	25%	44	25%	57	32%	0	0%	0	0%
Stratum 2	Spring	0	0%	55	29%	53	28%	25	13%	56	29%	2	1%	0	0%
	Fall	0	0%	22	18%	51	43%	32	27%	14	11%	0	0%	0	0%
	Whole Year	0	0%	37	25%	52	34%	28	18%	34	23%	1	1%	0	0%
Stratum 3	Spring	0	0%	89	44%	60	29%	20	10%	32	16%	2	1%	0	0%
	Fall	0	0%	39	29%	45	33%	28	20%	26	19%	0	0%	0	0%
	Whole Year	0	0%	64	37%	54	31%	24	14%	30	17%	1	1%	0	0%
Stratum 4	Spring	0	0%	75	25%	72	25%	33	11%	113	38%	2	1%	0	0%
	Fall	0	0%	12	9%	68	51%	33	25%	20	15%	0	0%	0	0%
	Whole Year	0	0%	45	21%	70	32%	33	15%	69	32%	1	1%	0	0%
Stratum 5	Spring	0	0%	67	32%	33	16%	37	18%	73	35%	0	0%	0	0%
	Fall	0	0%	30	12%	85	33%	67	26%	78	30%	0	0%	0	0%
	Whole Year	0	0%	48	20%	59	25%	51	22%	76	32%	0	0%	0	0%

Table A8-9(a-b). Trophic Guild CPUE and Relative Abundance from electrofishing data in 2007 with and without Clupeids. (continued)

Table A8-10(a-b). Thermal Guild CPUE and Relative Abundance from electrofishing data in 2007 with and without Clupeids.

Warm Cool Cold Relative Relative Relative Time Area CPUE Abundance CPUE Abundance **CPUE** Abundance Whole Lake Spring 80% 20% 441 110 0 0% 57% 156 Fall 205 43% 0 0% Whole Year 320 30% 0 0% 70% 136 Spring 261 83% 54 17% 0 0% Stratum 1 295 55 Fall 84% 16% 0 0% Whole Year 279 55 0 0% 84% 16% 81% Stratum 2 Spring 783 184 19% 0 0% Fall 283 85% 51 15% 0 0% 524 114 18% 0 Whole Year 82% 0% 602 14% Stratum 3 Spring 86% 95 0 0% Fall 121 17% 594 83% 0 0% Whole Year 51% 0 351 49% 363 0% 352 0% Stratum 4 76% 110 24% 0 Spring Fall 89 60 40% 0 60% 0% Whole Year 27% 228 73% 86 0 0% 0 Stratum 5 Spring 113 53% 102 47% 0% Fall 167 58% 120 42% 0 0% Whole Year 0% 140 56% 44% 0 110

a) Clupeids Included

Table A8-10(a-b). Thermal Guild CPUE and Relative Abundance from electrofishing data in 2007 with and withoutClupeids. (continued)

		W	arm	Co	ol		Cold
Area	Time		Relative		Relative		Relative
		CPUE	Abundance	CPUE	Abundance	CPUE	Abundance
Whole Lake	Spring	158	74%	55	26%	0	0%
	Fall	91	57%	68	43%	0	0%
	Whole Year	126	67%	61	33%	0	0%
Stratum 1	Spring	142	77%	42	23%	0	0%
	Fall	118	70%	51	30%	0	0%
	Whole Year	131	73%	47	27%	0	0%
Stratum 2	Spring	124	65%	66	35%	0	0%
	Fall	67	57%	51	43%	0	0%
	Whole Year	94	62%	58	38%	0	0%
Stratum 3	Spring	181	89%	22	11%	0	0%
	Fall	69	50%	68	50%	0	0%
	Whole Year	127	73%	47	27%	0	0%
Stratum 4	Spring	250	85%	44	15%	0	0%
	Fall	72	55%	60	45%	0	0%
	Whole Year	167	76%	52	24%	0	0%
Stratum 5	Spring	108	52%	102	48%	0	0%
	Fall	140	54%	120	46%	0	0%
	Whole Year	124	53%	110	47%	0	0%

b) Clupeids Excluded

Total Length (mm)	Bluegill	Brown bullhead	Channel catfish	Gizzard shad	Largemouth bass	Pumpkin- seed	Smallmouth bass	White perch	White sucker	Yellow perch
0 - 59										
60 - 79										
80 - 99					1		1			
100 - 119	2					4				
120 - 139	1			9	1	9				
140 - 159	21			1	1	34				
160 - 179	20	1		3	2	53	13	10		6
180 - 199	16			1	2	10	23	17		28
200 - 219	2				1	2	41	19		41
220 - 239				1	2		12	12		11
240 - 259		6		2	6		20	1		3
260 - 279		6		35	15		4	1		1
280 - 299		16		35	5		2		2	2
300 - 319		6		17	1		1			
320 - 339		9		7	2		2			
340 - 359		1		2	6				2	
360 - 379		1			4				3	
380 - 399					1		1		2	
400 - 419		2		2	1				2	
420 - 439			2	2	4		1		7	
440 - 459			2	2	3		1		9	
460 - 479			3	1	2				13	
480 - 499			5		1				4	
500 - 519			5						10	
> 519			5						4	
Total	62	48	22	120	61	112	122	60	58	92

Table A8-11. Length frequency in Fall 2007 electrofishing and Gill netting combined for species where n > 20.

Table A8-12(a-c). Mean total lengths of largemouth and smallmouth bass in each stratum and the whole lake for each sampling event and the whole year from electrofishing, and mean lengths of all species in each event and the whole year.

		Mean Total	Standard	
Season	Stratum	Length (mm)	Error	Ν
Whole Year	Stratum 1	257.51	15.35	35
	Stratum 2	215.59	9.59	32
	Stratum 3	231.28	13.39	18
	Stratum 4	219.19	11.09	36
	Stratum 5	237.55	8.40	55
	Whole Lake	233.13	5.19	176
Spring	Stratum 1	323.31	24.23	16
	Stratum 2	235.00	39.95	7
	Stratum 3	255.20	40.83	5
	Stratum 4	241.08	29.03	12
	Stratum 5	269.57	19.08	21
	Whole Lake	272.92	12.48	61
Fall	Stratum 1	202.11	5.94	19
	Stratum 2	210.16	5.89	25
	Stratum 3	222.08	10.61	13
	Stratum 4	208.25	7.97	24
	Stratum 5	217.76	4.43	34
	Whole Lake	212.03	2.93	115

b) Largemouth bass.

		Mean Total	Standard	
Season	Stratum	Length (mm)	Error	Ν
Whole Year	Stratum 1	304.67	13.21	46
	Stratum 2	353.51	12.93	35
	Stratum 3	281.85	15.84	13
	Stratum 4	318.48	17.75	25
	Stratum 5	284.83	25.64	18
	Whole Lake	314.90	7.60	137
Spring	Stratum 1	314.85	21.21	20
	Stratum 2	363.84	17.31	19
	Stratum 3	284.22	21.99	9
	Stratum 4	332.58	19.11	19
	Stratum 5	278.00	36.41	9
	Whole Lake	323.54	10.22	76
Fall	Stratum 1	296.85	16.93	26
	Stratum 2	341.25	19.57	16
	Stratum 3	276.50	18.62	4
	Stratum 4	273.83	40.20	6
	Stratum 5	291.67	38.15	9
	Whole Lake	304.13	11.32	61

Table A8-12(a-c). Mean total lengths of largemouth and smallmouth bass in each stratum and the whole lake for each sampling event and the whole year from electrofishing, and mean lengths of all other species in each event and the whole year. (continued)

	2007		Sp	Spring			Fall		
	Mean Total	Standard		Mean Total	Standard		Mean Total	Standard	
Species	Length (mm)	Error	Ν	Length (mm)	Error	Ν	Length (mm)	Error	Ν
Alewife	152.32	1.98	37	152.32	1.98	37			
Bluegill	162.87	1.78	133	160.58	2.45	72	165.57	2.562173	61
Bowfin	594.00	21.65	19	626.89	21.80	9	564.40	34.57	10
Brown bullhead	293.75	3.86	101	290.61	5.29	54	297.36	5.67	47
Channel catfish	512.75	16.16	16	593.50	66.50	2	501.21	14.63	14
Freshwater drum	458.67	78.63	6	401.00	201.00	2	487.50	88.83	4
Gizzard shad	273.18	3.53	211	270.28	3.18	105	276.07	6.30	106
Golden shiner	149.33	1.67	3	149.33	1.67	3			
Largemouth bass	314.90	7.60	137	323.54	10.22	76	304.13	11.32	61
Longnose gar	744.92	25.90	12	565.00		1	761.27	22.00	11
Northern hog sucker	262.50	12.50	2				262.50	12.50	2
Northern pike	678.50	79.50	2	599.00		1	758.00		1
Pumpkinseed	153.61	0.99	379	151.55	1.15	275	159.07	1.82	104
Rock bass	172.92	7.59	12	211.00		1	169.45	7.40	11
Rudd	357.00		1				357.00		1
Shorthead redhorse	464.67	14.13	6	475.50	7.50	2	459.25	21.46	4
Smallmouth bass	233.13	5.19	176	272.92	12.48	61	212.03	2.93	115
Walleye	532.18	31.27	11	537.80	34.01	10	476.00		1
White perch	195.76	2.00	94	197.78	3.02	50	193.45	2.53	44
White sucker	444.94	5.68	109	432.74	8.87	54	456.91	6.83	55
Yellow perch	192.75	2.66	174	180.14	4.47	87	205.37	2.20	87

c) 2007 all other species.

Table A8-13. PSD & RSD of select species captured during Fall 2007 electrofishing.

Species	PSD or RSD	Value
Bluegill	PSD	78.69
	RSD8	0.00
Gizzard shad	PSD	61.29
Largemouth bass	PSD	44.44
	RSD15	22.22
	RSD18	5.56
Lepomis sp.	PSD	75.15
	RSD8	0.00
Pumpkinseed	PSD	73.08
	RSD8	0.00
Smallmouth bass	PSD	1.98
	RSD12	0.99
	RSD14	0.00
	RSD18	0.00

* Number after "PSD" or "RSD" designates fish size in inches. So RSD8 is the RSD of fish 8 inches and larger.

Table A8-14(a-b). Relative weights and condition factor of select species captured during electrofishing in the Fall of 2007.

a) 2007 Relative Weights						
Species	Mean Relative Weight	SE	Ν			
Bluegill	97.95	3.11	61			
Gizzard shad	110.61	5.85	105			
Largemouth bass	108.19	3.61	61			
Pumpkinseed	108.19	1.47	104			
Smallmouth bass	90.18	1.03	115			
White perch	91.94	2.05	43			
Yellow perch	85.34	0.89	87			

b) 2007 Condition Factors

Species	Condition Factor
Bluegill	2.06
Gizzard shad	1.09
Largemouth bass	1.60
Pumpkinseed	2.39
Smallmouth bass	1.21
White perch	1.41
Yellow perch	1.18

Table A8-15(a-b). Largemouth and smallmouth bass catch rates from electrofishing in 2007.

a) Largemouth bass					
Season	Category*	CPUE			
Spring	yearling	0.99			
	yearling to 10 inch	3.17			
	> 10 inch	10.90			
	> 12 inch	8.52			
Fall	fingerling	0.65			
	fingerling to 10 inch	2.38			
	> 10 inch	10.17			
	> 12 inch	5.19			

a) I. raamouth h

b) Smallmouth bass

Season	Category*	CPUE
Spring	yearling	1.98
	yearling to 10 inch	5.75
	> 10 inch	4.36
	> 12 inch	3.37
Fall	fingerling	0.22
	fingerling to 10 inch	22.29
	> 10 inch	2.38
	> 12 inch	0.22

* Note: Yearlings are less than or equal to 200 mm total length. Fingerlings are less than or equal to 150 mm total length. These sizes are based on length frequency data from the OCDWEP database.

Table A8-16(a-c). Summary of DELTFM results in 2007.

Stratum	Number			
Stratum 1	8			
Stratum 2	13			
Stratum 3	14			
Stratum 4	5			
Stratum 5	9			
Whole Lake	49			

a) Adult Fish DELTFM Summary

* Note: Juvenile DELTFM are not included in the count by stratum above.

b) Whole lake DELTFM abnormalities by type and species for juveniles.

Species	DELTFM	Number
Pumpkinseed	Deformities - Very small deformed tail	1
Table A8-16(a-c). Summary of DELTFM results in 2007. (continued)

Species	DELTFM	Number
Bluegill	Lesions - Left side	1
Bowfin	Deformities - Split jaw	1
Brown bullhead	Deformities - Burnt barbs	2
	Deformities - Deformities, Erosions, and Lesions	1
	Deformities - Missing barbules	1
	Deformities - Missing left pectoral fin (spine)	1
	dorsal fin erosion	
	Erosions -	1
	Erosions - Burnt barb	1
	Erosions - Burnt barbs	2
	Erosions - Burnt chin barbels	1
	Lesions -	9
	Lesions - Left	1
	Malignancies -	2
	Malignancies - Melanoma	1
	Malignancies - Melanoma on head	1
Channel catfish	Deformities - Blind in both eyes	1
	Erosions - Burnt barbs	2
	Erosions - Burnt barbules	1
	Erosions - E - Burnt barbules	1
	Erosions - E - Burned barbules	1
	Lesions - Right	1
	Tumors - T - Throughout body	1
Largemouth bass	Deformities - Blind right eye	1
	Deformities - Deformity on left eye	1
	Deformities - Deformities and Lesions (melanoma)	1
	Deformities - Isthmus disconnected	1
	Deformities - Missing D-1	1
	Deformities - Right eye missing	1
Northern pike	Lesions - Lesions - left side	1
	Lesions - Lesions on left side	1
Pumpkinseed	Erosions - Both pects torn	1
Smallmouth bass	Lesions - Above left operculum	1
Walleye	Deformities - Mouth wound (old)	1
	Deformities - Popeye	1
	Tumors -	1
White sucker	Deformities - Tail	1
	Tumors - Tumors on anal fin	1

c) Whole lake DELTFM abnormalities by type and species for adults.

Voor	Location	Seeson	Spacios	Mean CPUE
2007	Stratum 1	Spring	Brown trout	0.400
2007	Stratum 1	Spring	Gizzard shad	2 000
2007	Stratum 1	Spring	Smallmouth bass	0.400
2007	Stratum 1	Spring	White nerch	0.400
2007	Stratum 1	Spring	Vellow perch	1 200
2007	Stratum 2	Spring	Gizzard shad	0.500
2007	Stratum 2	Spring	White nerch	1 000
2007	Stratum 2	Spring	Vellow perch	1.000
2007	Stratum 3	Spring	White nerch	9,000
2007	Stratum 3	Spring	Vellow nerch	0.500
2007	Stratum 4	Spring	No Catch	0.500
2007	Stratum 5	Spring	Brown trout	0.500
2007	Stratum 5	Spring	Carn	0.500
2007	Stratum 5	Spring	Gizzard shad	0.500
2007	Stratum 5	Spring	Northern nike	0.500
2007	Stratum 5	Spring	Shorthead redhorse	0.500
2007	Stratum 5	Spring	White nerch	3.000
2007	Stratum 5	Spring	White sucker	3 000
2007	Stratum 5	Spring	Vellow perch	3 500
2007	Stratum 1	 Fall	No Catch	0.496
2007	Stratum 2	Fall	Channel catfish	1 500
2007	Stratum 2	Fall	Gizzard shad	3 000
2007	Stratum 2	Fall	Longnose gar	2.000
2007	Stratum 2	Fall	Smallmouth bass	1 500
2007	Stratum 2	Fall	Walleve	0.500
2007	Stratum 2	Fall	Yellow perch	1 000
2007	Stratum 3	Fall	Channel catfish	1.000
2007	Stratum 3	Fall	Gizzard shad	2 250
2007	Stratum 3	Fall	Smallmouth bass	1 125
2007	Stratum 3	Fall	White perch	1.125
2007	Stratum 3	Fall	White sucker	1 125
2007	Stratum 3	Fall	Yellow perch	0.750
2007	Stratum 4	Fall	Freshwater drum	0.500
2007	Stratum 4	Fall	Gizzard shad	1.000
2007	Stratum 4	Fall	Pumpkinseed	0.500
2007	Stratum 4	Fall	White perch	3.000
2007	Stratum 5	Fall	Rheoill	0.500
2007	Stratum 5	Fall	Brown bullhead	0.500
2007	Stratum 5	Fall	Pumpkinseed	3 500
2007	Stratum 5	Fall	Smallmouth bass	0.500
2007	Stratum 5	Fall	White nerch	3 000
2007	Stratum 5	Fall	Yellow perch	0.500

a) Gill net CPUE by location, time period, and species.

Table A8-17(a-d). Gill net CPUE by location, time period, and species.

•	·	•	
Year	Location	Species	Mean CPUE
2007	Stratum 1	Brown trout	0.221
2007	Stratum 1	Gizzard shad	1.107
2007	Stratum 1	No Catch	0.221
2007	Stratum 1	Smallmouth bass	0.221
2007	Stratum 1	White perch	0.443
2007	Stratum 1	Yellow perch	0.664
2007	Stratum 2	Channel catfish	0.750
2007	Stratum 2	Gizzard shad	1.750
2007	Stratum 2	Longnose gar	1.000
2007	Stratum 2	Smallmouth bass	0.750
2007	Stratum 2	Walleye	0.250
2007	Stratum 2	White perch	0.500
2007	Stratum 2	Yellow perch	1.000
2007	Stratum 3	Channel catfish	1.071
2007	Stratum 3	Gizzard shad	1.286
2007	Stratum 3	Smallmouth bass	0.643
2007	Stratum 3	White perch	4.714
2007	Stratum 3	White sucker	0.643
2007	Stratum 3	Yellow perch	0.643
2007	Stratum 4	Freshwater drum	0.250
2007	Stratum 4	Gizzard shad	0.500
2007	Stratum 4	No Catch	0.250
2007	Stratum 4	Pumpkinseed	0.250
2007	Stratum 4	White perch	1.500
2007	Stratum 5	Bluegill	0.250
2007	Stratum 5	Brown bullhead	0.250
2007	Stratum 5	Brown trout	0.250
2007	Stratum 5	Carp	0.250
2007	Stratum 5	Gizzard shad	0.250
2007	Stratum 5	Northern pike	0.250
2007	Stratum 5	Pumpkinseed	1.750
2007	Stratum 5	Shorthead redhorse	0.250
2007	Stratum 5	Smallmouth bass	0.250
2007	Stratum 5	White perch	3.000
2007	Stratum 5	White sucker	1.500
2007	Stratum 5	Yellow perch	2.000

 Table A8-17(a-d). Gill net CPUE by location, time period, and species. (continued)

b) Whole year Gill net CPUE by location and species.

c) Gill net CPUE by time period and species.				
				Relative
Year	Season	Species	Mean CPUE	Abundance
2007	Spring	Brown trout	0.180	3.3%
2007	Spring	Carp	0.100	1.6%
2007	Spring	Gizzard shad	0.600	11.5%
2007	Spring	No Catch	0.100	1.6%
2007	Spring	Northern pike	0.100	1.6%
2007	Spring	Shorthead redhorse	0.100	1.6%
2007	Spring	Smallmouth bass	0.080	1.6%
2007	Spring	White perch	2.760	45.9%
2007	Spring	White sucker	0.600	9.8%
2007	Spring	Yellow perch	1.240	21.3%
2007	Fall	Bluegill	0.100	1.4%
2007	Fall	Brown bullhead	0.100	1.4%
2007	Fall	Channel catfish	0.675	11.4%
2007	Fall	Freshwater drum	0.100	1.4%
2007	Fall	Gizzard shad	1.250	20.0%
2007	Fall	Longnose gar	0.400	5.7%
2007	Fall	No Catch	0.099	1.4%
2007	Fall	Pumpkinseed	0.800	11.4%
2007	Fall	Smallmouth bass	0.625	10.0%
2007	Fall	Walleye	0.100	1.4%
2007	Fall	White perch	1.500	22.9%
2007	Fall	White sucker	0.225	4.3%
2007	Fall	Yellow perch	0.450	7.1%

 Table A8-17(a-d). Gill net CPUE by location, time period, and species. (continued)

Table A8-1/(a-d). Gli net CPUE by location, time period, and species. (conti
--

Year	Species	Mean CPUE	Relative Abundance
2007	Bluegill	0.050	0.8%
2007	Brown bullhead	0.050	0.8%
2007	Brown trout	0.094	1.5%
2007	Carp	0.050	0.8%
2007	Channel catfish	0.364	6.1%
2007	Freshwater drum	0.050	0.8%
2007	Gizzard shad	0.979	16.0%
2007	Longnose gar	0.200	3.1%
2007	No Catch	0.094	1.5%
2007	Northern pike	0.050	0.8%
2007	Pumpkinseed	0.400	6.1%
2007	Shorthead redhorse	0.050	0.8%
2007	Smallmouth bass	0.373	6.1%
2007	Walleye	0.050	0.8%
2007	White perch	2.031	33.6%
2007	White sucker	0.429	6.9%
2007	Yellow perch	0.861	13.7%

d) Gill net CPUE for 2007 for entire year

Season	Whole Lake	Stratum 1	Stratum 2	Stratum 3	Stratum 4	Stratum 5
Year	17	6	7	6	5	12
Spring	10	5	3	2	1	8
Fall	13	1	6	6	4	6

 Table A8-18. Species richness from Gill nets in 2007.

Season	Stratum	With Clupeids
Whole Year	Whole Lake	0.922
	Stratum 1	0.689
	Stratum 2	0.789
	Stratum 3	0.623
	Stratum 4	0.562
	Stratum 5	0.863
Spring	Whole Lake	0.700
	Stratum 1	0.618
	Stratum 2	0.458
	Stratum 3	0.090
	Stratum 4	0.000
	Stratum 5	0.745
Fall	Whole Lake	0.945
	Stratum 1	0.000
	Stratum 2	0.724
	Stratum 3	0.751
	Stratum 4	0.473
	Stratum 5	0.608

 Table A8-19. Shannon Diversity Index from Gill nets in 2007.

Table A8-20(a-d). 2007 Nesting survey results by species and transect, with comparison of north vs. south.

Transect	Species	Number of Nests
Transect 1	Other	128
	Pumpkinseed	53
	Black Bass (SM or LM)	7
Transect 2	Pumpkinseed	34
	Black Bass (SM or LM)	4
	Other	227
Transect 3	Other	152
	Bluegill	64
Transect 4	Other	187
	Pumpkinseed	83
Transect 5	Lepomis sp.	2
	Other	95
Transect 6	Other	201
Transect 7	Other	310
Transect 8	Other	140
Transect 9	Other	30
Transect 10	Other	3
Transect 11	No Catch	0
Transect 12	No Catch	0
Transect 13	No Catch	0
Transect 14	Other	1
	Pumpkinseed	1
Transect 15	Other	62
Transect 16	Other	2
Transect 17	No Catch	0
Transect 18	No Catch	0
Transect 19	Other	7
Transect 20	Pumpkinseed	1
	Other	69
Transect 21	Other	3
	Pumpkinseed	1
	Lepomis sp.	1
Transect 22	Other	12
	Pumpkinseed	1
Transect 23	Bluegill	1
	Lepomis sp.	2
	Other	23
	Pumpkinseed	2
Transect 24	Pumpkinseed	42
	Largemouth bass	5
	Other	85

a) 2007 Nesting survey results by species and transect (1-24).

Table A8-20(a-d). 2007 Nesting survey results by species and transect, with comparison of north vs. south. (continued)

Transect	Total Number of Nests	Percent of Total
Transect 1	188	9.2%
Transect 2	265	13.0%
Transect 3	216	10.6%
Transect 4	270	13.2%
Transect 5	97	4.8%
Transect 6	201	9.8%
Transect 7	310	15.2%
Transect 8	140	6.9%
Transect 9	30	1.5%
Transect 10	3	0.1%
Transect 11	0	0.0%
Transect 12	0	0.0%
Transect 13	0	0.0%
Transect 14	2	0.1%
Transect 15	62	3.0%
Transect 16	2	0.1%
Transect 17	0	0.0%
Transect 18	0	0.0%
Transect 19	7	0.3%
Transect 20	70	3.4%
Transect 21	5	0.2%
Transect 22	13	0.6%
Transect 23	28	1.4%
Transect 24	132	6.5%

b) 2007 total number of nests in each transect and relative abundance.

c) 2007 nest distribution.

Basin	Total Number of Nests	Percent of Total
North Basin	1717	84.1%
South Basin	324	15.9%

d) 2007 species contribution.

Species	Total Number of Nests	Percent of Total
Black Bass (SM or LM)	11	0.5%
Bluegill	65	3.2%
Largemouth bass	5	0.2%
Lepomis sp.	5	0.2%
Other	1737	85.1%
Pumpkinseed	218	10.7%

Table A8-21(a-c). Pelagic larvae catch summary for 2007.

Species	Basin	Mean (#/m3)	SE
Alewife	North Basin	0.0106	0.0123
	South Basin	0.0303	0.0110
	Whole Lake	0.0205	0.0107
Bluegill	North Basin	0.0111	0.0128
	South Basin	0.0050	0.0099
	Whole Lake	0.0080	0.0079
Pumpkinseed	North Basin	0	0
	South Basin	0.0050	0.0099
	Whole Lake	0.0025	0.0050

a) Whole year CPUE by species

Table A8-21(a-c). Pelagic larvae catch summary for 2007. (continued)

Sample Period	Species	Basin	Mean (#/m3)	SE
mid June	Alewife	North Basin	0	0
		South Basin	0.0375	0.0750
		Whole Lake	0.0188	0.0375
	Pumpkinseed	North Basin	0	0
		South Basin	0.0375	0.0750
		Whole Lake	0.0188	0.0375
late June	Alewife	North Basin	0.0335	0.0670
		South Basin	0.1542	0.1320
		Whole Lake	0.0938	0.0823
	Bluegill	North Basin	0.0407	0.0814
		South Basin	0.0344	0.0688
		Whole Lake	0.0375	0.0494
mid July	Alewife	North Basin	0.0647	0.1295
		South Basin	0.0464	0.0928
		Whole Lake	0.0556	0.0741
	Bluegill	North Basin	0.0647	0.1295
		South Basin	0	0
		Whole Lake	0.0324	0.0647

b) Sampling Event CPUE by species and location

* Note: two other sample periods had no fish captured.

Table A8-21(a-c). Pelagic larvae catch summary for 2007. (continued)

c) Species richness in 2007.

Location	Number of Species
North Basin	2
South Basin	3
Whole Lake	3

	Entire La	ke	Stratum	1	Stratum	2	Stratum	3	Stratum	4	Stratum	5
Species	Mean CPUE	SE	Mean CPUE	SE								
Banded killifish	0.26	0.23	0.00	0.00	1.28	1.17	0.00	0.00	0.00	0.00	0.00	0.00
Brown bullhead	0.01	0.01	0.00	0.00	0.06	0.06	0.00	0.00	0.00	0.00	0.00	0.00
Carp	0.03	0.03	0.00	0.00	0.17	0.17	0.00	0.00	0.00	0.00	0.00	0.00
Golden shiner	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.06	0.06	0.00	0.00
Largemouth bass	7.81	1.98	16.56	5.72	0.89	0.48	0.33	0.18	13.00	5.96	8.28	4.64
Lepomis sp.	7.66	3.94	2.72	2.33	0.00	0.00	0.72	0.42	32.78	18.70	2.06	1.94
Smallmouth bass	0.53	0.14	1.00	0.46	0.00	0.00	0.00	0.00	0.50	0.20	1.17	0.44
Tesselated darter	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.06	0.06	0.00	0.00
Total	16.32	6.20	19.28	8.05	2.39	1.87	1.06	0.60	45.83	24.72	10.33	6.58

Table A8-22. 2007 YOY mean CPUE (#/haul) for each species for the whole year from each stratum and the entire lake.

Table A8-23(a-b). YOY Relative abundance for each species for 2007 from each stratum and the entire lake with and without clupeids.

Species	Entire Lake	Stratum 1	Stratum 2	Stratum 3	Stratum 4	Stratum 5
Banded killifish	1.56%	0%	53.49%	0%	0%	0%
Brown bullhead	0.07%	0%	2.33%	0%	0%	0%
Carp	0.20%	0%	6.98%	0%	0%	0%
Golden shiner	0.07%	0%	0%	0%	0.12%	0%
Largemouth bass	47.69%	81.64%	37.21%	31.58%	27.92%	71.29%
Lepomis sp.	46.74%	13.42%	0%	68.42%	70.41%	17.70%
Rock bass	0.34%	0%	0%	0%	0.36%	0.96%
Smallmouth bass	3.26%	4.93%	0%	0%	1.07%	10.05%
Tesselated darter	0.07%	0%	0%	0%	0.12%	0%

a) With Clupeids

b) Without Clupeids

Species	Entire Lake	Stratum 1	Stratum 2	Stratum 3	Stratum 4	Stratum 5
Banded killifish	1.56%	0%	53.49%	0%	0%	0%
Brown bullhead	0.07%	0%	2.33%	0%	0%	0%
Carp	0.20%	0%	6.98%	0%	0%	0%
Golden shiner	0.07%	0%	0%	0%	0.12%	0%
Largemouth bass	47.69%	81.64%	37.21%	31.58%	27.92%	71.29%
Lepomis sp.	46.74%	13.42%	0%	68.42%	70.41%	17.70%
Rock bass	0.34%	0%	0%	0%	0.36%	0.96%
Smallmouth bass	3.26%	4.93%	0%	0%	1.07%	10.05%
Tesselated darter	0.07%	0%	0%	0%	0.12%	0%

Stratum	Site	Species	Mean CPUE	SE
Stratum 1	Site 1	Largemouth bass	36.00	13.54
		Lepomis sp.	7.50	6.92
		Smallmouth bass	2.00	1.29
	Site 2	Largemouth bass	12.50	4.85
		Lepomis sp.	0.67	0.67
		Smallmouth bass	0.67	0.33
	Site 3	Largemouth bass	1.17	0.79
		Smallmouth bass	0.33	0.33
Stratum 2	Site 1	Banded killifish	0.33	0.33
		Carp	0.50	0.50
		Largemouth bass	2.50	1.23
	Site 3	Banded killifish	3.50	3.50
		Brown bullhead	0.17	0.17
		Largemouth bass	0.17	0.17
Stratum 3	Site 1	Largemouth bass	0.33	0.21
Site 2		Lepomis sp.	1.00	1.00
		Largemouth bass	0.50	0.50
		Lepomis sp.	1.00	0.82
	Site 3	Largemouth bass	0.17	0.17
		Lepomis sp.	0.17	0.17
Stratum 4	Site 1	Golden shiner	0.17	0.17
		Largemouth bass	3.67	2.40
		Lepomis sp.	9.67	7.24
		Smallmouth bass	0.33	0.21
	Site 2	Largemouth bass	10.00	7.51
		Lepomis sp.	21.00	9.70
		Rock bass	0.17	0.17
		Smallmouth bass	0.33	0.33
		Tesselated darter	0.17	0.17
	Site 3	Largemouth bass	25.33	15.84
		Lepomis sp.	67.67	55.15
		Rock bass	0.33	0.33
		Smallmouth bass	0.83	0.48
Stratum 5	Site 1	Largemouth bass	5.33	3.42
		Smallmouth bass	2.67	0.88
	Site 2	Largemouth bass	2.67	1.71
		Lepomis sp.	5.83	5.83
		Smallmouth bass	0.83	0.65
	Site 3	Largemouth bass	16.83	13.51
		Lepomis sp.	0.33	0.33
		Rock bass	0.33	0.33

 Table A8-24. YOY mean CPUE (#/haul) for each species from each site for 2007.

Sample period	Stratum	Species	CPUE	SE
late June - early July	Stratum 1	Largemouth bass	0.67	0.33
	Stratum 2	No Catch	0.00	0.00
	Stratum 3	No Catch	0.00	0.00
	Stratum 4	No Catch	0.00	0.00
	Stratum 5	Largemouth bass	1.67	1.67
		Smallmouth bass	0.33	0.33
mid July	Stratum 1	Largemouth bass	16.00	8.14
		Smallmouth bass	0.33	0.33
	Stratum 2	Carp	1.00	1.00
	Stratum 3	No Catch	0.00	0.00
	Stratum 4	Largemouth bass	14.33	8.35
		Lepomis sp.	16.00	8.33
		Rock bass	0.67	0.67
		Smallmouth bass	1.67	0.88
	Stratum 5	Largemouth bass	13.33	6.33
		Smallmouth bass	0.67	0.67
August	Stratum 1	Largemouth bass	26.67	17.27
C		Lepomis sp.	2.33	1.20
		Smallmouth bass	1.67	1.67
	Stratum 2	Largemouth bass	1.00	1.00
	Stratum 3	Largemouth bass	1.33	0.88
		Lepomis sp.	2.33	1.86
	Stratum 4	Largemouth bass	54.33	25.10
		Lepomis sp.	146.33	97.38
		Rock bass	0.33	0.33
		Smallmouth bass	0.33	0.33
		Tesselated darter	0.33	0.33
	Stratum 5	Largemouth bass	32.00	25.63
		Lepomis sp.	12.33	11.35
		Rock bass	0.67	0.67
		Smallmouth bass	2.33	1.20
late August	Stratum 1	Largemouth bass	24.33	18.84
-		Smallmouth bass	0.67	0.67
	Stratum 2	Largemouth bass	3.00	2.52
	Stratum 3	Largemouth bass	0.33	0.33
		Lepomis sp.	2.00	1.53
	Stratum 4	Largemouth bass	5.00	1.53
		Lepomis sp.	14.00	14.00
		Smallmouth bass	0.33	0.33
	Stratum 5	Largemouth bass	1.00	0.58
		Smallmouth bass	2.00	2.00

Table A8-25. YOY CPUE (#/haul) in each stratum during each sampling for each species, 2007.

Table A8-25. YOY CPUE (#/haul) in each stratum during each sampling for each species, 2007. (continued)

Sample period	Stratum	Species	CPUE	SE
mid September	Stratum 1	Largemouth bass	31.00	22.61
		Lepomis sp.	14.00	14.00
		Smallmouth bass	2.67	2.19
	Stratum 2	Brown bullhead	0.33	0.33
		Largemouth bass	0.33	0.33
	Stratum 3	Largemouth bass	0.33	0.33
	Stratum 4	Golden shiner	0.33	0.33
		Largemouth bass	4.33	4.33
		Lepomis sp.	20.33	12.81
		Smallmouth bass	0.33	0.33
	Stratum 5	Largemouth bass	1.67	0.88
		Smallmouth bass	1.67	1.20
October	Stratum 1	Largemouth bass	0.67	0.67
		Smallmouth bass	0.67	0.67
	Stratum 2	Banded killifish	7.67	6.69
		Largemouth bass	1.00	1.00
	Stratum 3	No Catch	0.00	0.00
	Stratum 4	Smallmouth bass	0.33	0.33
	Stratum 5	No Catch	0.00	0.00

Species	Mean CPUE	SE
Alewife	1.06	1.06
Banded killifish	2.04	0.61
Bluegill	0.11	0.05
Brown bullhead	0.01	0.01
Carp	0.10	0.05
Freshwater drum	0.01	0.01
Gizzard shad	0.02	0.02
Golden shiner	0.51	0.26
Largemouth bass	0.80	0.29
Lepomis sp.	2.58	0.76
No Catch	0.26	0.05
Pumpkinseed	0.98	0.31
Rock bass	0.06	0.04
Smallmouth bass	0.20	0.06
Spotfin Shiner	0.01	0.01
Tesselated darter	0.01	0.01
White perch	0.07	0.03
White sucker	0.02	0.02
Yellow perch	0.06	0.04

Table A8-26. Mean CPUE (#/haul) of incidental catch of non-YOY species for entire lake in 2007.

a) By stratum and sampling period

	Mean total								
Sample period	Stratum	Species	length (mm)	SE	Ν				
late June - early July	Stratum 1	Largemouth bass	27.50	0.50	2				
	Stratum 2	No Catch			0				
	Stratum 3	No Catch			0				
	Stratum 4	No Catch			0				
	Stratum 5	Largemouth bass	43.60	1.94	5				
		Smallmouth bass	31.00		1				
mid July	Stratum 1	Largemouth bass	46.15	0.71	48				
		Smallmouth bass	36.00		1				
	Stratum 2	Carp	47.67	0.88	3				
	Stratum 3	No Catch			0				
	Stratum 4	Largemouth bass	54.79	1.35	43				
		Lepomis sp.	30.50	0.92	48				
		Rock bass	38.00	2.00	2				
		Smallmouth bass	54.60	2.36	5				
	Stratum 5	Largemouth bass	52.13	1.14	40				
		Smallmouth bass	52.50	1.50	2				
Angust	Stratum 1	Largemouth bass	65 32	1.07	50				
. ugust	buuum 1	Lepomis sp.	37.57	0.37	7				
		Smallmouth bass	62.80	3.32	5				
	Stratum 2	Largemouth bass	65.33	0.88	3				
	Stratum 3	Largemouth bass	55.75	6.81	4				
	buuum b	Lenomis sp	36.29	1.17	7				
	Stratum 4	Largemouth bass	65.32	1.10	57				
		Lenomis sp	37.00	0.55	26				
		Bock bass	30.00	0.55	1				
		Smallmouth bass	62.00		1				
		Tesselated darter	45.00		1				
	Stratum 5	Largemouth bass	62.44	0.76	43				
	buuum b	Lepomis sp	36.33	1 94	9				
		Rock bass	33.00	2.00	2				
		Smallmouth bass	66.43	2.73	- 7				
late August	Stratum 1	L argemouth bass	65.89	1.30	35				
into i ingust	buuum 1	Smallmouth bass	73.50	4 50	2				
	Stratum 2	Largemouth bass	67.89	1.50	9				
	Stratum 3	Largemouth bass	61.00	1110	1				
	Stratum 5	Largemouth bass	25 50	0.72	1				
	Stratum 4	Lepoints sp.	70.12	0.72	15				
	Suatum 4	Largemouth Dass	36 33	2.32	3				
		Smallmouth base	77.00	2.17	5				
	Structure E	L and an and the h	(2.22	6.90	2				
	Stratum 5	Largemouth bass	03.33	0.89	3				
1		Smallmouth bass	72.17	2.27	6				

a) By stratum and sampling period (continued)

			Mean total		
Sample period	Stratum	Species	length (mm)	SE	Ν
mid September	Stratum 1	Largemouth bass	76.48	1.42	48
		Lepomis sp.	48.82	1.01	28
		Smallmouth bass	79.75	2.14	8
	Stratum 2	Brown bullhead	69.00		1
		Largemouth bass	72.00		1
	Stratum 3	Largemouth bass	103.00		1
	Stratum 4	Golden shiner	67.00		1
		Largemouth bass	89.08	4.37	13
		Lepomis sp.	53.76	0.76	42
		Smallmouth bass	84.00		1
	Stratum 5	Largemouth bass	85.60	4.58	5
		Smallmouth bass	87.60	3.23	5
October	Stratum 1	Largemouth bass	83.50	6.50	2
		Smallmouth bass	87.00	2.00	2
	Stratum 2	Banded killifish	68.00	4.00	2
		Largemouth bass	89.33	4.91	3
	Stratum 3	No Catch			0
	Stratum 4	Smallmouth bass	90.00		1
	Stratum 5	No Catch			0

b) Whole lake by sampling period	
----------------------------------	--

		Mean total		
Sample period	Species	length (mm)	SE	Ν
late June - early July	Largemouth bass	39.0	3.3	7
	Smallmouth bass	31.0		1
mid July	Carp	47.7	0.9	3
	Largemouth bass	50.8	0.7	131
	Lepomis sp.	30.5	0.9	48
	Rock bass	38.0	2.0	2
	Smallmouth bass	51.8	2.7	8
August	Largemouth bass	64.3	0.6	157
-	Lepomis sp.	36.9	0.5	49
	Rock bass	32.0	1.5	3
	Smallmouth bass	64.7	1.9	13
	Tesselated darter	45.0		1
late August	Largemouth bass	67.0	1.0	63
	Lepomis sp.	35.8	0.8	9
	Smallmouth bass	73.0	1.7	9
mid September	Brown bullhead	69.0		1
	Golden shiner	67.0		1
	Largemouth bass	79.9	1.5	68
	Lepomis sp.	51.8	0.7	70
	Smallmouth bass	82.9	1.9	14
October	Banded killifish	68.0	4.0	2
	Largemouth bass	87.0	3.7	5
	Smallmouth bass	88.0	1.5	3

	Mean		
Species	length (mm)	SE	Ν
Banded killifish	68.0	4.0	2
Brown bullhead	69.0		1
Carp	47.7	0.9	3
Golden shiner	67.0		1
Largemouth bass	62.9	0.7	431
Lepomis sp.	41.0	0.8	176
Rock bass	34.4	1.8	5
Smallmouth bass	70.1	2.1	48
Tesselated darter	45.0		1

		Mean total		
Stratum	Species	length (mm)	SE	Ν
Stratum 1	Largemouth bass	63.14	1.04	185
	Lepomis sp.	46.57	1.12	35
	Smallmouth bass	72.72	3.22	18
Stratum 2	Banded killifish	68.00	4.00	2
	Brown bullhead	69.00		1
	Carp	47.67	0.88	3
	Largemouth bass	71.69	2.49	16
Stratum 3	Largemouth bass	64.50	8.86	6
	Lepomis sp.	35.92	0.69	13
Stratum 4	Golden shiner	67.00		1
	Largemouth bass	64.76	1.21	128
	Lepomis sp.	40.28	1.06	119
	Rock bass	35.33	2.91	3
	Smallmouth bass	65.11	4.99	9
	Tesselated darter	45.00		1
Stratum 5	Largemouth bass	58.40	1.10	96
	Lepomis sp.	36.33	1.94	9
	Rock bass	33.00	2.00	2
	Smallmouth bass	70.10	3.27	21

		Mean total		
Species	Stratum	length (mm)	SE	Ν
Largemouth bass	Stratum 1	65.55	0.82	85
Lepomis sp.	Stratum 1	37.57	0.37	7
Smallmouth bass	Stratum 1	65.86	3.18	7
Largemouth bass	Stratum 2	67.25	1.14	12
Largemouth bass	Stratum 3	56.80	5.38	5
Lepomis sp.	Stratum 3	35.92	0.69	13
Largemouth bass	Stratum 4	66.32	1.02	72
Lepomis sp.	Stratum 4	36.93	0.53	29
Rock bass	Stratum 4	30.00		1
Smallmouth bass	Stratum 4	69.50	7.50	2
Tesselated darter	Stratum 4	45.00		1
Largemouth bass	Stratum 5	62.50	0.81	46
Lepomis sp.	Stratum 5	36.33	1.94	9
Rock bass	Stratum 5	33.00	2.00	2
Smallmouth bass	Stratum 5	69.08	1.92	13
Largemouth bass	Whole Lake	65.06	0.52	220
Lepomis sp.	Whole Lake	36.69	0.43	58
Rock bass	Whole Lake	32.00	1.53	3
Smallmouth bass	Whole Lake	68.09	1.59	22
Tesselated darter	Whole Lake	45.00		1

Table A8-28. YOY mean total length in August in each stratum and the entire lake in 2007.

		Growth rate			
Time period	Species	Stratum	(ln(Wt/Wo))	Ν	
late June - early July to mid July	Largemouth bass	Stratum 1	1.171	50	
		Stratum 2	0.000	0	
		Stratum 3	0.000	0	
		Stratum 4	0.000	0	
		Stratum 5	0.576	45	
		Whole Lake	0.643	133	
	Smallmouth bass	Stratum 1	0.000	0	
		Stratum 2	0.000	0	
		Stratum 3	0.000	0	
		Stratum 4	0.000	0	
		Stratum 5	1.897	3	
		Whole Lake	1.833	9	
late June - early July to August	Largemouth bass	Stratum 1	2.305	52	
		Stratum 2	0.000	0	
		Stratum 3	0.000	0	
		Stratum 4	0.000	0	
		Stratum 5	0.936	48	
		Whole Lake	1.308	155	
	Smallmouth bass	Stratum 1	0.000	0	
		Stratum 2	0.000	0	
		Stratum 3	0.000	0	
		Stratum 4	0.000	0	
		Stratum 5	2.572	8	
		Whole Lake	2.619	14	
late June - early July to late August	Largemouth bass	Stratum 1	2.385	37	
		Stratum 2	0.000	0	
		Stratum 3	0.000	0	
		Stratum 4	0.000	0	
		Stratum 5	1.115	8	
		Whole Lake	1.530	68	
	Smallmouth bass	Stratum 1	0.000	0	
		Stratum 2	0.000	0	
		Stratum 3	0.000	0	
		Stratum 4	0.000	0	
		Stratum 5	2.737	7	
		Whole Lake	2.806	9	
late June - early July to mid September	Largemouth bass	Stratum 1	2.651	50	
	-	Stratum 2	0.000	0	
		Stratum 3	0.000	0	
		Stratum 4	0.000	0	
		Stratum 5	1.906	10	
		Whole Lake	1.932	75	
	Smallmouth bass	Stratum 1	0.000	0	
		Stratum 2	0.000	0	
		Stratum 3	0.000	0	
		Stratum 4	0.000	0	
		Stratum 5	3.243	6	
		Whole Lake	3.163	15	

 Table A8-29. Growth rates of YOY between all sampling periods in 2007.

			Growth rate			
Time period	Species	Stratum	(ln(Wt/Wo))	Ν		
late June - early July to October	Largemouth bass	Stratum 1	2.862	4		
		Stratum 2	0.000	0		
		Stratum 3	0.000	0		
		Stratum 4	0.000	0		
		Stratum 5	0.000	0		
		Whole Lake	2.113	12		
	Smallmouth bass	Stratum 1	0.000	0		
		Stratum 2	0.000	0		
		Stratum 3	0.000	0		
		Stratum 4	0.000	0		
		Stratum 5	0.000	0		
		Whole Lake	3.332	4		
mid July to August	Largemouth bass	Stratum 1	1.134	98		
, ,	U	Stratum 2	0.000	0		
		Stratum 3	0.000	0		
		Stratum 4	0.473	93		
		Stratum 5	0.360	83		
		Whole Lake	0.665	274		
	Smallmouth bass	Stratum 1	2.438	6		
		Stratum 2	0.000	0		
		Stratum 3	0.000	0 0		
		Stratum 4	0.380	6		
		Stratum 5	0.675	9		
		Whole Lake	0.786	21		
mid July to late August	Largemouth bass	Stratum 1	1 214	83		
ind sury to fate rugust	Eurgemouth ouss	Stratum 2	0.000	0		
		Stratum 3	0.000	0		
		Stratum 4	0.000	51		
		Stratum 5	0.539	13 13		
		Whole Lake	0.887	187		
	Smallmouth bass	Stratum 1	2 700	3		
	Sinannoutii bass	Stratum 2	0.000	0		
		Stratum 3	0.000	0		
		Stratum 4	0.000	0		
		Stratum 5	0.840	8		
		Whole Lake	0.973	16		
mid July to mid September	L argemouth bass	Stratum 1	1.481	06		
find July to find September	Largemouth bass	Stratum 2	0.000	90		
		Stratum 2	0.000	0		
		Stratum 4	0.000	51		
		Stratum 5	1.437	J1 45		
		Whole Lake	1.330	43		
	C	Strategy 1	1.289	194		
	Smanmouth bass	Stratum 1	2.824	9		
		Stratum 2	0.000	0		
		Stratum 3	0.000	0		
		Stratum 4	1.195	6		
		Stratum 5	1.346	22		
		Whole Lake	1.331	22		

 Table A8-29. Growth rates of YOY between all sampling periods in 2007. (continued)

			Growth rate	ate o)) N	
Time period	Species	Stratum	(ln(Wt/Wo))		
mid July to October	Largemouth bass	Stratum 1	1.692	50	
		Stratum 2	0.000	0	
		Stratum 3	0.000	0	
		Stratum 4	0.000	0	
		Stratum 5	0.000	0	
		Whole Lake	1.470	131	
	Smallmouth bass	Stratum 1	3.002	3	
		Stratum 2	0.000	0	
		Stratum 3	0.000	0	
		Stratum 4	1.457	6	
		Stratum 5	0.000	0	
		Whole Lake	1.500	11	
August to late August	Largemouth bass	Stratum 1	0.080	85	
		Stratum 2	0.000	0	
		Stratum 3	0.000	0	
		Stratum 4	0.305	68	
		Stratum 5	0.179	46	
		Whole Lake	0.222	209	
	Smallmouth bass	Stratum 1	0.262	7	
		Stratum 2	0.000	0	
		Stratum 3	0.000	0	
		Stratum 4	0.000	0	
		Stratum 5	0.165	13	
		Whole Lake	0.187	21	
August to mid September	Largemouth bass	Stratum 1	0.347	98	
		Stratum 2	0.000	0	
		Stratum 3	0.000	0	
		Stratum 4	0.964	68	
		Stratum 5	0.970	48	
		Whole Lake	0.624	216	
	Smallmouth bass	Stratum 1	0.386	13	
		Stratum 2	0.000	0	
		Stratum 3	0.000	0	
		Stratum 4	0.815	2	
		Stratum 5	0.670	12	
		Whole Lake	0.544	27	

 Table A8-29. Growth rates of YOY between all sampling periods in 2007. (continued)

Table A8-30(a-b). 2007 YOY relative weight.

a. Sorted by sample period and stratum.

			Relative		
Sample period	Stratum	Species	weight	SE	Ν
late June - early July	Stratum 1	Largemouth bass	211.89	12.28	2
	Stratum 5	Largemouth bass	143.38	15.65	5
		Smallmouth bass	108.08		1
mid July	Stratum 1	Largemouth bass	122.63	5.11	48
		Smallmouth bass	89.31		1
	Stratum 4	Largemouth bass	120.94	3.07	38
		Smallmouth bass	124.09	5.35	5
	Stratum 5	Largemouth bass	137.25	2.86	40
		Smallmouth bass	133.02	1.18	2
August	Stratum 1	Largemouth bass	128.21	2.49	50
		Smallmouth bass	181.06	26.01	5
	Stratum 4	Largemouth bass	112.85	1.69	55
		Smallmouth bass	121.54		1
	Stratum 5	Largemouth bass	115.59	2.42	43
		Smallmouth bass	119.66	4.58	7
late August mid September	Stratum 1	Largemouth bass	138.01	5.56	35
		Smallmouth bass	130.42	16.27	2
	Stratum 2	Largemouth bass	133.90	5.29	9
	Stratum 3	Largemouth bass	137.25		1
	Stratum 4	Largemouth bass	113.41	5.64	13
	Stratum 5	Largemouth bass	116.72	12.10	3
		Smallmouth bass	112.68	6.69	6
mid September	Stratum 1	Largemouth bass	109.40	1.06	48
		Smallmouth bass	116.40	1.67	8
	Stratum 2	Largemouth bass	112.72		1
	Stratum 3	Largemouth bass	97.71		1
	Stratum 4	Largemouth bass	103.82	1.61	13
		Smallmouth bass	103.85		1
	Stratum 5	Largemouth bass	106.51	4.49	5
		Smallmouth bass	99.52	5.40	5
October	Stratum 1	Largemouth bass	104.71	0.11	2
		Smallmouth bass	106.97	5.87	2
	Stratum 2	Largemouth bass	103.40	4.75	3
	Stratum 4	Smallmouth bass	108.26		1

Table A8-30(a-b). 2007 YOY relative weight. (continued)

b. Sorted by sample period for whole lake

		Relative		
Sample period	Species	weight	SE	Ν
late June - early July	Largemouth bass	162.96	16.84	7
	Smallmouth bass	108.08		1
mid July	Largemouth bass	126.76	2.41	126
	Smallmouth bass	121.98	5.84	8
August	Largemouth bass	118.84	1.37	148
	Smallmouth bass	143.42	12.89	13
late August	Largemouth bass	131.11	3.74	61
	Smallmouth bass	117.11	6.47	8
mid September	Largemouth bass	108.00	0.91	68
	Smallmouth bass	109.48	3.01	14
October	Largemouth bass	103.93	2.62	5
	Smallmouth bass	107.40	3.42	3

Stratum	With Clupeids	Without Clupeids
Stratum 1	0.25	0.25
Stratum 2	0.42	0.42
Stratum 3	0.27	0.27
Stratum 4	0.30	0.30
Stratum 5	0.36	0.36
Whole Lake	0.40	0.40

Table A8-31. Shannon Diversity Index for YOY fish in 2007 with andwithout clupeids.

Table A8-32(a-c). Reproductive guilds, based on abundance of YOY taxa in 2007, with and without clupeids.

	Entire	Stratum				
Reproductive Guild	Lake	1	2	3	4	5
Guarder, nest spawner, ariadnophil	0.00	0.00	0.00	0.00	0.00	0.00
Guarder, nest spawner, lithophil	8.24	3.72	0.00	0.72	33.44	3.33
Guarder, nest spawner, phytophil	7.81	16.56	0.89	0.33	13.00	8.28
Guarder, nest spawner, speleophil	0.01	0.00	0.06	0.00	0.00	0.00
Nonguarder, brood hider, lithophil	0.00	0.00	0.00	0.00	0.00	0.00
Nonguarder, open substrate spawner, litho-pelagophil	0.00	0.00	0.00	0.00	0.00	0.00
Nonguarder, open substrate spawner, lithophil	0.00	0.00	0.00	0.00	0.00	0.00
Nonguarder, open substrate spawner, pelagophil	0.00	0.00	0.00	0.00	0.00	0.00
Nonguarder, open substrate spawner, phyto-lithophil	0.00	0.00	0.00	0.00	0.00	0.00
Nonguarder, open substrate spawner, phytophil	0.30	0.00	1.44	0.00	0.06	0.00
Nonguarder, open substrate spawner, psammophil	0.00	0.00	0.00	0.00	0.00	0.00
Total	16.37	20.28	2.39	1.06	46.50	11.61

a) CPUE for the entire lake and each stratum with clupeids.

b) Relative abundance for the entire lake and each stratum with clupeids

	Entire	Stratum				
Reproductive Guild	Lake	1	2	3	4	5
Guarder, nest spawner, ariadnophil	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Guarder, nest spawner, lithophil	50.37%	18.36%	0.00%	68.42%	71.92%	28.71%
Guarder, nest spawner, phytophil	47.73%	81.64%	37.21%	31.58%	27.96%	71.29%
Guarder, nest spawner, speleophil	0.07%	0.00%	2.33%	0.00%	0.00%	0.00%
Nonguarder, brood hider, lithophil	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Nonguarder, open substrate spawner, litho-pelagophil	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Nonguarder, open substrate spawner, lithophil	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Nonguarder, open substrate spawner, pelagophil	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Nonguarder, open substrate spawner, phyto-lithophil	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Nonguarder, open substrate spawner, phytophil	1.83%	0.00%	60.47%	0.00%	0.12%	0.00%
Nonguarder, open substrate spawner, psammophil	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%

c) Relative abundance for the entire lake and each stratum without clupeids

	Entire	Stratum				
Reproductive Guild	Lake	1	2	3	4	5
Guarder, nest spawner, ariadnophil	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Guarder, nest spawner, lithophil	50.37%	18.36%	0.00%	68.42%	71.92%	28.71%
Guarder, nest spawner, phytophil	47.73%	81.64%	37.21%	31.58%	27.96%	71.29%
Guarder, nest spawner, speleophil	0.07%	0.00%	2.33%	0.00%	0.00%	0.00%
Nonguarder, brood hider, lithophil	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Nonguarder, open substrate spawner, litho-pelagophil	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Nonguarder, open substrate spawner, lithophil	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Nonguarder, open substrate spawner, pelagophil	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Nonguarder, open substrate spawner, phyto-lithophil	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Nonguarder, open substrate spawner, phytophil	1.83%	0.00%	60.47%	0.00%	0.12%	0.00%
Nonguarder, open substrate spawner, psammophil	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%

		Count of
Life Stages Present	Species	Species
L	No Catch	1
L/Y/A	Alewife	3
	Bluegill	
	Pumpkinseed	
Y/A	Banded killifish	12
	Brown bullhead	
	Brown trout	
	Carp	
	Freshwater drum	
	Gizzard shad	
	Golden shiner	
	Largemouth bass	
	Rock bass	
	Smallmouth bass	
	Tesselated darter	
	White perch	
А	Bowfin	11
	Channel catfish	
	Longnose gar	
	Northern hog sucker	
	Northern pike	
	Rudd	
	Shorthead redhorse	
	Spotfin Shiner	
	Walleye	
	White sucker	
	Yellow perch	

Table A8-33. Presence/absence of Early Life History Stages and Adults in 2007.

L = Larvae present (captured during larvae sampling)

Y = YOY present (captured during YOY seining)

A = Adult stage present

Table A8-34(a-c). Presence/absence and CPUE of larval and YOY fishes in samples collected from Onondaga Lake from 2000-2007.

Species	2000	2001	2002	2003
Alewife	0.03			0.01
Banded killifish	0.06		0.27	0.45
Brook silverside	16.9	3.8	43.6	2.8
Carp	1.1	15.8	1.9	18.9
Crappie sp.	0.01			0.01
Fathead minnow	0.1			
Freshwater drum	0.58		< 0.01	
Gizzard shad	0.36		0.02	
Golden shiner	0.93	0.1	0.45	0.47
Johnny darter	< 0.01	0.1		
Largemouth bass	0.01		< 0.01	
Lepomis ¹	17.22	3.2	36.2	45.3
Logperch	0.02			
Longnose dace	< 0.01			
Shorthead redhorse	< 0.01			
Tessellated darter	< 0.01			
Trout perch			0.03	
White perch	0.19		< 0.01	
White sucker	1.4	3.7		
Yellow perch	0.66	0.5	0.2	1.8
Richness ²	20	8	12	9

a) Larvae Seines (# per seine haul). Note: littoral sampling for larval fish was discontinued after 2003.

Notes:

¹Lepomis are likely a combination of both bluegill and pumpkinseed.

²Richness assumes Lepomis is composed both bluegill and pumpkinseed.

Table A8-34(a-c). Presence/absence and CPUE of larval and YOY fishes in samples collected from Onondaga Lake from 2000-2007. (continued)

Species	2000	2001	2002	2003	2004	2005	2006	2007
Alewife					0.0041	0.0522	0.0004	0.0205
Bluegill								0.0080
Brook silverside					0.0020			
Carp			0.0050			0.0030		
Freshwater drum	0.31	0.01	0.0310					
Gizzard shad ¹	2.472	0.49	0.8500	0.0590	0.0271		0.0147	
Lepomis ²	0.382	0.01	0.3440	0.0950	0.0019	0.0028	0.0047	
Logperch	< 0.01							
Pumpkinseed								0.0025
White perch	0.027	0.04	0.0480					
White sucker		0.07						
Yellow perch		0.14	0.019			0.0031		
Richness ³	5	6	6	2	4	4	3	3

b) Larvae Trawls (#/m3). Note: trawls in 2000 were done at night. Trawls in 2001 and 2002 were done during the day.

Notes:

¹ Gizzard shad cpue in 2000 trawls is a combination of gizzard shad (0.017) and herring family (2.46).

² Lepomis are likely a combination of both bluegill and pumpkinseed.

³ Richness assumes Lepomis is composed both bluegill and pumpkinseed.

Table A8-34(a-c). Presence/absence and CPUE of larval and YOY fishes in samples collected from Onondaga Lake from 2000-2007. (continued)

Species	2000	2001	2002	2003	2004	2005	2006	2007
Banded killifish*					0.07	0.54		0.26
Bluntnose minnow*							0.01	
Brook silverside*								
Brook stickleback*								
Brown bullhead		0.03	0.02	0.03		0.20		0.01
Carp	0.02	0.03	0.48	0.63	0.64	0.33		0.03
Channel catfish			0.02					
Emerald shiner*								
Fathead minnow*								
Gizzard shad	70.30	26.10	0.03	2.70	1.98	0.02		
Golden shiner*						0.02		0.01
Johnny darter*								
Largemouth bass	1.50	4.30	5.00	1.90	6.87	16.99	5.10	7.81
Lepomis ¹	25.20	92.40	157.00	42.20	16.12	33.36	4.64	7.66
Logperch*								
Longnose gar	0.02				0.01			
Northern hogsucker	0.02							
Pumpkinseed							0.01	
Rock bass						0.07	0.04	0.06
Smallmouth bass	2.70	3.30	1.10	0.70	1.57	4.01	0.50	0.53
Tessellated darter*						0.02		
White perch	2.60	0.60	0.13	0.12	0.02			
White sucker	0.06	0.15	0.02					
Yellow perch		5.60	0.03			0.13		
Richness ²	14	18	17	15	14	14	11	10

c) Young-of-the-Year (# per seine haul)

Notes:

¹ Lepomis are likely a combination of both bluegill and pumpkinseed.

 $^{2}\ \mathrm{Richness}$ assumes Lepomis is composed both bluegill and pumpkinseed

* denotes species that are difficult to distinguish in the YOY stage due to their small size as adults. These species are assumed to be present as YOY if captured in littoral seines, but a CPUE is not included because the catch may include both YOY and adults.

Table A8-35(a-b). 2007 Angler Diary Summary.

Zone	Location	Total hours
1	Onondaga Lake	667.2
2	Seneca River Upstream	41.2
3	Seneca River Downstream	240.9
4	Oneida River	60.8
	Total	1010.1

b) Catch-per-unit-effort of fish species by zone in 2007.

Zone	Species	Total	CPUE
1	All Fish	944	1.415
	Channel Catfish	2	0.003
	Largemouth Bass	323	0.484
	Other	45	0.067
	Pumpkinseed/Bluegill	38	0.057
	Smallmouth Bass	499	0.748
	Walleye	1	0.001
	Yellow Perch	36	0.054
2	All Fish	36	0.874
	Channel Catfish	1	0.024
	Largemouth Bass	11	0.267
	Other	6	0.146
	Pumpkinseed/Bluegill	1	0.024
	Smallmouth Bass	16	0.389
	Yellow Perch	1	0.024
3	All Fish	453	1.881
	Channel Catfish	10	0.042
	Largemouth Bass	86	0.357
	Other	93	0.386
	Pumpkinseed/Bluegill	26	0.108
	Smallmouth Bass	219	0.909
	Yellow Perch	19	0.079
4	All Fish	92	1.512
	Channel Catfish	3	0.049
	Largemouth Bass	15	0.247
	Other	35	0.575
	Pumpkinseed/Bluegill	2	0.033
	Smallmouth Bass	30	0.493
	Yellow Perch	7	0.115
APPENDIX 8: FIGURES

Figure A8-1. Location and description of strata, boat electrofishing transects, and seining sites in Onondaga Lake.

Figure A8-2. Whole lake electrofishing relative abundance in 2007.

Note: CPUE (catch per hour) for gamefish (bolded) is calculated from all 24 transects. CPUE for non-gamefish are calculated from only the one-half of the transects where all fish are collected (every other transect). Because of the difficulty in netting clupeids (shad and alewives), the CPUE for these species is calculated from a combination of fish that are boated and estimates of the number of fish missed. Because of their large size carp are not boated; instead carp within netting distance are counted while still in the water.

■ Gizzard shad	□ Alewife
□ Pumpkinseed	⊞ White sucker
🖾 Carp	III White perch
	⊠ Yellow perch
ELargemouth bass	⊠ Bluegill
🖾 Brown bullhead	⊠ Other

Graph Data With Clupeids

Species	Mean CPUE	SE	Number	Relative Abundance with Clupeids	Relative Abundance without Clupeids
Gizzard shad	194.6	72.1	1026	42.7%	-
Alewife	74.4	48.3	345	16.3%	-
Pumpkinseed	38.7	4.3	379	8.5%	20.7%
White sucker	21.7	5.4	109	4.8%	11.6%
Carp	20.6	4.8	96	4.5%	11.0%
White perch	19.4	5.4	94	4.3%	10.4%
Smallmouth bass	18.1	2.3	176	4.0%	9.7%
Yellow perch	17.9	2.4	174	3.9%	9.6%
Largemouth bass	14.2	1.7	137	3.1%	7.6%
Bluegill	13.5	2.9	133	3.0%	7.2%
Brown bullhead	10.5	1.7	101	2.3%	5.6%
Other	12.3	5.7	80.0	3%	7%

Figure A8-3. Trends in CPUE (catch per hour) of select species caught by electrofishing from 2000-2007.

Note: CPUE for gamefish (bolded) is calculated from all 24 transects. CPUE for non-gamefish are calculated from only the one-half of the transects where all fish are collected (every other transect). Because of the difficulty in netting clupeids (shad and alewives), the CPUE for these species is calculated from a combination of fish that are boated and estimates of the number of fish missed. Because of their large size carp are not boated; instead carp within netting distance are counted while still in the water. Note: Y-axis differs for each species.

Figure A8-3. Trends in CPUE (catch per hour) of select species caught by electrofishing from 2000-2007. (continued)

Note: CPUE for gamefish (bolded) is calculated from all 24 transects. CPUE for non-gamefish are calculated from only the one-half of the transects where all fish are collected (every other transect). Because of the difficulty in netting clupeids (shad and alewives), the CPUE for these species is calculated from a combination of fish that are boated and estimates of the number of fish missed. Because of their large size carp are not boated; instead carp within netting distance are counted while still in the water. Note: Y-axis differs for each species.

Figure A8-3. Trends in CPUE (catch per hour) of select species caught by electrofishing from 2000-2007. (continued)

Graph Data

CPUE									Standard Error of CPUE	3						
Common name	2000	2001	2002	2003	2004	2005	2006	2007	Common name	2000	2001	2002	2003	2004	2005	2006
Gizzard shad	266.70	59.08	31.76	110.20	12.23	495.25	84.28	194.63	Gizzard shad	167.47	30.48	8.35	76.54	6.15	196.33	31.42
Bluegill	27.74	21.28	43.94	57.81	23.31	4.56	11.96	13.50	Bluegill	7.92	4.07	8.89	14.26	4.81	0.85	2.60
Pumpkinseed	9.47	15.34	34.66	45.28	37.00	28.55	35.61	38.71	Pumpkinseed	2.07	3.05	9.43	5.48	5.61	4.49	5.26
White perch	39.07	38.88	42.27	62.90	67.89	46.69	46.22	19.39	White perch	15.57	7.96	8.49	7.82	13.11	10.89	8.33
Carp	49.91	74.06	32.32	22.04	8.79	23.44	12.77	20.60	Carp	7.68	12.24	7.45	9.33	1.57	7.32	4.00
Largemouth bass	11.16	6.49	15.26	16.21	19.37	19.51	17.56	14.24	Largemouth bass	2.18	1.36	2.71	2.12	2.35	2.90	1.97
Yellow perch	20.03	24.20	14.42	18.55	20.87	19.55	10.29	17.88	Yellow perch	3.26	3.44	3.13	2.96	2.81	3.98	1.68
Smallmouth bass	3.57	11.36	8.41	9.75	7.99	10.51	15.94	18.14	Smallmouth bass	0.81	2.24	1.49	1.30	1.33	1.85	2.43
White sucker	26.12	24.71	14.42	20.48	17.96	19.16	14.74	21.66	White sucker	4.02	4.31	3.13	4.95	4.71	3.23	3.40
Brown bullhead	1.91	2.68	2.40	2.06	4.22	8.56	10.97	10.53	Brown bullhead	0.40	0.69	0.68	0.51	0.83	1.89	2.99
Channel catfish	2.46	1.49	1.55	0.90	2.25	0.72	1.53	1.71	Channel catfish	1.14	0.33	0.55	0.30	0.62	0.33	0.40
Walleye	1.72	1.31	0.86	0.84	0.08	0.75	1.42	1.10	Walleye	0.37	0.33	0.32	0.39	0.08	0.48	0.66
Shorthead redhorse	2.78	4.58	1.83	2.63	2.46	1.00	1.17	1.22	Shorthead redhorse	0.62	1.47	0.79	0.90	0.88	0.41	0.64
Bowfin	0.43	0.11	0.88	0.61	1.11	1.02	0.61	2.11	Bowfin	0.26	0.11	0.34	0.26	0.50	0.38	0.32
Alewife	0.00	0.62	1.58	238.38	2737.62	1203.90	78.65	74.44	Alewife	0.00	0.36	1.01	109.99	594.57	297.91	20.22
Rock bass	1.22	0.44	0.00	0.20	0.37	0.79	0.84	1.21	Rock bass	0.33	0.28	0.00	0.14	0.17	0.29	0.30
Freshwater drum	1.87	2.07	0.95	1.31	5.42	2.54	1.77	1.23	Freshwater drum	0.55	0.63	0.79	0.44	1.43	0.80	0.83
Longnose gar	0.47	0.97	0.72	0.00	0.56	1.19	0.31	2.30	Longnose gar	0.36	0.48	0.56	0.00	0.30	0.53	0.31
Northern pike	0.19	0.15	0.18	0.22	0.10	0.20	0.30	0.20	Northern pike	0.11	0.10	0.13	0.15	0.00	0.20	0.17
Rainbow trout	0.06	0.00	0.10	0.00	0.00	0.00	0.00	0.00	Rainbow trout	0.06	0.00	0.10	0.00	0.00	0.00	0.00
Northern hog sucker	0.25	0.00	0.18	0.00	0.00	0.00	0.18	0.38	Northern hog sucker	0.17	0.00	0.18	0.00	0.00	0.00	0.18
Logperch	0.22	0.31	0.20	0.20	0.18	0.00	0.00	0.00	Logperch	0.16	0.31	0.20	0.20	0.18	0.00	0.00
Black crappie	0.33	0.20	0.08	0.17	0.10	0.00	0.00	0.00	Black crappie	0.17	0.11	0.08	0.17	0.10	0.00	0.00
Tiger muskellunge	0.00	0.08	0.00	0.00	0.10	0.19	0.00	0.00	Tiger muskellunge	0.00	0.08	0.00	0.00	0.13	0.13	0.00
Golden shiner	0.47	0.00	0.00	0.66	1.10	1.15	4.08	0.61	Golden shiner	0.28	0.00	0.00	0.48	0.50	0.59	1.70
Banded killifish	0.11	0.00	0.00	0.19	0.20	0.00	0.00	0.00	Banded killifish	0.11	0.00	0.00	0.19	0.20	0.00	0.00
Black bullhead	0.00	0.00	0.00	0.00	0.00	0.00	0.19	0.00	Black bullhead	0.00	0.00	0.00	0.00	0.00	0.00	0.13
Quillback	0.00	0.00	0.00	0.00	0.00	0.00	0.15	0.00	Quillback	0.00	0.00	0.00	0.00	0.00	0.00	0.15
Brown trout	0.00	0.00	0.00	0.00	0.00	0.21	0.12	0.00	Brown trout	0.00	0.00	0.00	0.00	0.00	0.15	0.12
Emerald shiner	0.00	0.00	0.00	0.00	0.00	0.00	0.50	0.00	Emerald shiner	0.00	0.00	0.00	0.00	0.00	0.00	0.35
Greater Redhorse	0.00	0.00	0.00	0.00	0.00	0.22	0.00	0.00	Greater Redhorse	0.00	0.00	0.00	0.00	0.00	0.22	0.00
Rudd	0.00	0.00	0.00	0.00	0.00	0.15	0.00	0.23	Rudd	0.00	0.00	0.00	0.00	0.00	0.15	0.00
Yellow bullhead	0.00	0.00	0.00	0.00	0.00	0.08	0.00	0.00	Yellow bullhead	0.00	0.00	0.00	0.00	0.00	0.08	0.00

2007

72.09

2.90

4.27

5.45

4.79

1.66

2.45

2.31

5.44

1.70

0.58

0.47

0.58

0.75

48.32

0.44

0.47

1.43

0.20

0.00

0.26

0.00

0.00

0.00

0.32

0.00

0.00

0.00

0.00

0.00

0.00

0.23

0.00

Figure A8-4. Electrofishing species richness in "all fish" transects from 2000-2007.

	2000	2001	2002	2003	2004	2005	2006	2007
Annual Total	24	19	24	23	26	25	25	22
Spring	17	18	19	21	22	24	22	20
Fall	20	15	19	21	22	20	19	20

Figure A8-5. Electrofishing diversity in "all fish" transects from 2000-2007.

2000-2007 Trends

Diversity with Clupeids

Sample Period	2000	2001	2002	2003	2004	2005	2006	2007
Spring	0.72	0.92	0.25	0.89	0.19	0.54	0.953	0.869
Fall	0.49	0.98	0.97	0.68	0.51	0.30	0.903	0.983
Annual	0.7	0.95	0.99	0.85	0.27	0.58	1.035	0.940

Diversity without Clupeids

Sample Period	2000	2001	2002	2003	2004	2005	2006	2007
Spring	0.81	0.93	0.88	0.90	0.91	0.99	0.944	0.936
Fall	0.98	0.94	0.96	0.88	1.00	0.96	1.019	1.009
Annual	0.94	0.91	0.94	0.92	0.96	0.95	1.003	1.003

Figure A8-6. Pollution tolerance guild trends from electrofishing data in 2000-2007 based on species richness in each tolerance category.

Graph Data

Pollution Tolerance	2000	2001	2002	2003	2004	2005	2006	2007
Tolerant	50.0%	44.4%	46.2%	43.5%	42.3%	44.0%	37.5%	45.5%
Moderately Tolerant	16.7%	14.8%	15.4%	26.1%	23.1%	24.0%	29.2%	27.3%
Moderate	25.0%	37.0%	26.9%	30.4%	30.8%	24.0%	25.0%	22.7%
Moderately Intoleran	8.3%	3.7%	11.5%	0.0%	3.8%	4.0%	8.3%	4.5%
Intolerant	0.0%	0.0%	0.0%	0.0%	0.0%	4.0%	0.0%	0.0%

Figure A8-7. Trophic guild trends from electrofishing data in 2000-2007.

🖾 Invertivore/Piscivore 🗆 Piscivore 🖾 Detritivore 🗖 Benthic Invertivore 🖽 Invertivore 🗖 Planktivore 🗖 Planktivore/Invertivore

Graph Data

Trophic Guilds with Clupeids

Trophic Guild	2000	2001	2002	2003	2004	2005	2006	2007
Benthic Invertivore	17%	36%	20%	7%	1%	2%	8%	10%
Piscivore	4%	7%	10%	5%	1%	2%	10%	8%
Detritivore	57%	20%	13%	18%	0%	25%	24%	43%
Invertivore	8%	13%	32%	17%	2%	2%	14%	11%
Invertivore/Piscivore	14%	24%	25%	14%	3%	4%	21%	12%
Planktivore	0%	0%	1%	39%	92%	65%	22%	16%
Planktivore/Invertivore	0%	0%	0%	0%	0%	0%	1%	0%

Graph Data

Trophic Guilds without Clupeids

Trophic Guild	2000	2001	2002	2003	2004	2005	2006	2007
Benthic Invertivore	39%	45%	22%	17%	13%	23%	15%	23%
Piscivore	8%	8%	12%	10%	13%	17%	19%	19%
Detritivore	0%	0%	0%	0%	0%	0%	0%	0%
Invertivore	19%	16%	36%	39%	27%	18%	25%	28%
Invertivore/Piscivore	33%	31%	29%	33%	46%	42%	38%	29%
Planktivore	0%	0%	0%	0%	0%	0%	0%	0%
Planktivore/Invertivore	0%	0%	1%	0%	1%	1%	2%	0%

Figure A8-8. Thermal guild trends from electrofishing data in 2000-2007.

Graph Data

Relative abundance of thermal guilds with Clupeids

Thermal Guild	2000	2001	2002	2003	2004	2005	2006	2007
Cold	0.04%	0.00%	0.04%	0.00%	0.003%	0.01%	0.03%	0.00%
Cool	11.81%	23.13%	16.83%	47.66%	94%	68%	36%	30%
Warm	88.15%	76.87%	83.13%	52.30%	6%	32%	64%	70%

Relative abundance of thermal guilds without Clupeids

Thermal Guild	2000	2001	2002	2003	2004	2005	2006	2007
Cold	0.08%	0.00%	0.05%	0.00%	0.04%	0.1%	0.06%	0.00%
Cool	27.55%	29.06%	19.29%	20.19%	23%	28%	25%	33%
Warm	72.37%	70.94%	80.66%	79.70%	77%	72%	75%	67%

Figure A8-9(a). Largemouth bass length frequency in Fall electrofishing and Gill netting combined from 2000 to 2007.

Figure A8-9(b). Smallmouth bass length frequency in Fall electrofishing and Gill netting combined from 2000 to 2007.

Figure A8-9(c). Bluegill length frequency in Fall electrofishing and Gill netting combined from 2000 to 2007.

Figure A8-9(d). Pumpkinseed length frequency in Fall electrofishing and Gill netting combined from 2000 to 2007.

Figure A8-9(e). Yellow perch length frequency in Fall electrofishing and Gill netting combined from 2000 to 2007.

Figure A8-9(f). White perch length frequency in Fall electrofishing and Gill netting combined from 2000 to 2007.

Figure A8-9(g). Gizzard shad length frequency in Fall electrofishing and Gill netting combined from 2000 to 2007.

Figure A8-9(h). Brown bullhead length frequency in Fall electrofishing and Gill netting combined from 2000 to 2007.

Figure A8-9(i). White sucker length frequency in Fall electrofishing and Gill netting combined from 2000 to 2007.

Figure A8-9(j). Lepomis length frequency in Fall electrofishing and Gill netting combined from 2000 to 2007.

Figure A8-10. Comparison of largemouth and smallmouth bass Proportional Stock Density (PSD) vs. Lepomis PSD from electrofishing data in 2000-2007.

Potential interpretations for the different combinations are : A = mutual balance for satisfactory fishing; B = community comprised of large, old specimens, indicative of an unfished population; C = large predators excessively cropping large prey; D = overfishing of predators and stunting of prey; and E = high population of small predators excessively cropping young prey.

Graph Data

Relative weights of select species captured during electrofishing in the fall of 2000-2007.

Bluegill	2000	2001	2002	2003	2004	2005	2006	2007
Rel. Wt	101.97	99.56	100.11	103.57	100.81	105.91	103.74	97.95
SE	0.42	1.04	0.37	0.61	2.46	5.03	6.23	3.11
Count	174	51	60	31	71	20	33	61
Gizzard shad	2000	2001	2002	2003	2004	2005	2006	2007
Rel. Wt	100.17	99.83	101.50	103.62	107.32	117.47	108.6	110.6
SE	0.48	0.96	0.58	1.56	2.50	1.43	6.4	5.9
Count	191	15	60	30	20	172	98	105
Largemouth bass	2000	2001	2002	2003	2004	2005	2006	2007
Rel. Wt	102.02	99.82	101.50	101.15	110.12	111.36	103.96	108.19
SE	0.34	0.17	0.39	0.77	1.51	0.80	2.38	3.61
Count	127	21	181	54	108	122	94	61
Pumpkinseed	2000	2001	2002	2003	2004	2005	2006	2007
Rel. Wt	104.76	96.79	102.82	107.86	119.25	105.91	104.46	108.19
SE	0.92	2.55	0.41	1.93	3.80	0.82	2.02	1.47
Count	50	3	67	31	108	164	90	104
Smallmouth bass	2000	2001	2002	2003	2004	2005	2006	2007
Rel. Wt	102.93	98.23	99.14	100.10	95.03	97.41	94.09	90.18
SE	1.53	1.56	0.41	0.83	3.23	1.82	2.45	1.03
Count	31	9	58	11	36	72	96	115
White perch	2000	2001	2002	2003	2004	2005	2006	2007
Rel. Wt	102.59	97.86	99.27	104.31	93.02	92.53	86.21	91.94
SE	1.98	0.55	0.38	0.97	1.65	0.56	1.67	2.05

Graph Data

	Mean	Relative
Species	CPUE	Abundance
Channel catfish	0.364	6.1%
Smallmouth bass	0.373	6.1%
Pumpkinseed	0.400	6.1%
White perch	2.031	33.6%
Longnose gar	0.200	3.1%
Gizzard shad	0.979	16.0%
White sucker	0.429	6.9%
Yellow perch	0.86	13.7%
Other	0.54	8.4%

□ Channel catfish	□ Smallmouth bass
Pumpkinseed	☑ White perch
■ Longnose gar	Gizzard shad
■ White sucker	□ Yellow perch
Other	

Figure A8-13. 2007 Nesting survey map and comparison of north vs. south nests from 2000-2007.

*Historic nest distribution. 1993 and 1994 data from Arrigo 1998.

	1993*	1994*	2000	2001	2002	2003	2004	2005	2006	2007
North Basin	75%	78%	92%	100%	96%	82%	66%	73%	68.9%	84.1%
South Basin	25%	22%	8%	0%	4%	18%	34%	27%	31.1%	15.9%

Figure A8-14. 2007 YOY Relative abundance with and without clupeids.

Figure A8-15. YOY CPUE (#/haul) trends for select species from 2000-2007.

Graph Data

YOY Annual CPUE from 2000-2007

Species	2000	2001	2002	2003	2004	2005	2006	2007
Lepomis sp.	12.96	92.48	156.93	42.13	16.12	30.17	4.64	7.66
Largemouth bass	0.64	4.27	4.98	1.94	6.87	16.99	5.10	7.81
Smallmouth bass	1.76	3.27	1.10	0.70	1.57	4.01	0.50	0.53
Carp	0.02	0.03	0.48	0.63	0.64	0.33	0.00	0.03
White perch	2.87	0.6	0.13	0.12	0.02	0.00	0.00	0.00
Yellow perch	0.00	5.57	0.03	0.00	0.00	0.13	0.00	0.00
Brown bullhead	0.00	0.03	0.02	0.03	0.00	0.20	0.00	0.01
Gizzard shad	57.56	26.05	0.03	2.68	1.98	0.02	0.00	0.00

Standard Errors	tandard Errors									
Species	2000	2001	2002	2003	2004	2005	2006	2007		
Lepomis sp.	6.73	21.56	76.80	13.04	6.30	12.14	2.41	3.94		
Largemouth bass	0.23	0.91	0.80	0.42	1.71	2.35	1.33	1.98		
Smallmouth bass	0.91	4.20	0.31	0.29	0.45	0.69	0.15	0.14		
Carp	0.02	0.03	0.21	0.33	0.57	0.21	0.00	0.03		
White perch	2.10	0.53	0.06	0.09	0.02	0.00	0.00	0.00		
Yellow perch	0.00	1.4	0.03	0.00	0	0.13	0.00	0.00		
Brown bullhead	0.00	0	0.00	0.03	0	0.10	0.00	0.01		
Gizzard shad	38.32	21.05	0.03	2.62	1.91	0.02	0.00	0.00		

Figure A8-16. Mean length of select YOY species in August from 2000-2007.

Graph Data

YOY mean length in August in the entire lake from 2000-2007

Species	2000	2001	2002	2003	2004	2005	2006	2007
Lepomis sp.	28.2	40.9	35.7	36.09	40.30	47.75	36.29	36.69
White perch	49.7	54.3	53.5	60.10	53.00			
Largemouth bass	49.1	74.3	69.8	63.33	67.29	64.75	62.77	65.06
Smallmouth bass	52.8	69.5	75.2	73.00	72.18	65.00	64.72	68.09

Standard error of mean length in August in the entire lake from 2000-2007

Species	2000	2001	2002	2003	2004	2005	2006	2007
Lepomis sp.	0.476	0.264	0.355	0.26	0.37	1.93	0.32	0.43
White perch	2.053	1.111	4.500	1.53				
Largemouth bass	1.715	0.891	1.593	1.90	0.99	0.40	0.45	0.52
Smallmouth bass	0.989	1.006	3.071	1.56	1.31	0.54	1.84	1.59

Figure A8-17. YOY whole lake diversity from 2000 to 2007.

Graph Data

Seine diversity indices from 2000-2007

	2000	2001	2002	2003	2004	2005	2006	2007
Shannon-Weiner value	0.33	0.43	0.10	0.23	0.15	0.52	0.39	0.40

Figure A8-18. Reproductive guild relative abundance juvenile seine data in 2007, with and without clupeids.

■ Guarder, nest spawner, ariadnophil
Guarder, nest spawner, lithophil
Guarder, nest spawner, phytophil
🖾 Guarder, nest spawner, speleophil
🖾 Nonguarder, brood hider, lithophil
🖾 Nonguarder, open substrate spawner, litho-pelagophil
🖽 Nonguarder, open substrate spawner, lithophil
🛙 Nonguarder, open substrate spawner, pelagophil
II Nonguarder, open substrate spawner, phyto-lithophil

Reproductive guild relative abundance for the entire lake and each stratum in 2007 without clupeids

Repro Guild	Entire Lake	Stratum 1	Stratum 2	Stratum 3	Stratum 4	Stratum 5
Guarder, nest spawner, ariadnophil	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Guarder, nest spawner, lithophil	50.37%	18.36%	0.00%	68.42%	71.92%	28.71%
Guarder, nest spawner, phytophil	47.73%	81.64%	37.21%	31.58%	27.96%	71.29%
Guarder, nest spawner, speleophil	0.07%	0.00%	2.33%	0.00%	0.00%	0.00%
Nonguarder, brood hider, lithophil	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Nonguarder, open substrate spawner, litho-pelagophil	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Nonguarder, open substrate spawner, lithophil	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Nonguarder, open substrate spawner, pelagophil	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Nonguarder, open substrate spawner, phyto-lithophil	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%

Reproductive guild relative abundance for the entire lake and each stratum in 2007 with clupeids

Repro Guild	Entire Lake	Stratum 1	Stratum 2	Stratum 3	Stratum 4	Stratum 5
Guarder, nest spawner, ariadnophil	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Guarder, nest spawner, lithophil	50.37%	18.36%	0.00%	68.42%	71.92%	28.71%
Guarder, nest spawner, phytophil	47.73%	81.64%	37.21%	31.58%	27.96%	71.29%
Guarder, nest spawner, speleophil	0.07%	0.00%	2.33%	0.00%	0.00%	0.00%
Nonguarder, brood hider, lithophil	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Nonguarder, open substrate spawner, litho-pelagophil	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Nonguarder, open substrate spawner, lithophil	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Nonguarder, open substrate spawner, pelagophil	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Nonguarder, open substrate spawner, phyto-lithophil	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%

Figure A8-19. 2001-2007 angler catch summary, from diaries, in Onondaga Lake, Seneca River, and Oneida River. Smallmouth bass catch rates are compared to catch rates for trips specifically targeting bass in Oneida Lake from 2002 to 2007.

*Note that Oneida Lake data are from creel surveys (Scott Krueger Personal Communication) which tend to estimate catch rates lower than diary programs.

Graph Data

Smallmouth Bass

Year	Onondaga Lake	Seneca River Upstream	Seneca River Downstream	Oneida River	Oneida Lake
2001	2.8	0.4	1.5		
2002	0.4	0.4	1.1	0.1	0.63
2003	0.6	0.4	0.7	0.3	0.84
2004	0.7	1.2	2.0	1.5	0.62
2005	0.6	0.4	0.7	0.3	0.7
2006	0.5	0.3	1.0	2.3	0.69
2007	0.7	0.4	0.9	0.5	0.74

Largemouth Bass

Year	Onondaga Lake	Seneca River Upstream	Seneca River Downstream	Oneida River
2001	0.28	0.61	0.69	
2002	0.31	0.46	0.32	0.57
2003	0.43	0.33	0.51	0.62
2004	0.23	0.40	0.25	0.76
2005	0.23	0.31	0.30	1.13
2006	0.83	0.47	0.47	1.26
2007	0.48	0.27	0.36	0.25

SUB-APPENDIX A8-A

DRAFT

Food web effects and the disappearance of the spring clear water phase in Onondaga Lake following enhancements at the Metropolitan Syracuse Wastewater Treatment Facility

Food web effects and the disappearance of the spring clear water phase in Onondaga Lake following enhancements at the Metropolitan Syracuse Wastewater Treatment Facility

Roland W. Wang¹, Lars G. Rudstam¹, Thomas E. Brooking¹, David J. Snyder², Mark A. Arrigo³, Edward L. Mills¹, Joseph J. Mastriano²

¹Department of Natural Resources and Cornell Biological Field Station, 900 Shackelton Point Road, Bridgeport, NY 13030.

²Onondaga County, Department of Water Environment Protection, 650 Hiawatha Boulevard, West Syracuse, NY 13204.

³EcoLogic LLC, Atwell Mill Annex Suite S-2, 132 1/2 Albany Street, Cazenovia, NY 13035.

ABSTRACT

Wang, R. W., L. G. Rudstam, T. E. Brooking, D. J. Snyder, M. A. Arrigo, E. L. Mills and J. J. Mastriano. Food web effects and the disappearance of the spring clear water phase in Onondaga Lake following enhancements at the Metropolitan Syracuse Wastewater Treatment Facility. Lake and Reserv. Manage. Vol. XX(X):XX-XX.

Onondaga County has improved the treatment of wastewater that discharges into Onondaga Lake through upgrades at the Metropolitan Syracuse Wastewater Treatment Facility to reduce nutrient loading into the lake in order to decrease the incidence of algae blooms and increase water clarity. But as the quality of the discharged wastewater improved, the spring clear water phase present since 1988 disappeared, due to changes in the food web. In September 2002, the abundance of large zooplankton (Daphnia) declined and were virtually absent between 2003 and 2007 while abundance of small zooplankton (Bosmina) increased. Catches of alewife (Alosa pseudoharengus) from electrofishing surveys conducted since 2000 increased beginning in 2003. Hydroacoustic estimates of open water fish abundance ranged from 1600 to 2300 fish/ha in the spring of 2005, 2006, and 2007, with alewife dominating catches in vertical gill nets. The alewife population in 2005 was dominated by the 2002 year class and additional year classes were present in 2006 and 2007 catches. The development of the strong 2002 year class coincides with the observed shift from Daphnia to Bosmina. Alewife diets consisted primarily of small zooplankton on June 6, 2007 as well as *Daphnia* sp. on July 18, 2007. We conclude that the strong 2002 alewife year class initiated a classic trophic cascade causing the decline and continuing low abundance of Daphnia in Onondaga Lake and the disappearance of the spring clear water phase. Evaluations of the response of lakes to improved waste water treatment can be

2
complicated by changes in food web structure.

Key Words: alewife, food web interactions, Onondaga Lake, spring clear water phase, trophic cascade, wastewater treatment, zooplankton.

Since 1995, the Metropolitan Syracuse Wastewater Treatment Facility (Metro) has received several upgrades to reduce nutrient loading into Onondaga Lake, New York, particularly phosphorus and ammonia. In-lake ammonia concentration decreased from 2 mg/L during the 1990s to less than 1 mg/L beginning in 2000. In-lake phosphorus concentration decreased from 100 μ g/L during the late 1990s to 30 μ g/L in 2007 (Fig. 1). However, despite reductions of in-lake phosphorus concentrations, water clarity unexpectedly decreased in 2003 and the spring clear water phase that was present since 1988 disappeared. Water clarity has remained low through 2007 (Fig. 2).

Water clarity in Onondaga Lake is dependent on phytoplankton concentration in the lake, which in turn is regulated both by nutrient availability and by grazing pressure from zooplankton, particularly larger, more efficient zooplankton like *Daphnia* (Brooks and Dodson 1965, Carpenter and Kitchell 1984, Lampert et al. 1986, McQueen et al. 1986). The typical seasonal progression of phytoplankton in temperate lakes includes a spring diatom bloom followed by an increase in *Daphnia*, resulting in a spring clear water phase (Sommer et al. 1986). The timing and extent of the spring clear water phase correlates with peak *Daphnia* abundance (Lampert et al. 1986, Sommer et al. 1986, Rudstam et al. 1993, Meijer et al. 1999). As the biomass of age-0 planktivorous fish increase in early summer, predation on *Daphnia* increases. Coupled with low birth rates due to low food availability (Lampert 1978), the abundance of *Daphnia* declines, thus lowering their grazing pressure on phytoplankton and allowing the phytoplankton biomass to increase. The spring clear water phase disappears and water clarity declines (Sommer et al. 1986). Alewife is an efficient planktivore throughout its life and is known to shift zooplankton communities from dominance of large *Daphnia* to smaller species like *Bosmina* and copepods throughout the year (Brooks and Dodson 1965, Wells 1970, Hutchinson 1971, Warshaw 1972, Gannon 1976, Kohler and Ney 1981, Evans and Jude 1986, Harman et al. 2002), which are less efficient grazers. Therefore, the unexpected decrease in water clarity in Onondaga Lake in 2003, while improvements at Metro were underway, is likely to be the result of changes in the food web structure in the lake.

In this paper, we examined a dataset (Ambient Monitoring Program (AMP) Onondaga County, New York) for fish and zooplankton (2000 through 2006), complemented with hydroacoustic surveys from 2005 through 2007 and small mesh vertical gill nets. Our objectives were to investigate if food web changes were the likely explanation for the decrease in spring water clarity at the same time as improvement to the Metro Sewage Treatment Facility were ongoing. We also compare abundance estimates of alewife in Onondaga Lake with abundance in other lakes where large *Daphnia* were rare or absent in order to investigate if alewife abundance was likely to be sufficient to cause observed changes in the zooplankton community.

Methods

Study area

Located within Syracuse, New York, USA, Onondaga Lake has an approximate surface area of 11.7 km² and a maximum length and width of 8 km and 1.5 km, respectively. The lake has a mean depth of 10.9 m and a maximum depth of 19.5 m (Effler and Harnett 1996). The lake flushes rapidly and responds quickly to changes in external loading (OCDWEP 2008). Onondaga Lake discharges through a single outlet at its north end to the Seneca River, which, after combining with the Oneida River, flows into Lake Ontario at Oswego, New York. Prior to

European settlement in the late 1700s, Onondaga Lake was mesotrophic (Rowell 1996). Although the lake has received loads of domestic and industrial waste from the metropolitan area for more than a century (Meyer and Effler 1980, Spada et al. 2002), the quality of the lake has improved substantially during the past 20 years as a result of closures of industrial pollution sources and reductions of nutrient inputs (OCDWEP 2007).

Metro is an advanced, surface discharge wastewater treatment facility that serves approximately 300,000 residents and many industrial and commercial customers in Syracuse and other areas of Onondaga County, New York (OCDWEP 2007). Metro is designed to treat a mean flow of 84.2 million gallons/day of wastewater (3.7 m³/sec) (OCDWEP 2007). Treated wastewater is discharged directly into the southern end of the lake (Matthews et al. 2000). Metro currently accounts for approximately 15% to 20% of the annual flow into the lake and, until recently, was the dominant source of total phosphorus and ammonia loading (OCDWEP 2007). As part of an Amended Consent Judgment, Onondaga County has been required to conduct extensive monitoring of water quality (since 1998) and lake biota (since 2000), including zooplankton and fish (AMP).

Zooplankton

Calculations of zooplankton density, species composition, size structure, and biomass were based on vertical hauls using a 0.50 m diameter net with 80 μ nylon mesh. Vertical tows were taken from the epilimnion when the lake was thermally stratified or from a depth of 6 m when no thermocline was present. In addition, a second sample was collected with a vertical tow to a depth of 15 m. Zooplankton samples were collected at a single site (South Deep, Fig. 3) throughout the year. Samples were preserved in 70% ethanol. Flowmeter readings were taken to determine the volume of water strained in each haul.

Identification and length measurement of zooplankton were performed using a compound microscope (40X-200X magnification) equipped with a drawing tube and a digitizing pad interfaced with a computer. For each sample, one to three 1-ml subsamples were withdrawn with a Henson-Stemple pipette from a known volume of sample, until at least 100 individual zooplankton were counted. Zooplankton length was converted to percent dry weight (%DW) using standard equations (α and β values) for each zooplankton species derived for Oneida Lake, New York (E. L. Mills, unpublished data).

The zooplankton were grouped into four categories: (1) *Daphnia* sp. (*D. mendotae*, *D. pulicaria*, and *D. retrocurva*) (2) small cladocera (*Bosmina longirostris*, *Eubosmina coregoni*, and *Chydorus sphaericus*); (3) other cladocera (*Ceriodaphnia quadrangula*, *Diaphanosoma* sp., *Alona* sp., *Sida crystallina*); and (4) calanoid and cyclopoid copepods (*Diaptomus minutus*, *D. oregonensis*, *D. sicilis*, *D. ashlandi*, *D. siciloides*, *Epischura lacustris*, *Limnocalanus macrurus*, *Eurytemora* sp., *Diacyclops thomasi*, *Tropocylcops prasinus*, *Mesocyclops edax*, *Acanthocyclops* sp., and *Eucyclops* sp.).

Vertical gill nets

Four vertical gill nets were set in four quadrants around the lake: SE, SW, NE, and NW on October 7, 2004, May 17, 2005, June 4, 2006 and June 6, 2007 (Fig. 3). The 6 m deep and 21 m long nets consisted of seven panels, each with a different mesh size: 6.25, 8, 10, 12.5, 15, 18.75,

and 25 mm bar mesh. These mesh sizes were selected to catch alewife from 50 to 300 mm in length (Warner et al. 2002). The nets were set for approximately two hours during the acoustic survey. On June 18, 2007, two vertical gill nets were set in the NE and SE quadrant of the lake for approximately one hour.

Alewives were obtained from each net for aging and %DW analysis. The fish were measured (total length (mm) and weight (g)) in all years and aged from the otoliths in 2004 and 2007. Otoliths were not available for aging in 2006. The otoliths were cleared with immersion oil and observed whole under a dissecting microscope. Fish for diet analysis were dissected and 30 fish from the June 6, 2007 sample (10 fish from the SW, SE, and NW quadrants) and 30 fish from the July 18, 2007 sample (15 fish from the SE and NE quadrants) were analyzed. The stomach contents were inspected under a 50X magnification. Diet contents from both sampling days were categorized into five groups: small cladocerans (mostly *Bosmina longirostris*), large cladocerans (*Daphnia* sp.), cyclopoids (mostly *Diacyclops thomasi*), insects (mostly *Chironomids*), and other (mostly amphipods). The first 50 identifiable organisms were enumerated in each stomach. We did not use stomachs with very few prey items and prey items so digested that identification was impossible.

Fish condition was based on the %DW. Fish caught in 2004, 2005, and 2007 were oven dried for four days at 70 °C after which the fish were weighed and %DW calculated.

Hydroacoustics

The lake was surveyed on May 17, 2005, June 4, 2006, and June 6, 2007 using a 70 kHz split beam transducer (11.4° beam angle, 2 ping/sec) with either a Simrad EY500 (2005 and 2006, power 50 W, pulse length 0.2 ms) or a Simrad EY60 deck unit (2007, power 60 W, pulse length 0.256 ms). Both configurations were calibrated with a standard target (-39.2 dB copper sphere) before each survey. The survey track consisted of seven zig-zag transects in 2005 and 2006 and six parallel transects in 2007 (Fig. 3). The transducer was mounted on a rigid pole 0.5 m below the surface. Since the near field of this transducer is approximately 1.5 m (Rudstam et al. 2002), the acoustic analysis is restricted to depth below 2 m from the surface. Acoustic data were recorded directly to a laptop computer in the field and analyzed with the EchoView software (version 4.40, Myriax 2008). All data were visually inspected for consistent bottom detection and corrected when needed. Any area with excess interference from bubbles, vegetation, or other noise was removed from the analysis.

We used -60 dB as the lower threshold for alewife target strengths (TS) in our analysis based on results from *in situ* measures in a large net cage (Brooking and Rudstam submitted). Since the acoustic return from a -60 dB target will be 6 dB smaller at half power beam angle of the sound beam (-3 dB one way gain reduction, -6 dB two way reduction), the threshold for data to be included in the area backscattering coefficient (ABC) calculations was set to -66 dB in the TS domain (Parker Stetter et al. 2008). A lower threshold of -60 dB will include most fish present in the lake in May through June, excluding newly hatched larvae and invertebrates (Rudstam et al. 2002). Alewife abundance estimates are based on the total fish abundance estimates and the proportion of alewife caught in the vertical gill nets.

The data was used to calculate total fish density for each transect. Each transect was considered a sampling unit for variance calculations. Data collected during transit between transects were not included in these estimates. Fish density (ρ , fish/ha) is calculated from:

$$\rho = \frac{\overline{ABC}}{\overline{\sigma_{bs}}}$$

where \overline{ABC} is the mean area backscattering coefficient for each transect (m²/ha), and $\overline{\sigma_{bs}}$ is the mean backscattering cross section obtained from *in situ* single targets along each transect (m²) where $\sigma_{bs} = 10^{(TS/10)}$. Mean fish densities were weighted using the length of each transect as the weighting factor. Data were also analyzed in 200 m sections to visualize spatial distributions across the lake using the mean *in situ* σ_{bs} for each year.

To account for fish in the top 2 m of water that is not accessible to acoustics, we adjusted the acoustic density estimates based on the proportion of fish caught in 0-2 m relative to the proportion of fish caught in 2-6 m in our vertical gill nets. This assumes that the catchability in 0-2 m is the same as the catchability in 2-6 m. The adjustment was based on the mean of the proportions of alewife caught in the top 2 m in each of the four gill nets.

Electrofishing

Since 2000, adult fish in the littoral zone have been sampled by Onondaga County during May and September using boat electrofishing (EF) as part of the AMP. The lake's littoral zone was divided into 24 equal length sections. A GPS unit was used in the field to locate the start and end points during sampling events. The EF boat was navigated parallel to shore in approximately 1 m of water and the time to cover each section was recorded. Sampling occurred at night, from 30 minutes after sunset to 30 minutes before sunrise. The EF unit (Smith-Root Type GPP 9.0) was set at a pulsed DC frequency of 120 Hz, 340 V, and 21-25 amps. Alewife were collected in 12 of the 24 transects as part of the fish community samples. Only game fish were collected in the other 12 transects. Fish collected for processing were identified to species, measured for total length (nearest mm) and, for the fall samples, weighed (nearest g). All fish were measured in samples with <30 fish per species. In samples with high numbers of one or more species, subsamples of 30 fish of each species were measured for length and weight (September only) and the remaining fish were identified to species and counted.

Results

Zooplankton

The zooplankton community changed dramatically in August through September 2002 (Fig. 4). Prior to September 2002, the zooplankton biomass was dominated by large cladocera, specifically *Daphnia mendotae*. In addition, there was a relatively high abundance of calanoid and cyclopoid copepods. Small cladocera were uncommon in the lake. After September 2002, *D. mendotae* and other large cladocera along with calanoid and cyclopoid copepods declined while small cladocera, specifically *Bosmina longirostris*, became very abundant. Abundance of calanoid and cyclopoid cyclopoids remained relatively constant, albeit low, in the lake. Mean annual zooplankton biomass declined in 2003 and remained at 75% of the values in 2000 to 2002 though 2007. *Daphnia* sp. did not return to pre-2003 densities by the fall of 2007.

Electrofishing

EF surveys caught eleven large alewives ranging from 200-239 mm in fall of 2000. Such large alewives are typically found in productive lakes when alewife is uncommon and zooplankton consists of large cladocerans (Brooking et al. 2005). No alewives were caught in fall of 2001 and only nine were caught in fall of 2002 ranging from 80-298 mm. In fall of 2003, catches increased and have remained high through spring 2007 (N = 539 in fall 2003 and spring 2004; N = 320 in 2004-2005; N = 352 in 2005-2006; and N = 164 in 2006-2007). Since fall of 2005, the alewife population has consisted of at least two size classes (Fig. 5).

Vertical gill nets

Alewife dominated vertical gill net catches from 2004 through 2007 (Table 1). Mean spring catch rates varied from 56.4 fish/hr on June 4, 2006 to 94.9 fish/hr on June 6, 2007. In depth 2-6 m, over 94% of the fish caught were alewife in all years. Alewives were spread out across the top 6 m of water in all years (Table 1). The proportion of alewife caught in 0-2 m compared to 2-6 m in spring samples ranged from 38% to 43 % (Table 1). Other fish species caught include white perch (*Morone Americana*), yellow perch (*Perca flavescens*), emerald shiner (*Notropis atherinoides*), and brown trout (*Salmo trutta*). Gizzard shad (*Dorosoma cepedianum*) is the only other abundant fish species caught (3.1 fish/hr on October 7, 2004 and 6.7 fish/hr on June 4, 2006).

Hydroacoustics

Density of targets larger than -60 dB in spring of 2005, 2006, and 2007 was, respectively, 2242, 2328, and 1632 targets/ha. (Table 2, Fig. 6). Spatial variability was high and densities in different transects varied an order of magnitude in all three years. Fish were concentrated in the north end

of the lake in 2005 and in the south end in 2006 and 2007 (Fig. 3). This was mirrored in the catches in the four gill net sets. Mean TS (TS \geq -60 dB) were similar among years (-43.84 dB in 2005, -44.24 dB in 2006, -43.34 dB in 2007). This is consistent with the small variation in average length of alewife in the lake over these years and similar to expectation based on published TS to length regression for alewife (Warner et al. 2002) and the size of adult alewife present in the lake.

Age, growth, diet, and condition

Otolith aging indicated that most of the alewives in 2004 (84%) were from the 2002 year class. More year classes were present in 2007 with most alewives (45%) from the 2004 year class (Table 3). Alewives from the 2002 through 2006 year classes were also present in 2007. The presence of small fish (<120 mm) in the length distributions from 2005 through 2007 also indicate recruitment of alewife in 2003 through 2006 in addition to the strong 2002 year class.

The %DW declined with age in 2004 and declined with length in 2007 with a mean %DW of 29%. Yearling and older alewife in 2004 and 2007 ranged between 104 and 195 mm. The observed growth rates were typical of abundant landlocked alewife populations in the region (Anderson and Neumann 2002). Alewives as large as those found in 2000 were not collected in 2003 through 2007.

The diets of alewife from June 6, 2007 gill nets consisted primarily of small zooplankton (44% of *B. longirostris* and 41% of *D. thomasi*) as well as insects, primarily *Chironomids*, and amphipods (Table 4). *Daphnia* sp. were present in the July 18, 2007 gill nets and accounted for

46% of the diets in addition to *B. longirostris* and *D. thomasi*. Based on Ivlev's (1961) electivity index, alewife selected against *B. longirostris* (-0.12 and -0.22) and for *D. thomasi* (+0.18 and +0.24) and *Daphnia* sp. (+0.10) at these two sampling occasions.

Discussion

The disappearance of the spring clear water phase in Onondaga Lake in 2003 coincided with the disappearance of large *Daphnia* sp. and the appearance of large numbers of planktivorous alewife. The large changes in the open water food web were associated with a strong 2002 year class of alewife, indicated by an increase of 130-145 mm alewife abundance in the EF survey in 2003 and by the results of the age structure of the population in 2004. These fish had grown to 140-165 mm by the following fall of 2004. The strong 2002 year class is likely to have been produced from the resident alewife population in Onondaga Lake. A large scale immigration event is unlikely because the number of fish present in the lake in the spring of 2005 was estimated to be 2.6 million fish (1170 ha*2242 fish/ha) and the only upstream source of alewife (Otisco Lake) is smaller than Onondaga Lake. This strong 2002 year class would have exerted high predation pressure on zooplankton by fall of 2002 when the age-0 fish have increased in size and population biomass. Thus, the decline of *Daphnia* in fall of 2002 coincides with expectation of a strong alewife effect on zooplankton. Alewife has maintained high abundance through the spring of 2007.

Alewife is the classic size-selective fish species known to depress large zooplankton where they occur in large abundance (Brooks and Dodson 1965). They will consume progressively smaller zooplankton as larger zooplankton becomes depleted (Brooks and Dodson 1965, Wells 1970,

Meyer and Effler 1980). The diet samples of alewife collected in the June 6, 2007 and July 18, 2007 illustrate this phenomenon. On both days, alewife selected for the large *Diacyclops thomasi* as well as for *Daphnia retrocurva* (only present July 17) although they also fed on large numbers of *Bosmina longirostris* on both dates (Table 4, Fig 4).

The abundance of small zooplankton in the lake and in the diets might account for the declining %DW with length and the slow growth rate of 2+ age fish in 2007. In general, fish growth largely depends on the availability of appropriate food items (Graeb et al. 2004). Smaller alewife may grow better on small zooplankton than large alewife, as indicated by the relatively high growth rate of alewife during the first year of life in Onondaga Lake. The declining %DW with fish length suggests poor foraging conditions for large alewife, which is often associated with high fish density, high intra-specific competition, and low abundance of *Daphnia*. Poor alewife growth rate and condition when abundant are consistent with observed changes in zooplankton species composition and consistent with observations in other Northeastern lakes with high alewife abundance (Anderson and Neumann 2002).

In contrast, the large sizes of alewives caught by EF in 2000 indicate that the population was small at that time. In Canadarago Lake, New York, alewife experienced fast growth rate for both their first and second year of life reaching 125 mm (18 g) as age-0 and 235 mm (135 g) as age-1 in the fall due to low alewife abundance. In this lake, large *Daphnia* continue to be abundant (Brooking et al 2005). These growth rates are characteristic of lakes where alewife abundance is low and abundance of large zooplankton is high.

Thus, all available evidence indicates that the increase of alewife in 2002 initiated a classic trophic cascade causing the decline and continuing low abundance of *Daphnia* in Onondaga Lake and the disappearance of the spring clear water phase. The timing of the decline in *Daphnia* in the fall of 2002 is consistent with the expected increase in biomass of young-of-year alewife from the 2002 year class, the continued depression of *Daphnia* is consistent with continued high abundance of alewife, and the growth rates of alewife became depressed after the decline in *Daphnia* compared to the high growth rates at low abundance in the early 2000s. In other lakes with alewife densities around 1000-2000 fish/ha, *Daphnia* are also depressed (Cayuta Lake, Otsego Lake, Brooking and Rudstam submitted).

Why did alewife abundance increase in 2002? Alewife has been present in Onondaga Lake as early as the 1950s (Dence 1956, Meyer and Effler 1980) but conditions for fish reproduction have always been considered poor due to excessive loading of municipal and industrial waste into the lake and high in-lake ammonia concentrations. With the closures of a primary source of industrial pollution in 1987 and the continued improvements in the Metro Wastewater Treatment Facility, ammonia concentration decreased to less then 1 mg/L in 2000 and has remained below that value through 2007 (2007 annual mean = 0.16 mg/L (OCDWEP 2008)) (Fig. 1). At high concentrations, however, ammonia is toxic to fish (Thurston et al. 1986, Wajsbrot et al. 1991, Bergerhouse 1992), particularly during the larval stage. Holt and Arnold (1983) studied red drum (*Sciaenops ocellatus*) larvae susceptibility to ammonia toxicity during the critical period from endogenous to exogenous feeding. Larval mortality increased to as high as 50% when ammonia concentration exceeded 0.55 mg/L. Although there are no existing studies of alewife larval susceptibility to ammonia toxicity in Onondaga Lake, the enhancement of ammonia removal by

Metro could have improved the reproductive success of alewife and thus the increase in abundance in 2003. Thus, improved wastewater treatment may have initiated the trophic cascade that eliminated the spring clear water phase in Onondaga Lake. Such food web effects need to be accounted for when evaluating the lakes response to improvements at the Metro plant or other similar projects where reductions in nutrient loading occur.

ACKNOWLEDGMENTS

We wish to thank Jonathan Swan from the Cornell Biological Field Station and Chris Gandino from Onondaga County for sample collection and processing. This project was supported by Onondaga County Department of Water Environment Protection and Cornell University. Contributions number xxx from the Cornell Biological Field Station.

References

Anderson, M. R. and R. M. Neumann. 2002. Factors Influencing Growth and Body Condition of Alewives in Connecticut Lakes. J. Freshwater Ecol. 17(1):55-64.

Bergerhouse, D. L. 1992. Lethal Effects of Elevated pH and Ammonia on Early Life Stages of Walleye. N. Am. J. Fish. Manage. 12(2):356-366.

Brooking, T. E., J. R. Jackson, L. G. Rudstam and D. M. Green. 2005. Surveys of fish and limnology at Canadarago Lake, NY in 2004. New York Federal Aid Study VII, FA-48-R, Job 102. New York Department of Environmental Conservation, Albany, NY.

Brooking, T. E. and L. G. Rudstam. (Submitted). Hydroacoustic target strength distributions of alewife an a net cage compared to field surveys: deciphering target strength distributions and effect on density estimates. Trans. Am. Fish. Soc.

Brooks, J. L. and S. I. Dodson. 1965. Predation, Body Size, and Composition of Plankton. Science 150(3692):28-35.

Carpenter, S. R. and J. F. Kitchell. 1984. Plankton Community Structure and Limnetic Primary Production. Am. Nat. 124(2):159-172.

Dence, W. A. 1956. Concretions of the Alewife, Pomolobus pseudoharengus (Wilson), at Onondaga Lake, New York. Copeia 1956(3):155-158.

Effler, S. W. and G. Harnett. 1996. Background. P. 1-32. *In* S. W. Effler (ed.). Limnological and Engineering Analysis of a Polluted Urban Lake: Prelude to Environmental Management of Onondaga Lake, New York. Springer-Verlag, New York, NY, USA.

Evans, M. S. and D. J. Jude. 1986. Recent Shifts in Daphnia Community Structure in Southeastern Lake Michigan: A Comparison of the Inshore and Offshore Regions. Limnol. Oceanogr. 31(1):56-67.

Gannon, J. E. 1976. The Effects of Differential Digestion Rates of Zooplankton by Alewife, Alosa pseudoharengus, on Determinations of Selective Feeding. T. Am. Fish. Soc. 105(1):89-95.

Graeb, B. D. S., J. M. Dettmers, D. H. Wahl and C. E. Cáceres. 2004. Fish Size and Prey Availability Affect Growth, Survival, Prey Selection, and Foraging Behavior of Larval Yellow Perch. T. Am. Fish. Soc. 133(3):504-514.

Harman, W. N., M. F. Albright and D. M. Warner. 2002. Trophic Changes in Otsego Lake, NY Following the Introduction of the Alewife (Alosa psuedoharengus). Lake Reserv. Manage. 18(3):215-226.

Holt, G. J. and C. R. Arnold. 1983. Effects of Ammonia and Nitrite on Growth and Survival of Red Drum Eggs and Larvae. T. Am. Fish. Soc. 112(2b):314-318.

Hutchinson, B. P. 1971. The Effect of Fish Predation on the Zooplankton of Ten Adirondack Lakes, with Particular Reference to the Alewife, Alosa pseudoharengus. T. Am. Fish. Soc. 100(2):325-335.

Kohler, C. C. and J. J. Ney. 1981. Consequences of an Alewife Die-off to Fish and Zooplankton in a Reservoir. T. Am. Fish. Soc. 110(3):360-369.

Lampert, W. 1978. A field study on the dependence of the fecundity of Daphnia spec. on food concentration. Oecologia 36(3):363-369.

Lampert, W., W. Fleckner, H. Rai and B. E. Taylor. 1986. Phytoplankton control by grazing zooplankton: A study on the spring clear-water phase. Limnol. Oceanogr. 31(3):478-490.

Matthews, D. A., S. W. Effler and C. M. Matthews. 2000. Ammonia and Toxicity Criteria in Polluted Onondaga Lake, New York. Water Environ. Res. 72(6):731-741.

McQueen, D. J., J. R. Post and E. L. Mills. 1986. Trophic Relationships in Freshwater Pelagic Ecosystems. Can. J Fish. Aquat. Sci. 43(8):1571-1581.

Meijer, M.-L., I. de Boois, M. Scheffer, R. Portielje and H. Hosper. 1999. Biomanipulation in shallow lakes in The Netherlands: an evaluation of 18 case studies. Hydrobiologia 408-409(0):13-30.

Meyer, M. A. and S. W. Effler. 1980. Changes in the Zooplankton of Onondaga Lake (NY), 1969-1978. Environ. Pollut. A 23(2):131-152.

Mills, E. L. and A. Schiavone, Jr. 1982. Evaluation of Fish Communities Through Assessment of Zooplankton Populations and Measures of Lake Productivity. N. Am. J. Fish. Manage. 2(1):14-27.

Myriax. 2008. EchoView 4.40. Myriax Software Pty. Ltd., Hobart, Tasmania, Australia.

Onondaga Lake Ambient Monitoring Program. 2008. 2007 Annual Report. Onondaga County Department of Water Environment Protection. Syracuse, New York.

Onondaga Lake Ambient Monitoring Program. 2007. 2006 Annual Report. Onondaga County Department of Water Environment Protection. Syracuse, New York. Rowell, H. C. 1996. Paleolimnology of Onondaga Lake: The history of anthropogenic impacts on water quality. Lake Reserv. Manage. 12(1):35-45.

Rudstam, L. G., R. C. Lathrop and S. R. Carpenter. 1993. The Rise and Fall of a Dominant Planktivore: Direct and Indirect Effects on Zooplankton. Ecology 74(2):303-319.

Rudstam, L. G., A. J. VanDeValk and M. D. Scheuerell. 2002. Comparison of acoustic and Miller high-speed sampler estimates of larval fish abundance in Oneida Lake, New York. Fish. Res. 57(2):145-154.

Sommer, U., Z. M. Gliwicz, W. Lampert and A. Duncan. 1986. PEG-model of Seasonal Succession of Planktonic Events in Fresh Waters. Arch. Hydrobiol. 106(4):433-471.

Spada, M. E., N. H. Ringler, S. W. Effler and D. A. Matthews. 2002. Invasion of Onondaga Lake, New York, by the zebra mussel (Dreissena polymorpha) following reductions in N pollution. J. N. Am. Benthol. Soc. 21(4):634-650.

Thurston, R. V., R. C. Russo, E. L. Meyn, R. K. Zajdel and C. E. Smith. 1986. Chronic Toxicity of Ammonia to Fathead Minnows. T. Am. Fish. Soc. 115(2):196-207.

Wajsbrot, N., A. Gasith, M. D. Krom and D. M. Popper. 1991. Acute toxicity of ammonia to juvenile gilthead seabream Sparus aurata under reduced oxygen levels. Aquaculture 92(2):277-288.

Warner, D. M., L. G. Rudstam and R. A. Klumb. 2002. In Situ Target Strength of Alewives in Freshwater. T. Am. Fish. Soc. 131(2):212-223.

Warshaw, S. J. 1972. Effects of Alewives (Alosa pseudoharengus) on the Zooplankton of Lake Wononskopomuc, Connecticut. Limnol. Oceanogr. 17(6):816-825.

Wells, L. 1970. Effects of alewife predation on zooplankton populations in Lake Michigan. Limnol. Oceanogr. 15(4):556-565. Table 1.–Mean fish catches in the vertical gill nets with variable mesh size set in Onondaga Lake in 2004 through 2007. Four nets were set in each survey, except on July 18, 2007 where two nets were set.

Means	Oct 7, 2004	May 17, 2005	June 4, 2006	June 6, 2007	July 18, 2007
Soak time (hrs)	3.42	2.45	5.61	2.34	1.08
Proportion (0-2 m)	0.35	0.38	0.43	0.42	0.28
(2-4 m)	0.37	0.41	0.24	0.31	0.4
(4-6 m)	0.28	0.21	0.32	0.27	0.32
Alewife					
Catch/hour	58.51	75.4	56.4	94.9	143.5
Mean length (range) (mm)	148 (132-165)	149 (108-164)	132 (110-169)	153 (104-195)	150 (110-173)
Mean weight (g)	29.8	33.7	24.9	28.4	26.8
Other fish species (catch/hr)					
Gizzard shad	3.1	0	6.7	1.0	0
White perch	0.1	0.1	0.1	0.4	0
Yellow perch	0	0	0	0.5	0.5
Emerald shiner	0	0	1.4	0	0
Golden shiner	0.1	0	0	0	0
Smallmouth bass	0	0	0	0.2	0
Pumpkin seed	0	0	0	0	0.5
Brown trout	0	0.1	0.02	0	0
Channel catfish	0.1	0	0	0	0.5

Table 2.–Acoustic estimates of fish in Onondaga Lake using 70 kHz split beam unit during surveys on May 17, 2005, June 4, 2006, and June 6, 2007. Density is also corrected to include fish in the top 2 m of water (Table 1, see methods). ABC is the area backscattering coefficient.

	Total transect	Mean TS, dB	Mean ABC,	Mean density	Mean corrected
	length, m (N)	(range)	m²/ha (range)	from 2 m to the	density, fish/ha
				bottom, fish/ha	(range, SE)
				(range)	
May 17, 2005	12,226 (7)	-43.84	0.094	1890	2242
		(-45.2041.97)	(0.032-0.188)	(909-3978)	(1156-4579, 472)
June 4, 2006	11,870 (7)	-44.24	0.055	1656	2328
		(-45.6142.55)	(0.022-0.078)	(693-2546)	(949-3646, 360)
June 6, 2007	9,655 (6)	-43.34	0.058	1084	1632
		(-44.3942.37)	(0.011-0.204)	(259-3528)	(387-5165, 738)

Table 3.–Age and growth data for alewife caught in vertical gill nets in 2004 and 2007 in Onondaga Lake. The number of fish aged was a random subsample of all fish caught. Alewives caught in 2005 and 2006 were not aged.

Age (yrs)	Percent of all fish	Mean fish length in	Percent of all fish	Mean fish length in
	aged in July 11 and	July 11 and Oct 7,	aged in June 6,	June 6, 2007, mm
	Oct 7, 2004 (N)	2004, mm (SD)	2007 (N)	(SD)
1	10 (5)	133 (5.9)	20 (8)	118 (4.6)
2	84 (42)	138 (6.3)	7.5 (3)	143 (5.3)
3	6 (3)	152 (1.2)	45 (18)	152 (5.5)
4			20 (8)	155 (9.7)
5			7.5 (3)	157 (9.9)

	June 6, 2007			July 18, 2007		
	SW	SE	NW	SE	NE	
Ν	10	10	10	15	15	
Mean length (mm)	156 (132-164)	140 (122-164)	164 (151-188)	156 (128-184)	150 (126-169)	
(range)						
% Daphnia sp.	0	0	0	42.8	48.9	
% B. longirostris	34.5	79.3	44.4	29.8	24.8	
% D. thomasi	52.3	20.0	41.4	27.4	25.9	
% Insects	13.2	0.7	5.3	0	0.4	
% Other	0	0	8.9	0	0	

Table 4.–Percent composition by number of diet contents of alewife caught in the vertical gill nets in Onondaga Lake on June 6 and July 18, 2007.

Figure Legends

Figure 1.–Annual mean total phosphorus and ammonia in-lake concentrations from January to December 1990 through 2007 in the upper 6 m of the southern end of Onondaga Lake. Metro loading is from Outfall 001. Loading from other sources are East Flume, Harbor Brook, Ley Creek, Ninemile Creek, Outfall 002, Onondaga Creek, and Tributary 5A.

Figure 2.–Mean secchi disk transparency from May 1 to June 15, 1990 through 2007 at the southern end of Onondaga Lake. Lines at the end of bars represent one standard deviation.

Figure 3.–Spatial distribution of alewife in Onondaga Lake on May 17, 2005, June 4, 2006, and June 6, 2007 based on densities from 2 m to the bottom in 200 m sections. Location of zooplankton sampling site (South Deep), gill net sets, and Metro are shown.

Figure 4.–Total biomass of four major groups of zooplankton collected in Onondaga Lake from 2000 through 2007 based on vertical hauls using a 0.50 m diameter net with 80 μ nylon mesh from the epilimnion. Zooplankton samples were collected at the southern end of the lake throughout the year.

Figure 5.–Proportion of length distribution of alewife caught in Onondaga Lake in electrofishing surveys from 2003 through 2007 (top graph) and in vertical gill nets in May 17, 2005, June 4, 2006 and June 6, 2007 (bottom graph).

Figure 6.–Alewife mean corrected density obtained with acoustic surveys and mean catch per hour obtained with vertical gill nets in Onondaga Lake. Error bars represent one standard error.

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

APPENDIX 9: SENECA RIVER

LIST OF TABLES:

- Table A9-1.
 Summary of AMP river sampling locations and total numbers of samples collected in 2007.
- **Table A9-2.**Summary of YSI data sonde deployment dates in 2007.

LIST OF FIGURES:

Figure A9-1.	Three Rivers System Study Area.
Figure A9-2.	Spatial profiles of water quality parameters in year 2007, DO-field and NH3-N.
Figure A9-3.	Spatial profiles of water quality parameters in year 2007, NO2 and NO3.
Figure A9-4.	Spatial profiles of water quality parameters in year 2007, TKN and TKN-F.
Figure A9-5.	Spatial profiles of water quality parameters in year 2007, ORG-N and SRP.
Figure A9-6.	Spatial profiles of water quality parameters in year 2007, TP and TDP.
Figure A9-7.	Spatial profiles of water quality parameters in year 2007, TOC and TOC- F.
Figure A9-8.	Spatial profiles of water quality parameters in year 2007, POC and TSS.
Figure A9-9.	Spatial profiles of water quality parameters in year 2007, Turbidity and Salinity-field.
Figure A9-10.	Spatial profiles of water quality parameters in year 2007, Chloride and Chlorophyll-a.
Figure A9-11.	Spatial profiles of water quality parameters in year 2007, Phaeophytin-a and Temp-field.
Figure A9-12.	Temporal profiles of daily average and variations of Temperature measured by YSI data sonde at Buoys 409, 316, and Onondaga Lake Outlet in 2007.
Figure A9-13.	Temporal profiles of daily average and variations of Salinity measured by YSI data sonde at Buoys 409, 316, and Onondaga Lake Outlet in 2007.
Figure A9-14.	Temporal profiles of daily average and variations of Dissolved oxygen measured by YSI data sonde at Buoys 409, 316, and Onondaga Lake Outlet in 2007.
Figure A9-15.	Temporal profiles of daily average and variations of pH measured by YSI data sonde at Buoys 409, 316, and Onondaga Lake Outlet in 2007.
Figure A9-16.	Temporal profiles of daily average and variations of Chlorophyll measured by YSI data sonde at Buoy 409 and Onondaga Lake Outlet in 2007.

APPENDIX 9: 2007 SENECA RIVER CONDITIONS (by QEA, LLC)

In 2007, OCDWEP completed three full water quality surveys of the Seneca River. The surveys were designed to assess current water quality status with respect to ambient water quality standards and to support the river and lake modeling effort being carried out by Quantitative Environmental Analysis, LLC (QEA). The AMP calls for annual water quality monitoring at Buoy 316; this sampling and analysis has been incorporated into the full river surveys. The study area for these water quality surveys, which is shown in **Figure A9-1**, spans the Seneca River from Cross Lake to Three Rivers Junction, as well as portions of the Oneida and Oswego Rivers. A summary of sampling locations and numbers of samples collected in 2007 is shown in **Table A9-1**.

River sampling events in 2007 occurred on July 12th, August 9th and September 26th. During each survey, grab samples of "bottom" and "top" waters (1m above the bottom and 1m below the surface, respectively) were collected and analyzed for several water quality parameters at numerous locations (defined by navigational buoys) throughout the study area. To further characterize the extent of stratification and variations in water quality with depth at Buoy 269, grab samples were also collected from a point halfway between the top and bottom samples at this location. In addition to the grab sampling, depth profiles of in-situ water quality parameters (dissolved oxygen (DO), salinity, redox potential, pH, and temperature) were collected at each sampling location during the AMP surveys

Spatial profiles of water quality constituents (i.e., DO, organic and inorganic forms of nitrogen, phosphorus, and carbon, as well as solids, turbidity, chloride, chlorophyll-*a*, phaeophytin-*a*, salinity, and temperature) measured during the July, August and September river sampling events in 2007 are shown in **Figures A9-2** through **A9-11**. A discussion of the 2007 Seneca and Oneida River sampling results is presented in **Chapter 6**. The dates when DO and N species collected during the 2007 river surveys were not in compliance with applicable ambient water quality standards are summarized in **Table 6-1**.

In addition, YSI data sondes were deployed at three locations within the system: Cross Lake (Buoy 409), Buoy 316, and the Onondaga Lake outlet. The deployment dates of the YSI data sondes are summarized in **Table A9-2**. The purpose of these sondes was to evaluate changes in water quality conditions over the
course of a day, as suggested by the river modeling peer review panel (QEA 2005, Appendix M). In-situ water quality parameters measured by the sondes (temperature, salinity, DO, pH, and chlorophyll) were recorded every 15 minutes for top and bottom depths at each location. Temporal profiles of the sonde data collected at Buoys 409 and 316 and the Onondaga lake outlet between June and October are provided in Figures A9-12 through A9-16. Note that in 2007, chlorophyll data were only collected at Buoy 409 near Cross Lake; the chlorophyll probes from the Buoy 316 were removed due to unexplainably high data variability observed in previous years.

<u>References</u>

Quantitative Environmental Analysis, LLC, 2005. *Phase 2 Report – Three Rivers Water Quality Model*. Submitted to Onondaga County Department of Water Environment Protection. Syracuse, NY.

Buoy	Buoy 412	Buoy 409	Buoy 397	Buoy 362	Buoy 334	Buoy 316	Buoy 294	Buoy 269	Buoy 260	Buoy 255	Buoy 240	Buoy 222	Buoy 178	Buoy 182	Buoy 212	Buoy 10	LO1	LO2	LO3
River																			
	sca	ida	ida	ida	ego	et a	e c	e a											
	ene	nei	nei	nei	ws(ake	ake	ake											
	S	S	S	S	S	S	S	S	S	S	Š	S	0	0	0	0	СГ	СГ	C
Kilometer ¹	-36.5	-35.4	-33.3	-26.9	-21.6	-18.4	-14.1	-10.1	-8.3	-6.4	-3.5	-0.4	-7.3	-6.7	-0.9	2.4	-11.7	-12.4	-11.4
DO-field	6	6	6	6	6	6	6	9	6	6	6	6	6	6	6	6	6	6	6
Chlorophyll-a	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
Phaeophytin-a	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
TOC	6	6	6	6	6	6	6	9	6	6	6	6	6	6	6	6	6	6	6
TOC-F	6	6	6	6	6	6	6	9	6	6	6	6	6	6	6	6	6	6	6
POC	6	0	6	6	0	6	0	9	0	6	0	6	6	0	6	6	6	0	0
NH3-N	6	6	6	6	6	6	6	9	6	6	6	6	6	6	6	6	6	6	6
NO2	6	6	6	6	6	6	6	9	6	6	6	6	6	6	6	6	6	6	6
NO3	6	6	6	6	6	6	6	9	6	6	6	6	6	6	6	6	6	6	6
ORG-N	6	6	6	6	6	6	6	9	6	6	6	6	6	6	6	6	6	6	6
TKN	6	6	6	6	6	6	6	9	6	6	6	6	6	6	6	6	6	6	6
TKN-F	6	6	6	6	6	6	6	9	6	6	6	6	6	6	6	6	6	6	6
TP	6	6	6	6	6	6	6	9	6	6	6	6	6	6	6	6	6	6	6
SRP	6	6	6	6	6	6	6	9	6	6	6	6	6	6	6	6	6	6	6
TDP	6	6	6	6	6	6	6	9	6	6	6	6	6	6	6	6	6	6	6
Chloride	6	6	6	6	6	6	6	9	6	6	6	6	6	6	6	6	6	6	6
COND-field	6	6	6	6	6	6	6	9	6	6	6	6	6	6	6	6	6	6	6
Salinity-field	6	6	6	6	6	6	6	9	6	6	6	6	6	6	6	6	6	6	6
Temp-field	6	6	6	6	6	6	6	9	6	6	6	6	6	6	6	6	6	6	6
pH-field	6	6	6	6	6	6	6	9	6	6	6	6	6	6	6	6	6	6	6
Turbidity	6	6	6	6	6	6	6	9	6	6	6	6	6	6	6	6	6	6	6
TSS	6	6	6	6	6	6	6	9	6	6	6	6	6	6	6	6	6	6	6

Table A9-1. Summary of AMP river sampling locations and total numbers of samples collected in 2007.

Note: ¹ River kilometers measured from Three Rivers Junction, upstream (-) for Seneca and Oneida / downstream (+) for Oswego.

Location	Start Date	End Date
Buoy 409	6/15/2007	10/10/2007
Buoy 316	6/14/2007	10/18/2007
Onondaga Lake Outlet	4/20/2007	12/1/2007

Table A9-2. Summary of YSI data sonde deployment dates in 2007.

 $\label{eq:longamp} illirenal Q: lonOampiDOCUMENTS' Reports' 2007_AMP_chapter' Figures' River_Appendix's tudy_area.aprillirenal Q: lonOampiDOCUMENTS' River_Appendix's tudy_area.aprillirenal Q: lonOampiDOCUME$

 $IF-Z:ONOamp:DOCUMENTS:\end{tabular} to the second state of the s$

 Oswego River Onondaga Lake Outlet

Figure A9-12. Temporal profiles of daily average and variations of Temperature measured by YSI data sonde at Buoys 409, 316, and Onondaga Lake Outlet in 2007.

Notes: Results are only shown for days that at least half of the 15-minute instantaneous data were available.

if - Z: \ONOamp\DOCUMENTS\Reports\2007_AMP_chapter\Figures\River_Appendix \FigA1_12_16_p_sonde.pro Fri Jul 25 14:04:12 2008

Notes: Results are only shown for days that at least half of the 15-minute instantaneous data were available.

if - Z:\ONOamp\DOCUMENTS\Reports\2007_AMP_chapter\Figures\River_Appendix\FigA1_12_16_p_sonde.pro Fri Jul 25 14:04:15 2008

Notes: Results are only shown for days that at least half of the 15-minute instantaneous data were available.

if - Z:\ONOamp\DOCUMENTS\Reports\2007_AMP_chapter \Figures\River_Appendix FigA1_12_16_p_sonde.pro Fri Jul 25 14:04:18 2008

Notes: Results are only shown for days that at least half of the 15-minute instantaneous data were available.

if - Z:\ONOamp\DOCUMENTS\Reports\2007_AMP_chapter \Figures\River_Appendix FigA1_12_16_p_sonde.pro Fri Jul 25 14:04:20 2008

 Daily Average Conc

 ·····
 Max/Min Conc

Figure A9-16. Temporal profiles of daily average and variations of Chlorophyll measured by YSI data sonde at Buoy 409 and Onondaga Lake Outlet in 2007.

Notes: Results are only shown for days that at least half of the 15-minute instantaneous data were available.

if - Z:\ONOamp\DOCUMENTS\Reports\2007_AMP_chapter\Figures\River_Appendix\FigA1_12_16_p_sonde.pro Fri Jul 25 14:04:23 2008

APPENDIX 10: SOUTH AND NORTH COMPARISON

List of tables

Table A10-1	Paired sample dates for 2007 AMP.
Table A10-2	Comparison of South and North data, April 10, 2007.
Table A10-3	Comparison of South and North data, June 5, and June 19, 2007.
Table A10-4	Comparison of South and North data, August 28 and October 9, 2007.
Table A10-5	Comparison of South and North data, October 24 and November 20, 2007.
Table A10-6	Statistical comparison of mean results between South and North deep stations from 1999 to 2007 combined
Table A10-7	Summary of parameters with statistically significant differences (P<0.05), 1999-2007

North Deep and South Deep Comparison

There are two basins in Onondaga Lake, identified as North Deep and South Deep. Overall, the analysis of the lake's water quality presented in the AMP annual report is based on the higher-frequency data collected at South Deep rather than quarterly data collected at North Deep. The rationale for this approach is that conditions in both basins are very similar. Paired sample analysis of both basins is conducted each year as part of the AMP in order to verify that water quality in both basins is similar.

Paired sampling was conducted on these dates in 2007, for the parameter lists shown in **Table A10-1**. The sample dates were grouped into four events.

Event	Sample Date	Low resolution mercury	List of 48 parameters*
1	April 10	Х	Х
2	June 5	Х	
	June 19		Х
3	August 28	Х	
	October 9		Х
4	October 24	Х	
	November 20		Х
*List of 4 ALK- field	⁴⁸ parameters: -T, As, BOD5, Ca, Cr. Cu. DO field J	Cd, Chloride, Chloroph	nyll-a, COND- E Fe Hardness K

Table A10-1	Paired	sample	dates	for	2007	ΔΜΡ
Table Alu-1.	r all cu	Sampic	uales	IOI	2007	ANT.

ALK-T, As, BOD5, Ca, Cd, Chloride, Chlorophyll-a, CONDfield, Cr, Cu, DO-field, ECOLI-MF, FCOLI-MF, Fe, Hardness, K, Mg, Mn, Na, NH3-N, Ni, NO2, NO3, ORG-N, Pb, Phaeophytin-a, pH-field, Salinity-field, Se, Secchi Disk, SiO2, SO4, SRP, TDP, TDS, Temp-field, TIC, TKN, TKN-F, TOC, TOC-F, TP, TS, TSS, Turbidity, TVS, VSS, Zn

Based on 2007 paired sampling results from the North Deep and South Deep stations, the lake is laterally well-mixed. With minor exceptions, there does not appear to be a strong gradient in water quality conditions from the south, where most of the inflows enter the lake, to the north.

Results of the four paired sampling events during 2007 are included in this AMP appendix as **Tables A10-2**, **A10-3**, **A10-4**, and **A10-5**.

<u>^</u>		Upper Mi	xed Layer	Lower Wa	ater Layer
Parameter	Units	South	North	South	North
Secchi Disc Depth	meters	1.7	1.4	NA	NA
рН	Std Units	*7.9	*7.9	*7.73	*7.65
Temperature	°C	*3.97	*3.87	*3.54	*3.35
Specific conductance	umHos/cm	*1,591	*1,627	*1,910	*2,091
Dissolved oxygen	mg/L	*12.26	*12.38	*10.4	*9.02
5-day BOD	mg/L	<2	<2	<2	<2
Total Alkalinity	mg/L	190	188	200	200
Total Organic Carbon	mg/L	*2.98	*2.93	*2.93	*2.92
TOC Filtered	mg/L	*2.78	*2.75	*2.80	*2.77
Total Inorganic Carbon	mg/L	*50.3	*50.6	*54.7	*53.3
Total Kjeldahl Nitrogen	mg/L	*0.78	*0.72	*0.80	*0.79
TKN Filtered	mg/L	*0.63	*0.62	*0.61	*0.65
Organic Nitrogen	mg/L	*0.40	*0.32	*0.29	*0.26
Ammonia-N	mg/L	*0.38	*0.40	*0.51	*0.53
Nitrite-N	mg/L	0.03	0.03	0.03	0.03
Nitrate-N	mg/L	1.81	1.8	1.8	1.88
Total Phosphorus	mg/L	*0.027	*0.025	*0.025	*0.023
Soluble Reactive Phosphorus	mg/L	*0.002	*0.002	*0.004	*0.004
Silica	mg/L	*3.16	*4.19	*4.45	*3.84
Calcium	mg/L	127	130	137	139
Sodium	mg/L	205	208	268	248
Potassium	mg/L	3.48	3.6	3.79	3.88
Sulfate	mg/L	118	105	128	116
Chloride	mg/L	375	390	470	454
Total Solids	mg/L	*1,027	*1,054	*1,299	*1,185
Total Volatile Solids	mg/L	*128	*128	*139	*132
Total Suspended Solids	mg/L	*3.0	*3.0	*3.0	*2.5
Volatile Suspended Solids	mg/L	<2	<2	<2	<2
Total Dissolved Solids	mg/L	*982	*1033	*1,266	*1,138
Turbidity	NTU	*4.81	5.98	NA	NA
Arsenic	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Iron	mg/L	0.134	0.126	0.188	0.135
Copper	mg/L	< 0.0031	< 0.0031	< 0.0031	< 0.0031
Chromium	mg/L	< 0.0025	< 0.0025	< 0.0025	< 0.0025
Cadmium	mg/L	< 0.0008	< 0.0008	< 0.0008	< 0.0008
Mercury	ng/l	3.53	1.86	1.97	1.58
Methyl mercury	ng/l	0.047	0.04	0.098	0.036
Lead	mg/L	< 0.002	< 0.002	< 0.002	< 0.002

Table A10-2. Comparison of South and North data, April 10, 2007.

		Upper Mixed Layer		Lower Wa	ater Layer
Parameter	Units	South	North	South	North
Magnesium	mg/L	21.9	22.4	23.6	23.5
Manganese	mg/L	0.0313	0.0343	0.106	0.0497
Nickel	mg/L	< 0.0038	< 0.0038	< 0.0038	< 0.0038
Selenium	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Zinc	mg/L	0.0075	0.0063	0.0063	0.0063
Phaeophytin-a	mg/m3	0.20	0.48	NA	NA
Chlorophyll-a	mg/m3	6.94	5.87	NA	NA
Fecal Coliforms	count/100	320	360	NA	NA
E. Coli	count/100	56	8	NA	NA

Table A10-2. Comparison of South and North data, April 10, 2007.

The averages are based on concentration data, and are not volume-averages. Phaeophytin-a and Chlorophyll-a were collected in the Photic Zone. Averages were calculated using the laboratory Minimum Reportable Limit when an observation was reported at or below that limit.

^		Upper Mix	ked Layer	Lower Wa	ater Layer
Parameter	Units	South	North	South	North
Secchi Disc Depth	meters	1.7	2.1	NA	NA
рН	Std Units	*7.91	*7.94	*7.50	*7.51
Temperature	°C	*22.08	*21.98	*7.8	*8.09
Specific conductance	umHos/cm	*1,935	*1,924	*1,816	*1,813
Dissolved oxygen	mg/L	*9.14	*9.29	*3.59	*3.79
5-day BOD	mg/L	<2	2.0	<2	<2
Total Alkalinity	mg/L	170	168	206	206
Total Organic Carbon	mg/L	*3.44	*3.49	*2.67	*2.73
TOC Filtered	mg/L	*3.04	*3.06	*2.38	*2.50
Total Inorganic Carbon	mg/L	*44.8	*44.8	*54.7	*53.7
Total Kjeldahl Nitrogen	mg/L	*0.61	*0.553	*0.973	*0.893
TKN Filtered	mg/L	*0.46	*0.38	*0.843	*0.73
Organic Nitrogen	mg/L	*0.523	*0.493	*0.317	*0.313
Ammonia-N	mg/L	*0.087	*0.06	*0.657	*0.58
Nitrite-N	mg/L	0.04	0.03	0.03	0.04
Nitrate-N	mg/L	2.39	2.27	1.37	1.41
Total Phosphorus	mg/L	*0.025	*0.022	*0.015	*0.016
Soluble Reactive Phosphorus	mg/L	*0.001	*0.001	*0.001	*0.001
Silica	mg/L	*1.32	*1.32	*3.77	*4.63
Calcium	mg/L	142	139	133	134
Sodium	mg/L	235	220	218	217
Potassium	mg/L	4.43	4.35	3.7	3.71
Sulfate	mg/L	158	159	129	134
Chloride	mg/L	427	430	399	403
Total Solids	mg/L	*1,286	*1,280	*1,161	*1,152
Total Volatile Solids	mg/L	*230	*252	*213	*205
Total Suspended Solids	mg/L	*2.5	*3	*2	*2
Volatile Suspended Solids	mg/L	*2	*2	*2	*2
Total Dissolved Solids	mg/L	*1,229	*1,215	*1,100	*1,104
Turbidity	NTU	*3.28	2.34	NA	NA
Arsenic	mg/L	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Iron	mg/L	0.0709	< 0.050	0.0664	< 0.050
Copper	mg/L	< 0.0031	< 0.0031	< 0.0031	< 0.0031
Chromium	mg/L	< 0.0025	< 0.0025	< 0.0025	< 0.0025
Cadmium	mg/L	<0.00080	< 0.00080	< 0.00080	< 0.00080
Mercury	ng/l	2.37	1.78	1.65	1.21
Methyl mercury	ng/l	0.092	0.074	0.036	0.03
Lead	mg/L	0.0036	< 0.0020	< 0.0020	< 0.0020

 Table A10-3.
 Comparison of South and North data, June 5, and June 19, 2007.

		Upper Mixed Layer		Lower W	ater Layer
Parameter	Units	South	North	South	North
Magnesium	mg/L	25.8	25.2	22.9	23.3
Manganese	mg/L	< 0.025	< 0.025	0.197	0.225
Nickel	mg/L	0.0042	< 0.0038	< 0.0038	< 0.0038
Selenium	mg/L	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Zinc	mg/L	< 0.0063	0.0068	< 0.0063	< 0.0063
Phaeophytin-a	mg/m3	0.21	< 0.20	NA	NA
Chlorophyll-a	mg/m3	4.27	3.74	NA	NA
Fecal Coliforms	count/100	<5	<5	NA	NA
E. Coli	count/100	1	<1	NA	NA

Table A10-3. Comparison of South and North data, June 5, and June 19, 2007.

The averages are based on concentration data, and are not volume-averages. Phaeophytin-a and Chlorophyll-a were collected in the Photic Zone. Averages were calculated using the laboratory Minimum Reportable Limit when an observation was reported at or below that limit.

		Upper Mi	xed Layer	Lower Wa	ater Layer
Parameter	Units	South	North	South	North
Secchi Disc Depth	meters	2.6	2.7	NA	NA
pH	Std Units	*7.97	*8.08	*7.31	*7.27
Temperature	°C	*20.77	*20.08	*9.97	*11.55
Specific conductance	umHos/cm	*1,974	*1,995	*1,890	*1,921
Dissolved oxygen	mg/L	*10.97	*9.87	*1.10	*1.07
5-day BOD	mg/L	<2	<2	6.0	4.0
Total Alkalinity	mg/L	134	144	210	196
Total Organic Carbon	mg/L	*3.74	*3.56	*2.9	*2.91
TOC Filtered	mg/L	*3.53	*3.30	*2.71	*2.75
Total Inorganic Carbon	mg/L	*35.2	*37.15	*59.7	*53.2
Total Kjeldahl Nitrogen	mg/L	*0.577	*0.543	*1.547	*1.053
TKN Filtered	mg/L	*0.39	*0.4	*1.34	*0.923
Organic Nitrogen	mg/L	*0.523	*0.493	*0.34	*0.353
Ammonia-N	mg/L	*0.053	*0.05	*1.21	*0.70
Nitrite-N	mg/L	0.04	0.04	0.05	0.01
Nitrate-N	mg/L	2.26	2.06	0.27	0.41
Total Phosphorus	mg/L	*0.03	*0.029	*0.17	*0.049
Soluble Reactive Phosphorus	mg/L	*0.001	*0.001	*0.114	*0.018
Silica	mg/L	*2.59	*2.78	*5.67	*5.46
Calcium	mg/L	135	140	132	138
Sodium	mg/L	254	252	242	261
Potassium	mg/L	5.19	5.08	3.94	4.12
Sulfate	mg/L	192	204	149	164
Chloride	mg/L	466	482	432	465
Total Solids	mg/L	*1,335	*1,379	*1,289	*1,304
Total Volatile Solids	mg/L	*238	*280	*245	*213
Total Suspended Solids	mg/L	*2	*2	*2	*2
Volatile Suspended Solids	mg/L	*2	*2	*2	*2
Total Dissolved Solids	mg/L	*1,272	*1,337	*1,205	*1,228
Turbidity	NTU	*1.915	1.65	NA	NA
Arsenic	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Iron	mg/L	< 0.05	< 0.05	0.166	0.064
Copper	mg/L	< 0.0031	< 0.0031	< 0.0031	< 0.0031
Chromium	mg/L	< 0.0025	< 0.0025	< 0.0025	< 0.0025
Cadmium	mg/L	< 0.0008	< 0.0008	< 0.0008	< 0.0008
Mercury	ng/l	2.51	1.68	1.86	1.65
Methyl mercury	ng/l	0.09	0.067	0.214	0.212
Lead	mg/L	< 0.002	< 0.002	< 0.002	< 0.002

 Table A10-4.
 Comparison of South and North data, August 28 and October 9, 2007.

		Upper Mixed Layer		Lower W	ater Layer
Parameter	Units	South	North	South	North
Magnesium	mg/L	25.5	25.2	23	23.8
Manganese	mg/L	< 0.025	< 0.025	0.865	0.572
Nickel	mg/L	< 0.0038	< 0.0038	< 0.0038	< 0.0038
Selenium	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Zinc	mg/L	0.0063	0.0094	< 0.0063	< 0.0063
Phaeophytin-a	mg/m3	1.39	1.01	NA	NA
Chlorophyll-a	mg/m3	16.6	16.6	NA	NA
Fecal Coliforms	count/100	16	24	NA	NA
E. Coli	count/100	23	27	NA	NA

Table A10-4. Comparison of South and North data, August 28 and October 9, 2007.

The averages are based on concentration data, and are not volume-averages. Phaeophytin-a and Chlorophyll-a were collected in the Photic Zone. Averages were calculated using the laboratory Minimum Reportable Limit when an observation was reported at or below that limit.

		Upper Mi	xed Layer	Lower Wa	ater Layer
Parameter	Units	South	North	South	North
Secchi Disc Depth	meters	2.6	2.5	NA	NA
pН	Std Units	*7.6	*7.8	*7.7	*7.7
Temperature	°C	*9.0	*9.0	*9.0	*8.7
Specific conductance	umHos/cm	*2,038	*2,043	*2,041	*2,059
Dissolved oxygen	mg/L	*9.1	*9.1	*9.0	*9.1
5-day BOD	mg/L	<2	<2	<2	<2
Total Alkalinity	mg/L	164	166	164	166
Total Organic Carbon	mg/L	*3.4	*3.3	*3.4	*3.3
TOC Filtered	mg/L	*3.2	*3.2	*3.2	*3.2
Total Inorganic Carbon	mg/L	*43	*43	*43	*44
Total Kjeldahl Nitrogen	mg/L	*0.73	*0.75	*0.76	*0.73
TKN Filtered	mg/L	*0.64	*0.61	*0.60	*0.60
Organic Nitrogen	mg/L	*0.29	*0.31	*0.33	*0.30
Ammonia-N	mg/L	*0.44	*0.43	*0.43	*0.43
Nitrite-N	mg/L	0.05	0.05	0.06	0.05
Nitrate-N	mg/L	1.8	1.7	1.8	1.7
Total Phosphorus	mg/L	*0.046	*0.047	*0.046	*0.046
Soluble Reactive Phosphorus	mg/L	*0.024	*0.025	*0.026	*0.026
Silica	mg/L	*3.8	*4.2	*4.1	*4.3
Calcium	mg/L	135	135	137	135
Sodium	mg/L	249	247	251	246
Potassium	mg/L	4.9	4.9	5.0	4.9
Sulfate	mg/L	168	174	168	173
Chloride	mg/L	477	473	485	464
Total Solids	mg/L	*1,297	*1,287	*1,306	*1,303
Total Volatile Solids	mg/L	*200	*185	*205	*189
Total Suspended Solids	mg/L	*2	*2	*2	*2
Volatile Suspended Solids	mg/L	*2	*2	*2	*2
Total Dissolved Solids	mg/L	*1,228	*1,265	*1,283	*1,263
Turbidity	NTU	*2.08	2.03	NA	NA
Arsenic	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Iron	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
Copper	mg/L	< 0.0031	< 0.0031	< 0.0031	< 0.0031
Chromium	mg/L	< 0.0025	< 0.0025	< 0.0025	< 0.0025
Cadmium	mg/L	< 0.0008	< 0.0008	< 0.0008	< 0.0008
Mercury	ng/l	5.24	1.97	5.28	4.63
Methyl mercury	ng/l	0.12	0.072	1.69	1.9
Lead	mg/L	< 0.002	< 0.002	< 0.002	< 0.002

Table A10-5. Comparison of South and North data, October 24 and November 20, 2007.

		Upper Mi	xed Layer	Lower Water Layer		
Parameter	Units	South	North	South	North	
Magnesium	mg/L	24.5	24.6	24.7	24.8	
Manganese	mg/L	0.0347	0.0356	0.0356	0.0351	
Nickel	mg/L	< 0.0038	< 0.0038	< 0.0038	< 0.0038	
Selenium	mg/L	< 0.002	< 0.002	< 0.002	< 0.002	
Zinc	mg/L	< 0.0063	< 0.0063	< 0.0063	< 0.0063	
Phaeophytin-a	mg/m3	2.3	2.03	NA	NA	
Chlorophyll-a	mg/m3	4.81	6.94	NA	NA	
Fecal Coliforms	count/100	168	175	NA	NA	
E. Coli	count/100	84	154	NA	NA	

Table A10-5. Comparison of South and North data, October 24 and November 20, 2007.

The averages are based on concentration data, and are not volume-averages. Phaeophytin-a and Chlorophyll-a were collected in the Photic Zone. Averages were calculated using the laboratory Minimum Reportable Limit when an observation was reported at or below that limit.

As part of the update of the statistical framework, Dr. Walker examined whether the trophic state indicator parameters used to track algal abundance (an important restoration goal for Onondaga Lake) differed between North Deep and South Deep. Three parameters: phytoplankton biomass, chlorophyll-a concentrations, and Secchi disk transparency were evaluated using a paired t-test of log-transformed values. No statistically significant differences were evident between the two stations.

Dr. Walker also examined whether the calculated precision and trends of nutrient concentrations in the upper mixed layer at South Deep station were consistent with the calculated precision and trends of nutrient concentrations measured in the lake outlet (12-ft depth). Dr. Walker's finding of comparable results for the two sites supports the conclusion that there are no large differences in water quality conditions along the north-south axis of Onondaga Lake. Additional support for this conclusion is presented in **Table A10-6**, which summarizes statistical analysis of the rest of the parameters measured at North and South Deep in the upper and lower waters for the years 1999 - 2007.

The statistical analysis indicates that, for most parameters, measured water quality conditions at North Deep and South Deep are comparable. However, there are several slight, but statistically significant, differences in average concentrations of certain parameters (**Table A10-7**). Most of the differences can be attributed to the effect of the location of inflows of Metro and the major tributaries.

		Upper Mixed Layer				Lower Water Layer			
Parameter	Units	Ν	South	North	Р	Ν	South	North	Р
Secchi Disc Depth	meters	35	1.95	2.05	0.112	0	NA	NA	NA
рН	Std Units	36	7.87	7.91	0.002	36	7.52	7.53	0.383
Temperature	°C	36	14.2	14.1	0.284	36	8.76	8.73	0.797
Specific conductance	umHos/cm	36	1914	1932	0.013	36	1975	2003	0.046
Dissolved oxygen	mg/L	36	10.2	10.2	0.866	36	5.32	5.06	0.036
5-day BOD	mg/L	36	2.72	2.88	0.224	36	3.53	3.69	0.336
Total Alkalinity	mg/L	36	165	166	0.916	36	193	193	0.695
Total Organic Carbon	mg/L	36	4.20	4.28	0.434	36	3.90	4.01	0.528
TOC Filtered	mg/L	36	3.79	3.85	0.406	36	3.51	3.68	0.405
Total Inorganic Carbon	mg/L	36	43	43	0.213	36	51	51	0.702
Total Kjeldahl Nitrogen	mg/L	36	1.11	1.07	0.0053	36	1.76	1.75	0.617
TKN Filtered	mg/L	36	0.92	0.89	0.086	36	1.60	1.58	0.600
Organic Nitrogen	mg/L	36	0.57	0.53	0.020	36	0.39	0.39	0.734
Ammonia-N	mg/L	36	0.54	0.54	0.952	36	1.37	1.36	0.629
Nitrite-N	mg/L	36	0.086	0.082	0.002	36	0.081	0.083	0.889
Nitrate-N	mg/L	36	1.53	1.45	0.00000002	36	1.09	1.05	0.098
Total Phosphorus	mg/L	36	0.07	0.07	0.156	36	0.21	0.20	0.470
Soluble Reactive Phosphorus	mg/L	36	0.03	0.03	0.142	36	0.17	0.16	0.573
Silica	mg/L	36	2.38	2.42	0.411	36	3.87	3.93	0.445
Calcium	mg/L	36	131	133	0.075	36	134	137	0.054
Sodium	mg/L	36	222	224	0.285	36	231	232	0.831
Potassium	mg/L	36	4.60	4.55	0.099	36	4.38	4.36	0.573
Sulfate	mg/L	36	164	164	0.836	36	155	155	0.880
Chloride	mg/L	36	427	431	0.094	36	439	442	0.477
Total Solids	mg/L	36	1240	1254	0.078	36	1268	1276	0.311
Total Volatile Solids	mg/L	36	212	221	0.204	36	208	210	0.682
Total Suspended Solids	mg/L	36	3.54	3.26	0.149	36	2.85	2.65	0.363

Table A10-6. Statistical comparison of mean results between South and North deep stations from 1999 to 2007 combined. Statistically significant results (P<0.05) are shaded. NA= No data available.

		Upper Mixed Layer			Lower Water Layer				
Parameter	Units	Ν	South	North	Р	Ν	South	North	Р
Volatile Suspended Solids	mg/L	36	2.49	2.43	0.692	36	2.03	1.96	0.443
Total Dissolved Solids	mg/L	36	1160	1183	0.030	36	1190	1203	0.107
Turbidity	NTU	24	4.03	3.66	0.168	0	NA	NA	NA
Arsenic	mg/L	36	0.002	0.002		36	0.002	0.002	0.141
Iron	mg/L	36	0.089	0.069	0.007	36	0.11	0.08	0.186
Copper	mg/L	36	0.0020	0.0019	0.746	36	0.0017	0.0016	0.194
Chromium	mg/L	36	0.0011	0.0012	0.283	36	0.0012	0.0011	0.149
Cadmium	mg/L	36	0.00070	0.00055	0.252	36	0.00067	0.00068	0.324
Mercury	ng/L	8	3.28	2.19	0.025	8	3.07	2.92	0.658
Methyl mercury	ng/L	8	0.11	0.08	0.103	8	0.50	0.60	0.302
Lead	mg/L	35	0.0038	0.0029	0.190	35	0.00	0.00	0.359
Magnesium	mg/L	36	23.87	24.12	0.016	36	23.59	24.08	0.023
Manganese	mg/L	36	0.031	0.052	0.331	36	0.03	0.05	0.549
Nickel	mg/L	36	0.0042	0.0047	0.313	36	0.0039	0.0040	0.693
Selenium	mg/L	36	0.0020	0.0020	—	36	0.0020	0.0020	
Zinc	mg/L	36	0.0077	0.0063	0.168	36	0.0069	0.0066	0.408
Phaeophytin-a	meters	36	1.45	1.56	0.444	0	NA	NA	NA
Chlorophyll-a; Log Transformed	mg/m3	36	1.04	1.04	0.955	0	NA	NA	NA
Fecal Coliforms; Log Transformed	count/100	36	1.40	1.24	0.0164	0	NA	NA	NA
E. coli; Log Transformed	count/100	27	120	55	0.138	0	NA	NA	NA

Table A10-6. Statistical comparison of mean results between South and North deep stations from 1999 to 2007 combined. Statistically significant results (P<0.05) are shaded. NA= No data available.

<u>Notes:</u> UML = 0m, 3m and 6m; LWL = 12m, 15m, 18m

The averages are based on concentration data, and are not volume-averages. Phaeophytin-a and Chlorophyll-a were collected in the Photic Zone. Averages were calculated using the laboratory Minimum Reportable Limit when an observation was reported at below that limit. NA: Not Analyzed.
	Obser	vations	
Parameters	Upper Waters (UML)	Lower Waters (LWL)	Interpretation
Nitrogen (Total Kjeldahl Nitrogen, Organic Nitrogen, Nitrite-N, and Nitrate-N)	Higher at South	Not different	Higher concentrations of nitrogen species at South Deep are likely due to the Metro discharge.
Specific conductance	Higher at North	Higher at North	The higher specific conductance may be related to the proximity of Ninemile Creek, which is a higher salinity inflow as compared with Metro and the southern tributaries.
pН	Higher at North	Not different	
Dissolved solids	Higher at North	Not different	
Dissolved oxygen	Not different	Higher at South	
Iron	Higher at South	Not different	Higher concentrations of iron at South Deep are likely due to the Metro discharge.
Mercury	Higher at South	Not different	Higher mercury concentrations at South Deep may be related to proximity to historic industrial discharge of mercury.
Magnesium	Higher at North	Higher at North	The reason for the elevated Mg concentration at North Deep is unknown.
Fecal coliforms	Higher at South	Not sampled	The higher fecal coliform bacteria concentrations at South Deep are likely due to the proximity of the larger tributaries (CSOs and urban storm water) and the requirement for seasonal disinfection of the Metro effluent.

Table A10-7. Summary of parameters with statistically significant differences (P<0.05), 1999-2007

APPENDIX 11: LICOR DATA ANALYSIS

LiCor Data Analysis

Light penetration through the water column is a measure of light availability and spectral quality. OCDWEP collects these data in Onondaga Lake using a LI-192SA Underwater Quantum Sensor, manufactured by LiCor. This instrument measures the intensity of Photosynthetically Active Radiation (PAR, 400-700 nm) by lowering a light detector unit through the water column, and measuring downwelling and upwelling radiation using two underwater sensors. Data are analyzed using the Beer-Lambert law to calculate the light extinction coefficient using the function:

 $\mathbf{I} = \mathbf{I}_0 \, \mathbf{e}^{-\mathbf{k}\mathbf{z}}$

Where:

I = light intensity at depth, z $I_0 = light intensity at surface$ k = extinction coefficient

Higher values of k are associated with more turbid conditions; these conditions cause light to be scattered and/or absorbed by material in the water column and thus to limit the depth of penetration.

The temporal plot of light extinction measured in 2007 (**Figure A11-1**) illustrates the variability in this measurement. The concentration of chlorophyll-a in the photic zone is also plotted to indicate the extent to which algal abundance is correlated with the light extinction coefficients. The chlorophyll-a data are presented paired by sample date with the LiCor data. Chlorophyll-a data are measured weekly during the summer; the LiCor measurements are obtained biweekly throughout the sampling season.

Figure A11-1. Temporal distribution of light extinction data (Ke) paired with chlorophyll-a data (photic zone), Onondaga Lake South Deep 2007. The greater the extinction coefficient number, the greater the turbidity in the water column.

Note: Ke is based on Licor data reading at the maximum depth for each sample date. Ke (extinction coefficient) represents the slope of the line formed when the natural log of the ratio of light penetration at the surface to light

penetration at depth is plotted against depth. Field Notes: May 22 upwelling readings from 0 to 1.2m were anomalous, as though the cap for the probe was left on. Nov 8 spike in downwelling reading at 0.6m attributed to sun breaking through clouds.

LiCor data from 1996 – 2007 have been compiled into a database and light extinction coefficients have been calculated for each sampling date over this eleven-year period. Summary statistics for the time period (**Table A11-1**) indicate that the minimum light extinction (clearest water) conditions are measured either early in the season (May and June) or in the late fall –winter period. This is consistent with the dynamics of the phytoplankton community. It is also evident from the data that there is no trend in the average value calculated for light extinction over the period (**Figure A11-2**).

This finding is consistent with the trend analysis for Secchi disk transparency at South Deep. Secchi disk transparency can be considered a "low tech" estimator of light penetration which correlates reasonably well with the LiCor data (**Figure A11-3**); high Secchi disk transparency and low extinction coefficients indicate clear waters, while low Secchi depth and high extinction coefficients indicate turbid water. There is a lot of scatter at the extremes of the graph.

	Extinction Coefficient (m ⁻¹)											
		Mi	nimum	Ma	aximum							
Year	ear N Ke		On Date	K _e	On Date	Average						
1996	17	0.74	05/29/96	3.6	07/10/96	1.7						
1997	12	0.74	06/30/97	1.9	04/10/97	1.3						
1998	14	0.39	11/17/98	1.7	09/08/98	1.0						
1999	17	0.39	06/29/99	2.6	07/27/99	1.1						
2000	19	0.64	06/27/00	2.3	05/16/00	1.1						
2001	17	0.32	11/27/01	2.3	09/18/01	0.94						
2002	22	0.47	01/23/02	1.4	09/04/02	0.87						
2003	17	0.36	01/07/03	1.9	10/14/03	1.1						
2004	18	0.71	12/07/04	1.6	08/31/04	0.92						
2005	19	0.64	08/30/05	1.2	04/14/05	0.85						
2006	22	0.56	11/08/06	1.6	10/24/06	0.88						
2007	18	0.41	11/20/07	1.2	04/24/07	0.71						

Table A11-1. Summary of light extinction data, Onondaga Lake South Deep,1996-2007.

Notes:

Extinction Coefficient (K_e) represents the penetration of incoming solar radiation into the water column. K_e represents the slope of the line formed when the natural log of the ratio of light penetration at the surface to light penetration at depth is plotted against depth. The greater the number, the steeper the slope of the line, therefore the more rapidly light is extinguished with depth, indicating greater turbidity in the water column.

Figure A11-2. Maximum, minimum, and average of light extinction (Ke) data, Onondaga Lake South Deep, 1996-2007.

Notes: The Extinction coefficient represents the slope of the line formed when the natural log of the ratio of light penetration at the surface to light penetration at depth is plotted against depth. The greater the number, the steeper the slope of the line, therefore the more rapidly light is extinguished with depth, indicating greater turbidity in the water column. Annual statistics for Extinction Coefficient are based on the maximum depth of light extinction measured for each sample date.

Figure A11-3. Correlation of light extinction (Ke) data with Secchi depth, Onondaga Lake South Deep 1996-2007.

Note: The extinction coefficient (Ke) represents the slope of the line formed when the natural log of the ratio of light penetration at the surface to light penetration at depth is plotted against depth. The greater the number, the steeper the slope of the line, therefore the more rapidly light is extinguished with depth, indicating greater turbidity in the water column. Based on the Licor data reading at maximum depth for each sample date.

APPENDIX 12: FLOW-WEIGHTED RESULTS

Contents

- Table A12-1.
 Flow-weighted average of limnological parameters, 2007, in Onondaga Lake tributaries, with standard error of estimate.
- Table A12-2.Loading of major water quality parameters to Onondaga Lake, January to
December 2007.
- Table A12-3.Annual (January to December) tributary loadings to Onondaga Lake, 1990-2007,
and comparison of 2007 to long-term average conditions.
- Table A12-4. Percent contribution by gauged inflow, January to December 2007.
- Table A12-5. 10-Year trends in concentration (1998-2007).

			~ .			Onondaga (Creek @		~ .
Parameter	Units	Nine Mile Concentration	Creek RSE	Harbor Concentration	Brook RSE	Kirpatrick Concentration	Street	Ley Concentration	Creek <i>RSE</i>
5-day BOD	mg/l	2.3	13.8%	3.0	30.2%	2.1	17.3%	2.4	23.9%
Total Alkalinity	mg/l	190	2.3%	226	4.9%	218	2.7%	192	4.4%
Total Organic Carbon	mg/l	2.7	20.2%	2.4	27.2%	2.2	24.9%	5.9	8.0%
TOC-filtered	mg/l	2.5	15.5%	2.2	28.6%	2.1	26.9%	5.5	7.8%
Total Inorganic Carbon	mg/l	49.7	2.3%	60.4	5.0%	56.0	3.0%	50.7	5.9%
Total Kjeldahl Nitrogen as N	mg/l	0.61	11.4%	0.58	22.3%	0.45	14.1%	0.70	12.4%
Organic Nitrogen as N	mg/l	0.41	14.5%	0.51	29.1%	0.36	19.7%	0.41	13.1%
Ammonia as N	mg/l	0.20	8.7%	0.08	19.6%	0.07	13.8%	0.28	14.7%
Nitrate as N	mg/l	0.94	7.6%	1.52	5.7%	1.01	7.1%	0.42	16.8%
Nitrite as N	mg/l	0.02	12.9%	0.02	13.2%	0.03	49.8%	0.02	18.8%
Arsenic	ug/l	2.1	3.5%	2.0	2.5%	2.0	14.9%	2.1	3.2%
Total Phosphorus	ug/l	53.9	20.6%	115.1	26.0%	63.6	30.3%	65.9	23.9%
Soluble Reactive Phosphorus	ug/l	9.5	27.5%	37.6	18.6%	9.3	30.9%	10.5	16.1%
Silica	mg/l	4.1	5.4%	4.8	5.4%	5.0	7.7%	5.7	6.0%
Calcium	mg/l	181.4	2.3%	188.7	4.9%	113.1	2.0%	109.8	5.8%
Sodium	mg/l	93.6	4.7%	146.8	14.6%	336.5	5.7%	250.4	21.2%
Sulfate	mg/l	156.3	4.7%	286.8	6.6%	116.2	3.9%	108.1	7.5%
Chloride	mg/l	280.4	3.7%	262.0	12.8%	548.8	6.5%	421.0	21.2%
Total Suspended Solids	mg/l	31	31.5%	46	97.5%	49	50.9%	14	44.8%
Total Dissolved Solids	mg/l	969	2.9%	1114	6.0%	1271	4.2%	1057	12.4%
Zinc	ug/l	8.5	27.0%	11.1	28.5%	7.8	33.5%	14.3	20.2%
Copper	ug/l	6.1	12.5%	3.2	33.0%	4.6	42.0%	4.0	23.0%
Chromium	ug/l	2.5	27.1%	2.5	40.7%	2.5	45.1%	2.5	27.4%
Cadmium	ug/l	0.8	13.4%	0.8	14.6%	0.8	15.6%	0.8	9.7%
Lead	ug/l	2.1	15.4%	2.0	20.5%	2.2	29.5%	3.9	30.6%
Iron	mg/l	0.91	20.6%	1.12	89.5%	1.9	75.9%	0.8	30.5%
Magnesium	mg/l	26.4	1.8%	35.0	4.8%	23.9	2.1%	21.0	6.1%
Manganese	ug/l	58.9	11.7%	39.2	31.2%	75.5	36.5%	98.0	9.8%
Nickel	ug/l	3.8	15.1%	3.8	21.7%	3.8	36.1%	3.9	11.0%
Fecal Coliforms	cells/100ml	462	146.8%	3,373	158.0%	1,285	77.9%	770	66.9%

Table A12-1. Flow-weighted average of limnological parameters, 2007, in Onondaga Lake tributaries, with standard error of estimate.

RSE = relative standard error of the concentration estimate. ** METRO BOD5, NH3-N, TP, TSS based on observations made daily,

Calculated using a multiple regression algorithm relating concentration to flow, season, and trend with residual interpolation.

METRO TKN based on observations made 5 times each 2 week period. Other values are based on data collected bi-weekly; heavy metals sampled quarterly.

Calculations use the laboratory reported minimal reportable limit (MRL) when observations were below the MRL.

		Trib.	5A	METRO Ef	fluent **	METRO J	By-Pass	East Flu	ıme
Parameter	Units	Concentration	RSE	Concentration	RSE	Concentration	RSE	Concentration	RSE
5-day BOD	mg/l	3.0	15.2%	5.2	3.4%	56.0	6.2%	3.9	14.1%
Total Alkalinity	mg/l	166	2.5%	156	3.0%	209	12.4%	157	5.0%
Total Organic Carbon	mg/l	4.4	5.7%	7.6	5.2%	18.1	20.4%	4.3	7.7%
TOC-filtered	mg/l	4.1	5.4%	6.8	4.4%	15.2	21.1%	3.9	7.8%
Total Inorganic Carbon	mg/l	42.3	3.6%	43.2	3.2%	52.6	14.4%	38.8	5.3%
Total Kjeldahl Nitrogen as N	mg/l	0.54	35.6%	1.9	3.1%	9.6	7.3%	1.0	10.4%
Organic Nitrogen as N	mg/l	0.36	15.9%	0.8	15.3%	2.9	25.7%	0.53	14.1%
Ammonia as N	mg/l	0.18	83.9%	0.9	4.8%	5.3	11.1%	0.40	13.4%
Nitrate as N	mg/l	0.69	13.9%	9.8	6.9%	1.8	35.2%	3.4	7.5%
Nitrite as N	mg/l	0.03	20.2%	0.07	13.6%	0.09	68.9%	1.14	19.9%
Arsenic	ug/l	2.1	11.5%	2.0	6.4%	2.0	6.9%	2.6	17.5%
Total Phosphorus	ug/l	107.2	8.1%	118.9	3.2%	1262.4	6.7%	127.6	17.2%
Soluble Reactive Phosphorus	ug/l	28.2	13.0%	4.5	31.7%	278.0	82.2%	45.9	19.8%
Silica	mg/l	8.4	5.8%	5.3	3.8%	5.5	18.1%	9.7	7.3%
Calcium	mg/l	131.4	3.6%	134.8	6.7%	100.8	31.4%	118.4	7.4%
Sodium	mg/l	160.3	5.3%	234.5	12.0%	299.3	35.4%	415.2	8.0%
Sulfate	mg/l	87.1	11.9%	147.8	4.2%	77.6	17.3%	296.8	9.6%
Chloride	mg/l	340.4	5.3%	415.9	5.8%	488.5	40.3%	543.4	8.8%
Total Suspended Solids	mg/l	16	72.4%	6.0	4.9%	78	9.7%	17	42.8%
Total Dissolved Solids	mg/l	941	4.6%	1170	3.6%	1150	27.5%	1551	7.1%
Zinc	ug/l	7.9	46.6%	23.5	6.9%	40.1	16.8%	20.3	54.6%
Copper	ug/l	12.7	38.7%	11.9	6.4%	21.6	14.8%	3.1	68.8%
Chromium	ug/l	19.0	40.3%	9.1	7.0%	10.0	19.5%	2.5	48.9%
Cadmium	ug/l	0.80	26.4%	0.9	9.9%	5.0	10.9%	0.80	52.9%
Lead	ug/l	2.7	30.1%	2.0	6.1%	30.0	16.6%	2.0	69.5%
Iron	mg/l	1.1	50.2%	1.28	7.5%	1.7	16.2%	0.34	41.7%
Magnesium	mg/l	16.0	2.7%	23.6	3.2%	19.7	17.5%	21.5	7.3%
Manganese	ug/l	84.3	26.4%	39.5	7.6%	41.8	16.9%	28.4	20.3%
Nickel	ug/l	89.7	19.5%	13.8	5.3%	15.0	19.2%	3.8	25.5%
Fecal Coliforms	cells/100ml	646	516.4%	2.079	60.1%	776.088	45.0%	360	95.8%

Table A12-1. Flow-weighted average of limnological parameters, 2007, in Onondaga Lake tributaries, with standard error of estimate. (Continued)

RSE = relative standard error of the concentration estimate. ** METRO BOD5, NH3-N, TP, TSS based on observations made daily,

Calculated using a multiple regression algorithm relating concentration to flow, season, and trend with residual interpolation.

METRO TKN based on observations made 5 times each 2 week period. Other values are based on data collected bi-weekly; heavy metals sampled quarterly. Calculations use the laboratory reported minimal reportable limit (MRL) when observations were below the MRL.

Parameter	Units	Onondaga Crk	Ninemile Creek	Metro ⁽¹⁾	Bypass ⁽²⁾	Ley Creek	Harbor Brook	East	Tributary	Total
		at Kirkpatrick ^(3,4)	at Rt. 48 ^(3,4)	Outfall 001	Outfall 002	at Park ^(3,4)	at Hiawatha ^(3,4)	Flume ⁽³⁾	5A ⁽³⁾	Monitored
Water	hm ³	183	170	88	1.44	39	14	0.7	0.56	496
Total P	mt	12	9.2	10	1.8	2.6	1.61	0.09	0.06	37
SRP	mt	1.7	1.6	0	0.40	0.41	0.52	0.03	0.02	5
TKN	mt	82	104	166	14	27	8.1	0.7	0.3	402
Nitrate-N	mt	184	160	856	2.5	16	21	2.3	0.4	1,243
Nitrite-N	mt	5.0	3.6	6	0.13	0.64	0.24	0.77	0.02	17
Ammonia-N	mt	13	34	75	7.7	10.8	1.2	0.27	0.10	142
Organic-N	mt	66	69	67	4.2	16.0	7.1	0.36	0.20	230
Ca	mt	20,673	30,900	11,830	145	4,267	2,633	80	73	70,602
Cl	mt	100,322	47,749	36,502	703	16,366	3,655	368	190	205,855
Na	mt	61,509	15,943	20,584	431	9,736	2,048	281	90	110,621
TSS	mt	8,927	5,197	523	113	543	635	11	9	15,958
Fecal Coli (annual)	10 ¹⁰ cfu	234,859	78,652	182,473	1,117,480	29,931	47,051	244	361	1,691,052
Fecal Coli (May-Sept)	10 ¹⁰ cfu	52,329	8,246	6,517	106,693	13,788	7,164	67	243	195,048
BOD -5 day	mt	382	385	459	81	94	42	3	2	1,447
T-Alk	mt	39,927	32,379	13,712	301	7,474	3,158	106	93	97,150
TOC	mt	408	462	663	26	230	34	3	2	1,827
TIC	mt	10,245	8,458	3,789	76	1,972	843	26	24	25,433

 Table A12-2. Loading of major water quality parameters to Onondaga Lake, January to December 2007.

<u>NOTES</u>

Notes: mt = metric tons; hm3 = million cubic meters; cfu = colony forming units

(1) Metro Outfall 001 calculated loads of BOD5, NH3-N, TP, TSS are based on daily measurements; METRO TKN based on 5 measurements/2 wks

(2) Metro Bypass Outfall 002 estimates based on periodic grab samples when outfall is active (high flow events)

(3) Natural tributaries, East Flume and Tributary 5A calculations based on biweekly program, plus high flow events and storms

(4) Tributary BOD samples include a large percentage of observations reported as less than the minimal reportable limit; for these observations, the minimal reportable limit was used in loading calculations.

Onondaga County Department of Water Environment Protection

		Annual									
Parameter	Units	Load 1990	Load 1991	Load 1992	Load 1993	Load 1994	Load 1995	Load 1996	Load 1997	Load 1998	Load 1999
5-day BOD	mt	2,835	2,109	4,059	4,226	2,928	2,433	3,300	2,134	2,220	1,745
Total Alkalinity	mt	127,204	86,082	104,777	107,504	92,308	64,728	101,576	75,112	83,374	59,355
Total Organic Carbon	mt	5,836	4,531	3,324	4,344	2,558	2,369	3,867	2,269	2,072	1,682
Total Inorganic Carbon	mt	32,160	21,471	26,846	26,429	23,876	16,533	26,113	18,466	22,172	15,203
Total Kjeldahl N	mt	1,907	1,745	1,880	2,003	1,927	1,883	2,081	1,494	1,274	907
Ammonia-N	mt	1,364	1,265	1,287	1,321	1,408	1,541	1,498	1,118	833	614
Nitrate-N	mt	779	488	485	515	476	295	534	465	869	625
Nitrite-N	mt	84	88	61	53	49	46	44	62	46	41
Organic-N	mt	551	436	584	666	514	324	580	376	413	276
Total Phosphorus	mt	149	83	126	140	83	65	112	50	68	54
Soluble Reactive P	mt	29	24	22	30	20	19	24	12	12	9
Calcium	mt	98,242	72,741	77,957	76,011	67,176	50,443	72,581	57,271	61,175	49,142
Sodium	mt	88,765	75,504	76,862	91,093	82,787	58,656	77,378	65,721	76,469	76,776
Chloride	mt	220,065	182,969	180,697	196,525	164,121	119,322	156,452	138,290	156,969	144,908
Total Suspended Solids	mt	24,975	13,120	22,603	15,568	11,670	5,694	19,230	5,404	10,397	11,342
Fecal Coliform	10^{10} cfu	1,120,878	1,099,838	3,040,649	5,519,621	1,103,861	9,182,161	3,254,615	1,833,174	2,849,618	3,957,407

Table A12-3. Annual (January to December) tributary loadings to Onondaga Lake 1990-2007, and comparison of 2007 to long-term average conditions.

		Annual	Average	% Change							
Parameter	Units	Load 2000	Load 2001	Load 2002	Load 2003	Load 2004	Load 2005	Load 2006	Load 2007	Load 1990-2006	2007 from
	Onits	2000	2001	2002	2005	2004	2005	2000	2007	1))0-2000	Average
5-day BOD	mt	1,981	1,734	2,325	2,696	2,054	1,495	1,495	1,447	2,457	-41%
Total Alkalinity	mt	90,576	75,898	85,765	102,123	110,499	104,601	109,320	97,141	92,988	4.5%
Total Organic Carbon	mt	2,224	1,895	1,975	2,896	3,121	2,196	2,073	1,828	2,896	-37%
Total Inorganic Carbon	mt	23,876	19,667	22,533	26,978	29,222	27,387	27,469	25,431	23,906	6.4%
Total Kjeldahl N	mt	982	824	1,018	932	580	363	405	402	1,306	-69%
Ammonia-N	mt	571	499	643	503	240	94	150	142	879	-84%
Nitrate-N	mt	772	667	463	977	1,379	1,541	1,261	1,244	741	68%
Nitrite-N	mt	52	38	31	47	31	13	20	17	47	-65%
Organic-N	mt	403	319	332	440	318	255	241	230	414	-44%
Total Phosphorus	mt	53	46	48	68	83	49	42	37	78	-52%
Soluble Reactive P	mt	7	8	7	15	31	7	5	5	16	-69%
Calcium	mt	64,406	55,498	60,308	68,945	73,697	77,168	75,710	70,588	68,145	3.6%
Sodium	mt	90,648	85,662	88,817	102,078	96,368	109,127	106,490	110,615	85,247	30%
Chloride	mt	171,897	167,643	168,405	193,596	186,907	199,532	187,570	205,833	172,698	19%
Total Suspended Solids	mt	14,034	9,567	9,109	10,368	16,157	14,209	17,923	15,959	13,610	17%
Fecal Coliform	10^{10} cfu	1,629,608	1,957,691	2,635,930	1,196,515	2,044,624	830,885	1,329,586	1,689,991	2,622,745	-36%

Table A12-3. Annual (January to December) tributary loadings to Onondaga Lake 1990-2007, and comparison of 2007 to long-term average conditions (continued).

Parameter	Onondaga Crk	Ninemile Creek	Metro	Bypass	Ley Creek	Harbor Brook	East	Tributary
	at Kirkpatrick	at Rt. 48	Outfall 001	Outfall 002	at Park	at Hiawatha	Flume	5A
Water	37%	34%	18%	0.29%	7.8%	2.8%	0.14%	0.11%
Total P	31%	25%	28%	4.9%	6.9%	4.3%	0.23%	0.16%
SRP	33%	32%	7.7%	7.9%	8.0%	10%	0.61%	0.31%
TKN	20%	26%	41%	3.4%	6.8%	2.0%	0.17%	0.075%
Nitrate-N	15%	13%	69%	0.20%	1.3%	1.7%	0.19%	0.031%
Nitrite-N	30%	21%	38%	0.75%	3.9%	1.4%	4.6%	0.11%
Ammonia-N	9.1%	24%	53%	5.4%	7.6%	0.83%	0.19%	0.071%
Organic-N	29%	30%	29%	1.8%	6.9%	3.1%	0.16%	0.087%
Ca	29%	44%	17%	0.21%	6.0%	3.7%	0.11%	0.10%
Cl	49%	23%	18%	0.34%	8.0%	1.8%	0.18%	0.092%
Na	56%	14%	19%	0.39%	8.8%	1.9%	0.25%	0.081%
TSS	56%	33%	3.3%	0.71%	3.4%	4.0%	0.070%	0.056%
Fecal Coli (annual)	14%	4.7%	11%	66%	1.8%	2.8%	0.0144%	0.0214%
Fecal Coli (May-Sept)	27%	4%	3.3%	55%	7.1%	3.7%	0.0344%	0.125%
BOD -5 day	26%	27%	32%	5.6%	6.5%	2.9%	0.18%	0.12%
T-Alk	41%	33%	14%	0.31%	7.7%	3.3%	0.11%	0.10%
TOC	22%	25%	36%	1.4%	13%	1.8%	0.16%	0.14%
TIC	40%	33%	15%	0.30%	7.8%	3.3%	0.10%	0.09%

Table A12-4. Percent contribution by gauged inflow, January to December 2007.

Note: Approximately 93.5% of flow to Onondaga lake is from gauged sources. The remainder of flow is attributed to non-point ungauged sources and precipitation.

<u>Symbol</u>	Description
Ι	increasing trend $(p < 0.1)$
D	decreasing trend $(p > 0.1)$
blank	no trend indicated ($p = 0.1$)
p2	significance level, two-tailed, seasonal kendall test accounting for serial correlation.

							Onor	ndaga	Hai	rbor	Ley	Ninemile	e			
		Oı	ionda	iga La	ake		Metro Creek				Brook		Creek	Creek		
VARIABLE	U_HTUOS	SOUTH_L	NORTH_U	NORTH_L	OUTLET12	OUTLET2	METRO	BYPASS	DORWIN	KIRKPAT	VELASKO	HIAWATHA	PARK	RT48	TRIB5A	EFLUME
ALK		Ι		Ι	Ι	Ι				Ι	Ι				Ι	
BOD5							D									
CA						Ι	Ι							D		
CHLA																
CL	D		D	D	D		Ι		D				Ι	D		
COND	D		D	D	D		Ι		D				Ι	D	D	
CR																
DO_F	Ι				Ι	Ι				Ι		Ι		Ι		Ι
FCOLI									Ι							
FE								D	Ι					D	Ι	
HARD						Ι	Ι							D		
MG			Ι		Ι	Ι	Ι					D		D		
MN			Ι				D	D							Ι	
NA							Ι		D		Ι	Ι	Ι	D	D	Ι
NH3N	D	D	D	D	D	D	D	D								
NI																
NO2N	D		D		D	D	D									
NO3N	Ι	Ι	Ι	Ι	Ι	Ι	Ι		Ι		Ι	Ι			D	
ORGN	D	D	D	D	D	D	D	D	Ι		Ι				Ι	D
PB							D					D	D			
PH_F									D	Ι						
PHAEO					D											
SECCHI																
SIO2	Ι	Ι	Ι		Ι	Ι									Ι	
SO4	D	D	D		D			D	D		D	D	D		D	
SRP		D		D			D	Ι				Ι	D		D	D
TDS			D				Ι		D					D	D	
ТЕМР				D			Ι									
TIC				Ι		Ι									Ι	
TKN	D	D	D	D	D	D	D	D					D	D		D
ТОС	D	D	D	D		D	D									D
TOC_F	D	D	D	D	D	D	D		D			D				D
ТР	D	D	D	D	D	D	D		Ι			Ι	D		D	D
TS	D	D	D													
TSS		Ι			Ι	Ι			Ι	Ι	Ι	Ι			Ι	
VSS		Ι														
ZN								D	Ι							

Table A12-5	Ten Year	Trends in	Concentration	(1998-2007)	- Summary
-------------	----------	-----------	---------------	-------------	-----------

APPENDIX 13: RAW DATA FILES

Appendix 13 Contents

- 2007 AMP METROPOLITAN SYRACUSE WWTP MONITORING ANALYTICAL DATA.xls
- 2007 AMP ONONDAGA LAKE IN_SITU MONITORING PROFILES DATA.xls
- 2007 AMP ONONDAGA LAKE MONITORING ANALYTICAL DATA.xls
- 2007 AMP ONONDAGA LAKE MONITORING LiCOR DATA.xls
- 2007 AMP ONONDAGA LAKE TRIBUTARIES FLOW DATA.xls
- 2007 AMP ONONDAGA LAKE TRIBUTARIES IN-SITU MONITORING DATA.xls
- 2007 AMP ONONDAGA LAKE TRIBUTARIES MONITORING ANALYTICAL DATA.xls
- 2007 AMP SENECA RIVER IN_SITU MONITORING PROFILES DATA.xls
- 2007 AMP SENECA RIVER MONITORING ANALYTICAL RESULTS.xls
- 2007 AMP SENECA RIVER MONITORING LiCOR DATA.xls